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Abstract—Accurate knowledge of the admittance matrix of dis-
tribution grids is essential for grid operation and control as more
renewable energy sources and electric vehicles are integrated
into distribution grids. Due to limited observability, measure-
ment noise, topology assumptions, and partial data availability,
the exact calculation of the admittance matrix of distribution
grids is challenging. In this paper, we present a method for
estimating the admittance matrix of radial distribution grids.
The proposed method uses low-cost measurement devices that
record ten-minute-based measurements of voltage magnitudes,
active power, and reactive power at a single end of the lines
or transformers instead of second-based phasor measurements.
The impedance of lines or transformers is then estimated using a
statistical optimization subject to the distribution flow (DistFlow)
model. The effectiveness of proposed method is demonstrated
by simulation, laboratory testing, and field measurements taken
from a distribution grid in Switzerland.

Index Terms—Admittance matrix, Distribution flow (DistFlow)
model, Grid-side measurement devices, Parameter estimation,
Radial distribution grids.

I. INTRODUCTION

The electrical load configuration of distribution grids is
changing because more electric vehicles and heat pumps are
being integrated into the demand side, and more intermittent
renewable energy sources, such as photovoltaics, are being
installed. These changes are directly affecting how medium-
voltage (MV) and low-voltage (LV) distribution grids are
operated and controlled. The recently developed operation
and control algorithms for distribution grids rely on real-time
monitoring of the MV and LV grids as well as knowledge
of the admittance matrix, which provides details on the grid
topology and the parameters of the lines and transformers [1].

There has been an effort in the literature towards estimating
the admittance matrix using grid-side measurements, e.g., [2]–
[8]. This effort is motivated by two major reasons: First, the
precise and up-to-date parameters of the lines and transformers
are not always available, particularly in LV distribution grids.
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The registered values of the line and transformer parameters
may change due to aging, temperature variations, and so on.
Second, the states of switches in LV grids, as well as the grid
topology, frequently change without being precisely recorded.

The previous methods proposed for estimating the admit-
tance matrix mostly make use of second-based data from
remote terminal units (RTUs) or micro phasor measurement
units (µ-PMUs). The patent [2] has described a method
for real-time recursive parameter estimation of MV grids’
lines and transformers depending on data recorded at RTUs.
It assumes that the voltage magnitude of distribution grids
follows a Gaussian probability density, which is not accurate.
The patent [3] has developed a method for real-time estimation
of the impedance of a length of a power line monitored
at least at two different locations by µ-PMUs. A parameter
estimation technique has been proposed in [4] for calculating
the admittance matrix of power grids from the recorded data
of µ-PMUs distributed across the grid. In [5], the method
of calculating the admittance matrix has been explained and
its sensitivity to the number of µ-PMUs has been studied.
Though the error of admittance matrix estimation rapidly
decreases with the addition of measurement devices, it has
been demonstrated that the error eventually reaches a fixed
value that is dependent on the measurement noise.

A method for joint identification of admittance parameters
and the topology of a poly-phase distribution grid has been
proposed in [6]. This method uses precise µ-PMUs installed
across the grid and a sparsity-based regularization technique
to improve the accuracy of the identification process. Despite
the advantages of proposed method, it is vulnerable to mea-
surement noise and the tuning of regularization parameters.
It has been shown in [6] that the proposed method yields
sufficiently accurate estimation in the distribution grid when
the total vector error (TVE) of µ-PMUs is less than 0.01%.
The paper [7] has proposed a method for estimating the
parameters of admittance matrix for a generic unbalanced
and untransposed three-phase distribution grid. The proposed
method uses measurements of µ-PMUs and includes a cluster-
averaging preprocessing step to lessen the vulnerability of
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the estimation results to measurement noise. Although the
proposed method [7] improves the performance of admittance
matrix estimation using µ-PMUs, it depends on a large number
of µ-PMUs deployed on the lines as well as nodal injections.
A method for identifying the topology and parameters of
distribution grids using data from installed µ-PMUs across
the grid has been proposed in [8]. The paper shows that the
performance of the proposed admittance matrix estimation is
unacceptable whenever the TVE of µ-PMUs exceeds 0.18%.

