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Abstract—During power system cascading disturbances it be-
comes crucial to quickly identify the vulnerable transmission
interconnections. Understanding the impact of a triggering out-
age on these critical interconnections is important for enhancing
situational awareness and taking targeted control actions. This
paper proposes a new machine learning (ML) based graph-
theoretic approach for learning the dynamic functional connec-
tivity (DFC) between power system buses with respect to their
vulnerability to cascading failures (CF). The learnt DFC graph is
then used to characterise vulnerable regions of the power-system
using complex network theory based indices. A key feature of
the proposed DFC graph is that it takes into account detailed
power system dynamics and the action of protection devices when
deriving the DFC, going beyond a static representation of the
power system graph based on electrical admittances. Multiple
operational scenarios for load and renewable generation are also
considered when doing so. The proposed algorithm is validated
for a dynamic model of the IEEE-10 machine 39 bus system with
Type IV wind generation.

Index Terms—Cascading events, complex network theory,
power system dynamics, spatio-temporal graph, deep learning.

I. INTRODUCTION

Interconnected power systems operating closer to their
limits as well as large-scale integration of renewable energy
resources have introduced significant complexities and un-
certainties in the power systems; requiring the future power
system to be not only resilient to failures but also capable of
being steered to a desired state through targeted power system
control. Of particular concern for power system operators is
the possibility of cascading failures (CF) – a quick succession
of multiple component failures usually triggered by one or
more disturbance events such as extreme weather, equipment
failure, or operational errors [1]. This may also lead to a
blackout causing huge economic and social costs. The outage
process in cascading failures can be divided into two phases:
the slow cascade and fast cascade phases [2], [3]. The latter
phase, often driven by the transient dynamics of the system,
may result in power system collapse or major load shedding.
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However, it is possible for the system operators to take
preventive remedial actions to arrest their propagation and
possible manifestation into blackouts. Detection of vulnerable
power system components and their spatial location is thus
critical for resiliency of modern power systems.

A. Literature Review

Investigating the vulnerability of renewable-integrated
power systems to CF using a high fidelity dynamic model
incurs huge computational burden which often increases expo-
nentially with the number of components [4]. Cascading events
in power systems exhibit non-local propagation patterns which
makes the purely structural analysis of failures unrealistic [5].
Moreover, it is evident from post-mortem analysis of several
blackouts triggered by cascading failures, that the effect of
complex (rotor angle, voltage and frequency) dynamics, their
typical dynamic controllers and discrete protection devices
need to be taken into account for accurate representation of
CFs [6]. There are various techniques present in literature,
which model and analyse the underlying interactions among
power system components with respect to CF. While the
knowledge of these interactions are important to characterise
vulnerable spatial locations, this may not be readily available
from mere knowledge of power system physical models and
topology. Such techniques can be broadly classified as those
based on power system time-domain simulation [7], deter-
ministic analytical models [8], [9], probabilistic models [10],
and graph-based models [11]–[13]. Among these categories,
graph-based methods have attracted a lot of attention due to
their natural applicability to a power system network. Many
graph-based models were developed with vulnerability indices
based on the physical topology of the power system (whereby
the connections among the graph nodes represent the actual
physical connections among the components of the power
system) [14]. Nonetheless the studies in [5], [15] showed the
lack of strong connection between the physical topology of the
system and cascading failure propagation in power systems.
These influences and component interactions during the cas-
cade process may occur both locally and at distance due to the
physics of power flow as well as other functional dependencies
among power system components [9]. Studies to reveal these
complex and hidden interactions are focused on extracting
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the underlying graph of interactions among the components
of the system [13]. Extended topological indices [16]–[19],
i.e., integrating specific physical behaviours of power system
into the complex network theory based approaches, based on
admittance, current, and line-flow graphs have been proposed.
For example, [20] introduces the capacity of transmission
lines and generators to improve the maximum flow approach.
In summary most of the works proposed in literature make
use of the structural power-system graph while few others
proposed metrics calculated using a power-flow based graph
but their edges are weighted by the average value of power-
flow. These weighted graphs include no temporal information,
which might be crucial in analysing CF. Albeit, there are few
works present in literature that make use of graph-theoretic
approaches based on dynamic connectivity of power system
generators or loads, they make use of a reduced power system
graph for studying different pathways to failure [21], [22]. In
addition to this, another challenge is to include the effect of
operating states of the power system (i.e., renewable generator
output and load levels) which may change before the cascading
outage occurs. In different operating states, the vulnerable
locations of power systems may be different and it may be
very time-consuming and impractical to assess all possible
initial boundary conditions in operational planning/real-time
applications, hence the premise of machine learning (ML) for
such inference tasks is of interest.

B. Key Contributions

In this work we utilise spatio-temporal graph convolutional
networks (st-GCN) for predicting whether an operational sce-
nario and initial failure will lead to CF or not, while also
learning an improved connectivity matrix leveraging post-
fault dynamic power system features and network topology
in the form of bus admittances. Building on our previous
work [23], the graph induced by this learnt connectivity matrix
is sparsified and this graph is referred to as the dynamic
functional connectivity (DFC) graph. The DFC graph is further
used to calculate complex network theory based indices and
systematically compared against the indices obtained for a
static admittance based graph. Inferences are then drawn on
how the DFC graph can provide complementary and additional
insights to better characterise vulnerable regions of the power
system with respect to CFs. The proposed algorithm is vali-
dated for a dynamic model of the IEEE-10 machine 39 bus
system with Type IV wind generation and protection devices.

Remainder of the paper is structured as follows: Section II
briefly introduces graph-theoretic modelling of power system
and the proposed methodology of learning DFC graph. Section
III showcases the numerical case studies while Section IV
discusses the results. Finally Section V includes conclusion
and future work.

II. METHODOLOGY

This work proposes learning a functional connectivity graph
pertaining to dynamic CF using spatio-temporal power sys-
tem features under different operational scenarios and initial

contingency. First, power system spatio-temporal graphs are
introduced and then spatio-temporal graph convolution (st-GC)
operation is defined on them. Next, the training of st-GCN
based learning framework with an edge-importance matrix is
enumerated. The learning framework uses st-GC in each layer
and models the importance of graph edges in the decision
process across layers. Finally, the process of creating DFC
graph from edge-importance matrix is discussed in this section.

A. Spatio-temporal Power System Graphs

Conventionally, the power system is modelled as a weighted,
undirected graph, G, whereby nodes, N are represented by
power system buses. The edges of graph, E are represented
by transmission lines and transformers. Let N ∈ (ng, nl)
be the number of buses equipped with generator and load
respectively. The spatial connectivity between different nodes
of the graph is represented by the weighted adjacency matrix,
A. In this work, it is assumed that each bus is equipped with
a phasor measurement unit (PMU) and time-varying voltage
magnitudes, V mag(t) at each bus are captured. The presence
of features at all N buses (no missing values) ensures a good
learning outcome for a N × N sized system, but practically
speaking, the current framework can also utilise a reduced
dimension power system graph, for example with features
present at only generator buses. Specifically, V mag(t) ={
vmag
t,i |t = 1, 2, ..., T ; i = 1, ...N

}
represent a set of voltage

magnitudes assumed to be collected from N PMUs and for
T time points. The spatio-temporal graph is constructed in
two steps. First, nodes of the spatial graph at one time instant
are connected with edges according to A as in a conventional
power system graph. Then each node in the spatial graph is
connected to the same node for the consecutive time instant.
For the spatio-temporal graph thus formed, the edge-set is
composed of two subsets: the first subset depicts the intra-
power system connection at each time instant, denoted as
ES = {vtivtj |(i, j) ∈ N} and the second subset contains the
inter-time edges, which connect the same nodes at consecutive
time instants as ET =

{
vtiv(t+1)i

}
. Therefore all edges in ET

for one particular node i represents its trajectory over time. The
goal of st-GCN based graph learning algorithm is to utilise the
spatio-temporal graph to compute latent relationship between
power-system buses for the CF problem. In this paper, this
relationship is termed as power system DFC and the graph
induced by it is referred to as the DFC graph. This has been
illustrated in Fig. 1 which represents a high-level framework
of the proposed scheme.