Previous studies have assumed that the voltage and current
phasors are precisely measured via error-free (or low-error) µ-
PMUs. Furthermore, they have assumed that several µ-PMUs
are placed in desirable locations. These assumptions make it
challenging to implement the developed methods practically,
especially in LV grids, due to the following reasons: (i) Micro-
PMUs are expensive, costing more than ten times the price
of measurement devices that just record power and voltage
magnitudes [9]. (ii) Micro-PMUs are not ideal and error-
free. In addition, because the lines of LV grids are short, the
differences between phase angles of neighboring nodes are
small and can be within the range of measurement error of
µ-PMUs. (iii) The number of lines and nodes in distribution
grids (LV in particular) is gigantic. To properly estimate the
admittance matrix, a large number of µ-PMUs must be placed
if previously developed methods are to be used.

In this paper, we propose an alternative method that does
not rely on the voltage and current phasor data for estimating
the admittance matrix. We propose an estimation method
using data coming from low-cost measurement devices that
just record ten-minute three-phase voltage magnitudes, active
power, and reactive power with a specified level of precision1.
The proposed estimation method is based on the distribution
flow (DistFlow) model for radial grids, and it solves a re-
gression problem to figure out the best-fit DistFlow equations
suited to the measurement data.

The paper is organized as follows: Section II presents
the problem statement. Section III introduces the proposed
method. Section IV presents the performance evaluation of
the proposed method. Finally, Section V concludes the paper.

II. PROBLEM STATEMENT

We investigate the problem of estimating the parameters
of the admittance matrix of a three-phase radial distribution
grid, given the following assumptions: (i) The grid topology
is known using other approaches, such as the one proposed
in [10] and the references therein; (ii) The power flows of
distribution grids are decoupled into positive, negative, and
zero sequences2; and (iii) A number of low-cost measurement
devices are installed in specified locations to record ten-minute

1In [9], the absolute impedances of lines and transformers were estimated
using data from low-cost measurement devices. In this paper, we will
investigate estimating the resistance and reactance values. It should be noted
that we will not investigate estimating the transversal elements (specifically,
the line capacitance).

2When the grid is symmetrical, i.e., the mutual inductance between each
pair of phases is equal, and the sequence components (positive, negative, and
zero) are independent.

data with a certain level of precision, including phase-to-
ground nodal voltage magnitudes as well as the active and re-
active power of lines or transformers per phase. The locations
of measurement devices under consideration are depicted in
Fig. 1. As demonstrated, the number of measurement devices
in our approach is fewer3 than in earlier studies, i.e., [2]–[8].

Measurement

Node

Previous methods Our method

Fig. 1. Comparison of required measurement devices in our method
and earlier ones.

In the following, we provide the grid model and notations
that will be used to describe the admittance matrix estimation
problem.

Consider a three-phase radial distribution grid with N+1
nodes. The nodes are indexed by n ∈ N , the phases are
indexed by ϕ ∈ Φ, and the sequence components are indexed
by s ∈ S, where N := {0, 1, 2, . . . , N} is the set of nodes,
Φ := {a, b, c} is the set of phases, and S := {zero,pos,neg}
is the set of sequence components. The node n = 0 is the
point of common coupling. For other n ∈ L := N \{0}, there
is a three-phase line n or a transformer n that links the node n
to its upper node, i.e., up(n) ∈ N \ {n}. The non-fixed-point
operator up(.) : L → N maps each node to its upper node
and determines the distribution grid topology. This function is
assumed to be known.