B. Network Architecture for Spatio-Temporal Graph Convolu-
tion Learning

To define convolution on spatio-temporal graphs, the con-
cept of spatial and temporal neighbourhoods which refers
to data of neighbouring nodes and at neighbouring time
instants, introduced by [24] is utilised. The spatio-temporal
neighbourhood of node vti, denoted by Λ (vti) is defined as

Λ (vti) = {vqj |e(vtj , vti) ⩽ S, |q − t| ⩽ |T/2|} (1)
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Fig. 1: Proposed st-GCN framework for learning dynamic functional connectivity whilst classification of scenarios which lead
to cascading events

where S defines the size of the spatial neighbourhood (i.e.,
spatial kernel size), T the temporal neighbourhood(i.e., tem-
poral kernel size) and e(vtj , vti) denotes the minimum length
of any path from vtj to vti. Next, st-GC operation on node vti
with respect to a convolutional kernel w(.) and a normalisation
factor Nti which is equal to the cardinality of the correspond-
ing sub-set, is given as

fout (vti) =
1

Nti

∑
vqj∈Λ(vti)

fin (vqj) .w (vqj) (2)

Adopting a similar implementation as in [25], the spatio-
temporal convolutional kernel is approximated by decompos-
ing it to a spatial graph convolutional kernel WSG ∈ RC×P

represented in the spectral domain and a temporal convolu-
tional kernel, WTG ∈ RM×T. It is clarified that ft ∈ RN×C

denotes the C types of input features (C = 1 for the current
work as only bus voltage magnitude features are used) of
the N nodes at the tth frame, f

′

t ∈ RN×P denotes the
P output features. It is important to note that the current
framework of spatio-temporal GCNs which benefits from the
topology information, does not support complex features such
as voltage phasor, hence either voltage magnitude or voltage
phase angles can be used. The spatial graph convolution at
time t is then defined with respect to the symmetrically
normalised graph Laplacian matrix, L = D− 1

2 ÃD
1
2 , using the

aforementioned weighted adjacency matrix with self-loops, Ã
(where Ã = A+ I) as

f
′

t = D− 1
2 ÃD− 1

2 ftWSG (3)

Next, the temporal convolution is performed on the resulting
features. Standard 1D convolution f

′

t ⊙ WTG ∈ RT×T is
performed to derive the final output of st-GC for vi. The output
of the last st-GC layer is fed to a global average pooling and
its output vector is transformed to class probabilities by a fully
connected SoftMax layer with a sigmoid activation.

C. Edge-importance matrix

To determine the importance of spatial graph edges in
defining class probabilities, a positive and symmetric “edge
importance" matrix, M ∈ RN×N is integrated into the model.
This matrix is shared across all st-GC layers by replacing Ã
in (3) by Ã ◦ M where ◦ denotes the element-wise product.
While performing spatial graph convolution on node i, the
contribution from its neighbouring nodes, as defined by spatio-
temporal neighbourhood, Λ(vti) will be re-scaled according
to the importance weights learned in the ith row of M .
Finally the model is trained in an end-to-end manner by back-
propagation using stochastic gradient descent (SGD).

D. DFC graph : graph sparsification via κ - neighbourhood

A salient feature of the proposed framework is that an edge-
importance matrix is integrated into the model and learnt
end-to-end as an additional trainable parameter within the
st-GCN framework. Thus, the edge-importance matrix (or
learnt adjacency matrix) takes into account information from
both topology and dynamic behaviour of power systems.
Incorporating this, not only leads to superior performance in
terms of the downstream task of classifying scenarios leading
to CF but this matrix can also be projected as a dynamic
functional connectivity specific to cascading events [23]. It is
a positively weighted, symmetric and dense (fully-connected)
matrix. Using this matrix it is possible to produce a weighted
graph representation of the most buses of the power network
(and the dynamic components connected to them) with respect
to their vulnerability to CF. The fully connected graph may
be used to derive a sparse graph (similar to topological power
system graph but re-weighted) using the κ - neighbourhood
sparsification scheme [26]. To achieve this we keep the original
nodes of the network and retain only the links with weights
over a user-defined threshold κ in the learnt matrix M .
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DFC =

{
mij mij < κ
mij = 0 mij ≥ κ

(4)

where mij represents the weight of the edge connecting
nodes i and j in the graph induced by M . The thresholdκ is
chosen such that the number of edges remains the same as in
the topological graph.

III. CASE STUDIES

In order to predict the occurrence of fast CF in a com-
prehensive manner there is a need for detailed modelling
of power system dynamics. It is also imperative to consider
multi-time scale dynamics, the operation of protection devices,
initial operating conditions governed by dispatch of generators
and appropriate representation of system load and renewable
generation for an accurate vulnerability assessment. In this
work, root-mean square simulation (RMS) of a dynamic
model for modified IEEE 39 bus 10 machine New England
system with Type IV wind generation and protection devices
is used to generate bus-voltage magnitude trajectories. The
modified IEEE 39 bus 10 machine test case has been shown
in Fig. 2. These time-domain trajectories known as power-
system features are suitably pre-processed and resampled to
a typical PMU reporting rate of 10 milli-sec [27]. These
features are then used for the creating spatio-temporal graphs
as described in Section IIA. Detailed modelling assumptions
and choice of dynamic parameters for the test system are
adapted from [28]. Three phase faults on transmission lines
are simulated as initiating events, while considering load and
RE variations to capture realistically, a number of operating
conditions which lead to different dynamic response, when
large perturbations such as line-trips are encountered. Faults
on all 34 lines and step changes in load (ranging from 0.7
to 1.2 p.u. in steps of 0.1 p.u.) and wind energy generation
(ranging from 0 to 1 p.u. in steps of 0.2 p.u.) leads to 44064
independent scenarios, out of which dynamic CF are reported
in some cases, which are labelled as unsafe, while others
are labelled as safe. In this work, a simple undersampling
strategy is followed and a balanced dataset containing all
unsafe cases and an equal number of safe cases, is created
out of the total scenarios. It may be important to note that
importance sampling techniques such as [29] may further be
used to effectively sample important scenarios for CF, further
enriching the learning set, which however is not the focus
of the current work. The input weighted adjacency matrix, A
for the st-GCN model is derived based on power-system bus
admittance matrix, Ybus as the graph Laplacian matrix. As a
common assumption for high-voltage transmission networks,
the resistance of the lines is ignored and only susceptances are
considered in Ybus. The input dataset is a three-dimensional
tensor of order [V × N × Tw] = [11000 × 39 × 10], where
V is the vector of voltage magnitude recorded at N = 39
buses for 11000 cases and for Tw = 10 time-steps window.
The size of the output vector is [Y ] = [11000 × 1]. In
order to make the learning process robust and less prone to
overfitting, stratified k-fold cross validation for k = 5 splits

is used for different splits of training and testing data. With
the prepared database and optimised filter parameters the st-
GCN model is trained for learning the augmented connectivity
(i.e. edge-importance matrix) as well as simultaneous binary
classification of CF. Standard libraries in Pytorch [30] are
used to implement the proposed st-GCN pipeline. To reduce
uncertainty in the estimation caused by SGD, training is
repeated over 20 independent runs and the average edge
importance matrix over these independent runs is derived as
the final outcome. In this work, all learning computations were
performed on a Intel Xeon 3.90 GHz machine with 128 GB
RAM, and an NVIDIA RTX A6000 GPU.

1) Model performance: After training the model, its per-
formance on the test dataset is observed to confirm the
credibility of the edge-importance matrix. Our findings show
that the model achieves an accuracy of 97.10 ± 1.03% at
the 95% confidence level, assuming independent trials. This
is significantly improved from 92.89 ± 7.11%, when the M-
matrix was not being used at all.

2) Computational requirements: Major computational bur-
den for the proposed framework involves that due to RMS time
domain simulations of the modified test case and training of
the st-GCN framework. Under the current simulation set-up
in Digsilent Powerfactory, RMS time-domain simulation of
each scenario with no CF takes an average of 22 seconds
while a scenario with CF takes around 86 seconds. With
increase in the number of buses (and effectively the number
of dynamic components) the computational burden increases
exponentially [4]. Nevertheless, with highly specialised high-
performance computing architectures and parallelized simula-
tion sub-routines this time has been shown to decrease [31],
[32]. The computational complexity of st-GCN approximately
scales as O(TE), where T represents the length of time
sequence and E denotes the number of edges of the spatial
power system graph [33]. For the IEEE 10 machine 39 bus
case study, the computational complexity in terms of floating
point operations (FLOPs) is 4.86 × 109. The training time is
1.1 minutes and inference times (per example) is 0.17 ms.
The training time of st-GCN model (although expected to be
performed offline), is expected to increase linearly with system
size, thereby suitable for practically large power systems.
The inference times per example are also well within the
PMU sampling time of 10 ms, thereby making the learning
framework suitable for real-time inference too.