The actual per-unit resistance and the per-unit reactance of
the link connecting node n ∈ L to up(n) in the sequence
s ∈ S are denoted by r

(s)
n and x

(s)
n , respectively. Theses

parameters (r
(s)
n )n∈L,s∈S and (x

(s)
n )n∈L,s∈S are unknown (or

outdated and potentially inaccurate). The objective of this
study is to estimate them and build the admittance matrices of
different sequences given the grid topology. The admittance
matrix of the sequence s ∈ S of the grid is represented by
Ys =: [y

(s)
n,n′ ](N+1)×(N+1), in which

y
(s)
n,n′ =



−1/(r
(s)
n + j · x(s)n ) if n′ = up(n),

−1/(r
(s)
n′ + j · x(s)n′ ) if n′ ∈ DN n,∑

n′′∈(DNn∪{n})

(
1

r
(s)

n′′+j·x(s)

n′′

)
if n′ = n,

0 otherwise,

(1)

where DN n =: {n′ | up(n′) = n} is the set of the nodes down
below the node n ∈ N . Note that 2 × (N + 1) components
of the matrix Ys are non-zero out of (N + 1)2 components.
Thus, the matrix Ys is sparse. Furthermore, the matrix Ys is
symmetric and singular by definition.

Let V (ϕ)
n,t be the per-unit line-to-ground voltage phasor of

node n ∈ N and phase ϕ ∈ Φ at time t ∈ T , where

3For a radial grid with N+1 nodes, our approach needs N+1 low-cost
measurement devices, whereas earlier methods need 2×N µ-PMUs.
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T := {1, 2, . . . , T} is the set of sampled measurements.
Furthermore, let I(ϕ)n,n′,t be the per-unit flowing current phasor
from node n ∈ N to node n′ ∈ DN n ∪ {up(n)} of
phase ϕ ∈ Φ at time t ∈ T . Note that the voltage and
current might be unbalanced. Using the method of symmetrical
components, the sequential voltage and current for all n ∈ N ,
n′ ∈ DN n ∪ {up(n)}, and t ∈ T are

cols∈S(V
(s)
n,t ) := A−1 · colϕ∈Φ(V

(ϕ)
n,t ), (2)

cols∈S(I
(s)
n,n′,t) := A−1 · colϕ∈Φ(I

(ϕ)
n,n′,t), (3)

where the operator “col(.)” constructs a column vector,
A−1 := 1

3 · [[1, 1, 1]⊤, [1, α, α2]⊤, [1, α2, α]⊤] is the trans-
formation matrix, (.)⊤ denotes the transpose operator, and
α := exp

2
3 ·π·j is the phasor rotation operator [11].

The flowing active power and reactive power of different
sequences4 are computed for all n ∈ N , n′ ∈ DN n∪{up(n)},
t ∈ T , and s ∈ S by P

(s)
n,n′,t := ℜ(V (s)

n,t · (I(s)n,n′,t)
†) and

Q
(s)
n,n′,t := ℑ(V (s)

n,t · (I(s)n,n′,t)
†), where (.)† is the complex

conjugate operator, ℜ(.) refers the real part, and ℑ(.) refers
to the imaginary part of a complex quantity. We represent the
voltage matrix of sequence s ∈ S by Vs := [V

(s)
n,t ](N+1)×T .

In addition, we define the flowing active and reactive power
matrices as Ps := [P

(s)
n,up(n),t]N×T , Qs := [Q

(s)
n,up(n),t]N×T ,

P
(up)
s := [P

(s)
up(n),n,t]N×T , and Q

(up)
s := [Q

(s)
up(n),n,t]N×T .

Then, the injected active power and reactive power matrices
are calculated by P

(inj)
s := Ps + B · P(up)

s and Q
(inj)
s :=

Qs +B ·Q(up)
s , where the matrix B := [bn,n′ ]N×N is used to

calculate the injected power at each node, in which

bn,n′ =

{
1 if n = up(n′),

0 otherwise.
(4)

If the matrices Vs, P
(inj)
s , and Q

(inj)
s are known, Ys can be

theoretically estimated by solving the following optimization
problem (see [4], [5] for developed methods to solve (5)).

min
Ys∈C(N+1)·(N+1)

∥P(inj)
s + j ·Q(inj)

s −Vs ·Vs
H ·Ys

H∥F (5)

s.t.: (1),

where C is the complex space and ||.||F represents the
Frobenius norm5.

One of the main challenges to formulating and solving (5)
is that the voltage and current phasors of all nodes and phases
must be measured with sufficient precision (specifically, the
differences in phase angles of neighboring nodes). Due to the
excessively short length of the lines in distribution grids, the
phase angle differences between neighboring nodes are small.
Therefore, (5) cannot provide us with a reliable result, as
shown in Section IV. In this paper, we propose an alternative
method that does not rely on precise measurements of all
nodes’ voltage and current phasors.