3) DFC graphs: The trained edge-importance matrix, is
thus projected as DFC, in terms of vulnerability to CF. A
sparse DFC graph (shown in Fig. 3(a)) is created from the
fully-connected DFC graph after applying the sparsification
technique discussed in Section II-D, using κ = 0.57. For
comparison, a graph based on bus-admittance connectivity is
also shown in Fig. 3(b). Here, the sky-blue solid circles repre-
senting the nodes of graph correspond to power system buses,
denoted by [B01, B02....B39], while the edges connecting the
nodes correspond to lines, whose weights are given by the
adjacent colourbar. It may not be appropriate to discuss the
accuracy of learnt M-matrix because there is no ground truth
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Fig. 2: Modified IEEE 10 machine 39 bus system with Type
IV wind generation

about how the connectivity structure should be in order to
maximise performance for the task of classifying cascading
events. It is however, found to be correlated with the electrical
connectivity (based on Ybus) [23].

4) Complex network theory based centrality indices: In
addition to superior performance on the downstream classifi-
cation task, a key contribution of the proposed framework is
that the learnt DFC graph is used to characterise vulnerable
spatial locations of the power-system using complex network
theory based centrality indices. These centrality indices are
commonly used to understand and identify structural condi-
tions that favours an edge or node to affect the behaviour
of other elements. In this work node-centrality measures like
degree, betweeness, closeness, and eigen-vector centrality [15]
- briefly defined below, are calculated for the DFC graph
and bus-admittance graph respectively. These node centrality
indices are then used to infer the importance ranking of each
node, with respect to their vulnerability to CF.

• Degree Centrality: For weighted power system networks,
its degree centrality is related with how many links it
connects and the connecting strength of each link. For a
graph, G = (V,E), where V represents the set of nodes
and E the set of edges, n is the total number of nodes,
Laplacian L, the degree centrality of a node v, Cd(v) is
defined as

Cd(v) =
∥L(v, j)∥
n− 1

(5)

• Betweeness Centrality: This measure emphasises the dis-
tance of a vertex to all others in the network by focusing
on the shortest distance from each vertex to all others. The
betweeness of a node v, Cb(v) is defined as the number
of shortest paths between pairs of other vertices that run

through v:

Cb(v) =

∑
i ̸=v ̸=j∈V

σij(v)/σij

(n− 1)(n− 2)/2
(6)

where σij depicts the number of shortest paths from i
to j and σij(v) is the total number from the mentioned
paths that pass through vertex v.

• Closeness Centrality: It is the average geodesic distance
(i.e., shortest path length) between a vertex v and all the
other vertices reachable from it:

Cc(v) =

∑
j∈V \v d(v, j)

n− 1
(7)

with d being the shortest path length between vertices v
and j. However, this definition measures how “far away"
a node is from the rest of the network instead of its
closeness. Therefore a more appropriate quantity, C

′

c(v)
is defined by its reciprocal

C
′

c(v) =
n− 1∑

j∈V \v d(v, j)
(8)

• Eigen-vector Centrality: It is a measure of the importance
of a node in a network according to its adjacency matrix.
Given a graph G, its adjacency matrix A, its eigenvalue
λ, and the corresponding eigenvector x satisfying λx =
Ax, then the centrality of a node v is defined as the vth

entry of the eigenvector x corresponding to the largest
eigenvalue λmax

Ce(v) =
1

λmax

n∑
j=1

A(v, j)xj (9)

The rank Spearman correlation between the two sets of central-
ity measures is also calculated to observe if complementary
and/or additional insights about vulnerability to CF can be
drawn based on proposed DFC graphs.

IV. RESULTS AND DISCUSSION

As noted in the Introduction, Y-bus based connectivity
may not be a reliable metric for vulnerability assessment in
the event of a CF involving fast failures due to tripping of
protection devices and dynamic response of the power system.
The vulnerability patterns derived using the proposed DFC
graph on the other hand are consistent with the results of
time-domain simulation using a full-dynamic model with the
action of protection devices. A preliminary observation from
the graphs based on DFC and Y-bus based connectivity as
visualised in Fig. 3(a) and Fig. 3(b) respectively, is that there
are more light-coloured links in the DFC graph which indicate
higher edge-weights and hence higher number of strong con-
nections than the Y-bus based graph. These indicate important
connections in terms of propagation of CF. The dashed circles
in Fig. 3(a) and Fig. 3(b) represent the buses/lines to which
the components most frequently tripped are connected. For
example, in the DFC graph shown in Fig. 3(a), links with
higher edge-weights (i.e. strong links) surround those buses
where highest number of cascading events take place. These
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(a)

(b)

Fig. 3: Modified IEEE 10 machine 39 bus test-system (a) DFC
graph (b)Ybus (ignoring line conductances) based graph

buses (or at most their 1-hop and/or 2-hop neighbours) are
linked together with strong edges in the DFC graph. On the
contrary, the Y-bus based graph shown in Fig. 3(b), only de-
tects two of these sub-graphs (around B16 and B05) amongst
the five sub-graphs where highest number of cascading events
occur. It is important to note that, in addition to the sub-
graphs where most number of failures take place, the DFC
graph also reveals few other strongly connected sub-graphs
which might not be captured by the simulation dataset but
may be vulnerable from the perspective of cascading events.
This additional information obtained from the DFC graph
may be useful to harden vulnerable subgraphs for mitigating
cascading events. Based on time-domain simulations and [28]
the most frequently occurring sequence of CF and the reason
for activation of a protection device associated with it are also
recorded at the end of the time-domain simulation exercise
used for generating the features for the proposed learning
scheme (Section III). A snapshot of most commonly occurring
CF sequences are shown in Table I. As an example, the
behaviour observed in the second most common pattern, i.e.
the disconnection of wind farm NSG2 due to overvoltage

followed by the disconnection of G1 due to out of step
protection, is linked to the graphs shown in Fig. 3(a). In Fig.
3(a), B16 (directly connected to NSG2) and B30 (directly
connected to G1), are strongly connected with higher edge-
weight paths in the DFC graph, but this is not the case in Y-bus
based graph, as shown in Fig. 3(b). This further validates the
usefulness of DFC graphs for characterising vulnerability to
CF.

In to validate the effectiveness of proposed DFC graphs,
node-centrality indices are calculated and visualised in Fig.
4(a)-(d). From Fig. 4(a) it can be observed that for both
types of graphs, B16 has highest degree centrality as fault
on lines connected to B16 (specifically Line 16-19) always
leads to cascading events across the network. This is in line
with the definition as nodes with high degree centrality act
as failure-spreading nodes. A key difference here is that for
the DFC graph, a large amount of centrality can be shifted
into a small number of nodes in the system, e.g., the first
10 most important nodes based on the degree centrality take
more than 97% of the system’s total centrality. This is however
not the case with degree centrality of the Y-bus based graph.
The betweeness centrality of graph in Fig. 4(b) shows that
node B16 is the most important node. Nodes having high
betweenness centrality are the nodes that are on the shortest
paths between a large number of pair of nodes and hence
are crucial to the communication in a graph [34]. This is
in line with the observation from time-domain simulations
that initial fault on lines connected to node B16 would lead
to CF in almost one-third (≈ 31.67%) of the cases, out of
which tripping of Line 16 - 19 leads to CF in 100% of
cases. There also seem to be few other bridge nodes in both
types of graphs, such as B04 and B26, where the betweeness
centrality tends to be higher. An exception is B39 which has
a high betweenness centrality for the DFC graph which can
be correlated to high number of failure cases involving G1
and under-voltage tripping of wind generator, NSG2 due to
fault on Line 1-39. This information is not evident from th
Y-bus based node-centrality indices. The closeness centrality
of nodes (B14, B16, B17, B18) and (B02, B03, B04) are
highest followed by nodes (B25, B26, B27) and (B01, B39).
These nodes constitute the load-rich regions and thus vulner-
able to loss of demand as a result of CF. Lastly, eigen-vector
centrality depicts node-importance in terms of the importance
of its neighbours. The eigen-vector centrality of the DFC
graph shows a distribution similar to degree centrality, but
a sparser one. Similar to closeness centrality, eigen-vector
centrality of DFC graph shows that the subgraphs formed by
buses (B02, B03, B04), (B14, B16, B17), (B25, B26, B27)
and (B37, B38, B39, B01) exhibit high eigenvector centrality
indices. The eigen-vector centrality of nodes for the DFC
graph and admittance based graph respectively are further
visualised in Fig. 5(a)-(b). From Fig. 5(a) it is observed
that the eigen-vector centrality of the DFC graph exhibits
distinct clusters, typical of spectral clustering observed due
to the dynamic phenomena than eigen-vector centrality of
Y-bus based graph (Fig. 5(b)) which is dispersed “flatly"
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TABLE I: Most frequently occurring sequence of cascading events
Event sequence #pattern appeared

[(“NSG2”*, “OverVoltage”)] 2219
[(“NSG2”, “OverVoltage”), (“G1”**, “Out of step”)] 336

[(“NSG2”, “OverVoltage”), (“NSG1”, “OverVoltage”), (“G1”, “Out of step”)] 279
[(“NSG2”, “OverVoltage”), (“G1”, “Under-Speed”), (“NSG3”, “UnderVoltage”)] 243

* NSG1, NSG2, NSG3 represent wind generators, ** G1, G4, G5 represent synchronous generators.