4The active and reactive power flow might also be unbalanced, resulting in
non-negative values across negative and zero sequences.

5The Frobenius norm of a matrix A = [ai,j] is ∥A∥F :=
√∑

i,j |ai,j|2.

III. PROPOSED METHOD

The proposed method relies on the DistFlow model, which
is a load-flow model that does not depend on the nodal phase
angles and is extensively well-suited in applications such as
optimal power flow and grid planning in radial distribution
grids [12]. The DistFlow model is an iterative approach
consisting of a “backward” and “forward” swipe on a tree
with the aim of determining the state of the grid using the
inputs of active and reactive power of loads and the voltage in
the slack node. The equation of the “forward” swipe of the
DistFlow model in matrix form is

2 ·Rs ·Ps + 2 ·Xs ·Qs − Zs · Ls = M ·Us, (6)

where Rs := diagn∈L(r
(s)
n ) and Xs := diagn∈L(x

(s)
n ) are

resistance and reactance matrices, Us := Vs ⊙ Vs is the
squared voltage magnitude matrix,

Zs := Rs ·Rs +Xs ·Xs, (7)

is the squared impedance matrix,

Ls := (Ps ⊙Ps +Qs ⊙Qs)⊘ (J ·Us), (8)

is the squared current matrix, J := [coln∈L(0),diagn∈L(1)] is
a semi-identity matrix, ⊙ denotes the Hadamard product (i.e.,
element-wise product), ⊘ denotes the Hadamard division (i.e.,
element-wise division), and M := [mn,n′ ]N×(N+1) denotes
the incidence matrix, in which

mn,n′ =


−1 if n′ = up(n),

1 if n′ = n,

0 otherwise.
(9)

If the matrices Us, Ps, Qs, and M are known, then Rs

and Xs can be theoretically estimated by solving the following
optimization problem:

min
Rs,Xs

∥Rs ·Ps +Xs ·Qs −
Zs · Ls

2
− M ·Us

2
∥F (10)

s.t.: (7), (9),

Rs = diagn∈L(r
(s)
n ) ∈ RN ·N

≥ , (11)

Xs = diagn∈L(x
(s)
n ) ∈ RN ·N

≥ , (12)

where R≥ is the set of non-negative real numbers.
The problem (10) is a quadratic programming problem

that can be solved by off-the-shelf optimization solvers,
e.g., CPLEX [13] or SLSQP [14]. However, there are two
difficulties when dealing with the problem (10). First, the
matrices Us, Ps, and Qs cannot be directly determined by
measuring three-phase nodal voltage magnitudes, active power,
and reactive power. Second, there is a numerical issue in (10)
resulting in non-accurate solutions. The numerical issue arises
from the fact that for every n ∈ L, t ∈ T , and s ∈ S in a
distribution grid, there is a high probability that Q(s)

n,t ≪ P
(s)
n,t

and the value of V (s)
n,t does not fluctuate greatly. As a result,

the matrices Ps and Ls in (10) are near-linearly dependent
and as seen in Fig. 2 the optimization solvers converge to a
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Objective

Fig. 2. Near-linearly dependency of Ps and Ls.

non-accurate solution because the sensitivity of the solution to
measurement noise is not negligible.

To tackle the aforementioned difficulties for solving (10), a
step-by-step summary of the proposed method is provided in
Table I. The remainder of this section explains each step of
the proposed method in detail.

(i) Approximating sequential magnitudes: In our proposed
method, we merely measure the three-phase magnitudes of
voltage, active power, and reactive power; however, we require
their sequential magnitudes to estimate Ys for all sequences
s ∈ S. Without exact measurement of the voltage angle of each
phase, we assume that the voltage angles of the three phases
are symmetrically distributed and that the phasor rotations,
denoted by αa, αb, and αc, are 1, α2, and α, respectively.
Then, the approximated voltage phasor of node n will be
Ṽ

(ϕ)
n,t = |V (ϕ)

n,t | ·αϕ. We estimate the current phasors by Ĩ(ϕ)n,t =(
P

(ϕ)
n,t +j·Q(ϕ)

n,t

Ṽ
(ϕ)
n,t

)†

. Using (2) and (3), the voltage and current

phasors of different sequences are estimated. The active power
and reactive power of different sequences are calculated by
P̃

(s)
n,t := ℜ(Ṽ (s)

n,t · (Ĩ(s)n,t)
†) and Q̃(s)

n,t := ℑ(Ṽ (s)
n,t · (Ĩ(s)n,t)

†).

(ii) Removing outliers: The extreme data points are trans-
formed into z-scores, which indicate how much they deviate
from the mean. We eliminate any time steps t ∈ Tol with
a z-score of greater than 3 or below -3. We also eliminate
the time steps t ∈ Tzero that the active power and voltage
magnitude are less than the predetermined values ϵp and ϵv.
The set T ′ = T \ (Tol∪Tzero) is the set of regular data points.

(iii) Sampling with replacement: To ensure an unbiased es-
timation, we run the proposed algorithm multiple times
rather than once with all samples, i.e., regular data points
t ∈ T ′. Each time, we select a random subset of the
regular data points. Then, we run the estimation algorithm
on that random subset. The term “test” refers to each
execution of the estimation algorithm on a randomly se-
lected subset of regular data points. Let K represent the
total number of tests, and Tk represent the total number
of samples used in the test k. We choose at random Tk
time steps from the set T ′. The set of random time steps
is called as Tk. Then, we establish the matrices P̂s,k :=

[coln∈L(colt∈Tk
(P̃

(s)
n,t )

⊤)], Q̂s,k := [coln∈L(colt∈Tk
(Q̃

(s)
n,t)

⊤)],
V̂s,k := [coln∈N (colt∈Tk

(Ṽ
(s)
n,t )

⊤)], Ûs,k := V̂s,k ⊙ V̂s,k, and

Objective

Fig. 3. Independency of q̂s,k and l̂s,k.

TABLE I
PROPOSED METHOD FOR ESTIMATING (Ys)s∈S .

(i): Approximate the magnitudes of the sequential nodal
voltage, active power, and reactive power.

Run the following for all s ∈ S:
(ii): Remove outliers and time steps with active power and

voltage magnitude smaller than ϵp and ϵv, respectively.
Run the following for all tests k ∈ {1, 2, . . . ,K}:

(iii): Choose at random Tk time steps for the test k .
(iv): Normalize the feature matrices and solve (13).

(v): Estimate the value of Ys using (16).

L̂s,k := (P̂s,k ⊙ P̂s,k + Q̂s,k ⊙ Q̂s,k)⊘ (J · Ûs,k).

(iv) Normalization: To eliminate the nearly linear dependence
between Ps and Ls in the “forward” swipe of the DistFlow
model, i.e., in (6), we normalize the left and right-hand sides
of (6) by active power. Since the resulted parameters will be
independent (as illustrated in Fig. 3), we will be able to solve
the following optimization problem in the test k without any
numerical difficulty.

min
Rs,Xs

∥Rs · 1l +Xs · q̂s,k −
Zs · l̂s,k

2
− M · ûs,k

2
∥F (13)

s.t.: (7), (9),

Rs = diagn∈L(r
(s)
n ) ∈ RN ·N

≥ϵ , (14)

Xs = diagn∈L(x
(s)
n ) ∈ RN ·N

≥ϵ , (15)

where R≥ϵ := [ϵ,∞) is the set of positive numbers bigger
than or equal to ϵ > 0 and 1l := [1]N×Tk

is a matrix whose
elements are all equal to one. Furthermore, q̂s,k := Q̂s,k⊘P̂s,k,
l̂s,k := L̂s,k ⊘ P̂s,k, and ûs,k := Ûs,k ⊘ P̂s,k are the
normalized reactive power, the normalized squared current,
and the normalized squared voltage matrices, respectively.
Note that R≥ is substituted by R≥ϵ in (14) and (15) to arrive
at a non-zero solution. The set R≥ϵ approximates the set of
positive real numbers when ϵ is a small number, e.g., 10−6.
This approximation makes it possible for the optimization
solvers like SLSQP to address the problem (13).