(a) (b)

(c) (d)

Fig. 4: Complex Network Theory based centrality indices for Ybus and DFC graph (a) Degree centrality (b) Betweenness
centrality (c) Closeness centrality (d) Eigen-vector centrality
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Fig. 5: Network showing eigen-vector centrality for (a) DFC
graph (b) Ybus graph.

across nodes. Thus, the "close” clustering of buses with high
eigen-vector centrality in Fig. 5(a) can be used to discover
latent clusters for the power system, with respect to their
vulnerability to CF. To summarise, the DFC graph shows more
detailed cascading information and more importantly identifies
few key subgraphs (comprising around 10% of edges) which
are only captured with the DFC graph. In order to compare the

ranking of important (vulnerable) nodes - at which centrality
measures are high, a more systematic approach based on
rank Spearman correlation between DFC graph and Y-bus
based graph is conducted as shown in Fig. 6(a)-(d). For each
pair, the Spearman correlation coefficient, r and associated
p-value [35], p is also shown on the plots. A high value
of r signifies high rank correlation between the different
centrality measures and p-value close to zero signifies high
probability of refuting the null-hypothesis that the centrality
measures are uncorrelated. It is evident from Fig. 6(a)-(d) that
the ranks of betweeness, closeness and current-flow closeness
centrality measures are highly correlated (and with a high
probability), which corroborate the findings from Fig. 4(a)-
(d). On the other hand, the ranks of degree and eigen-vector
centrality measures are less slightly correlated. Furthermore,
high standard deviation in rank correlation (shaded blue region
on either side of the regression line) moving towards higher
value of centrality measures in Fig. 6(a) and 6(d) also depict
the dissimilarity in DFC and Y-bus based centrality measures,
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Fig. 6: Rank correlation between Complex Network Theory
based centrality indices for Ybus and DFC graph

thereby questioning the credibility of vulnerability analysis
solely based on Y-bus.

V. CONCLUSION

This work proposes a spatio-temporal graph-theoretic
framework for learning an augmented power system graph to
assess the spatial vulnerability of power systems to cascad-
ing events. Different from those based on quasi steady-state
models, the proposed graph considers the impact of collective
transient dynamics of the entire system on the sequence of
cascading failures. In addition to the temporal evolution of
failures, the proposed framework also takes into account the
topological (electrical) power system connectivity for learning
- an edge-importance matrix as well the probability of occur-
rence of cascading events in an end-to-end manner. The learnt
edge- importance matrix is further projected as power system
DFC, akin to the topological connectivity. The proposed
method when tested for different operational scenarios of load
and RE generation on a modified IEEE 10 machine 39 bus
test system, with detailed dynamic modelling including wind
generation and the action of protection devices, predicts the
occurrence of CF before their onset with a mean accuracy
of about 97.10% and low variance. Using the learnt DFC
graph it is further observed that vulnerable power system
spatial locations are not only local but multi-hops away to
the line where the initial triggering fault occurred. Complex
network theory based indices calculated for both the DFC
graph and bus-admittance based graph show good agreement
(in identifying vulnerable regions) for closeness centrality. On
the other hand differences between the two graphs become
implicit when comparing betweenness, degree and eigen-
vector centrality. This demonstrates that the proposed approach

can locate vulnerable spatial locations in terms of CF while
taking into account the detailed dynamic phenomena. Such
a graph when learnt using the proposed model utilising more
types of spatio-temporal power system features such as voltage
phase angles could offer valuable insights that can support
better monitoring and informed decisions for system operators,
in terms of mitigating cascading events. In the operational
time-scale, inferences drawn using the proposed method, about
spatial vulnerability to dynamic cascading failures can be used
for creating better N−k contingency lists than random events.
Due to its fewer trainable parameters than time-series based
learning methods, the usage of current framework for near
real-time situational awareness also seems promising.
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