(v) Calculation of admittance matrix: Let R∗
s,k and X∗

s,k be
the solutions of the problem (13) in the test k. The resistance
and reactance matrices are estimated by R∗

s := 1
K ·

∑K
k=1 R

∗
s,k

and X∗
s := 1

K ·
∑K

k=1 X
∗
s,k. Then, the admittance matrix is

calculated by,

Y∗
s = M⊤ · (diagn∈L(1)⊘ (R∗

s + jX∗
s )) ·M. (16)
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IV. PERFORMANCE EVALUATION

The proposed method is validated in three cases: “SYN”,
“LAB”, and “REAL”. In the case “SYN”, the proposed method
is validated by synthesized data collected from simulation.
In the case “LAB”, the proposed method is validated using
data collected by the low-cost measurement devices installed
in the smart grid laboratory [15]. In the case “REAL”, the
proposed method is validated via data collected from a real-
world distribution grid in Switzerland.

Two different grids are used in the three mentioned cases:
the first in the “SYN” and “LAB” cases, and the second in the
“REAL” case. Both grids, depicted in Figs. 4 and 5, are three-
phase radial distribution grids (230/400 V, 50Hz). Tables II
and III summarize the lines nominal parameters in the first
and second grids, respectively.

Fig. 4. First grid: used in the cases “SYN” and “LAB”.

Fig. 5. Second grid: used in the case “REAL”.

TABLE II
LINES NOMINAL PARAMETERS OF THE FIRST GRID (FIG. 4).

Cable type r̂
(pos)
n (Ohm)∗ x̂

(pos)
n (Ohm)∗

L1 EPR-PUR 5x70 + adjustable r̂ and x̂ 0.086 0.074
L2 EPR-PUR 5x70 + adjustable r̂ and x̂ 0.064 0.063
L3 EPR-PUR 5x70 + adjustable r̂ and x̂ 0.086 0.061
L4 EPR-PUR 5x70 + adjustable r̂ and x̂ 0.109 0.074
L5 EPR-PUR 5x70 + adjustable r̂ and x̂ 0.048 0.065
L6 EPR-PUR 5x70 + adjustable r̂ and x̂ 0.109 0.071

∗ r̂
(pos)
n and x̂

(pos)
n denote the nominal resistance and reactance in Ohm.

TABLE III
LINES NOMINAL PARAMETERS OF THE SECOND GRID (FIG. 5).

Cable type Length r̂
(pos)
n (Ohm) x̂

(pos)
n (Ohm)

L1 1kV 240mm2 AL 219m 0.021 0.016
L2 1kV 150mm2 AL 145m 0.038 0.012
L3 1kV 150mm2 AL 293m 0.078 0.024
L4 1kV 185mm2 AL 85m 0.014 0.006

The first and second grids are equipped with 7 and 5 low-
cost measurement devices called GridEye6, respectively. With

6The measurement devices are developed by the DEPsys SA [16].

a high sampling frequency, these devices record the voltage
and input current at each grid node for each of the three phases.
Following the acquisition, the measured quantities are post-
processed to allow the computation of the average active and
reactive power as well as the average voltage magnitudes. The
standard deviations of measurement error of the voltage, active
power, and reactive power are 0.1%, 1.0%, 1.0%, respectively.

The proposed method, including data collection and anal-
ysis, is implemented in Python. All of the Python codes for
simulation, collection of data, and analysis of data in the three
cases mentioned are publicly available in [17].

A. Performance Assessment: First Case “SYN”
Consider replacing the installed measurement devices in

Fig. 4 with µ-PMUs that measure the flowing power of both
sides of the lines. The problem (5) is solved for two sets of
data, each of which is generated by simulation with the TVE
of installed µ-PMUs set to 0.002% and 0.02%7. To simulate
different TVEs of µ-PMUs, the added noises are assumed
to be normal Gaussian distributed. The estimated admittance
matrices are compared to the actual ones calculated from
actual resistance and reactance values (using (1) and data from
Table II). The absolute differences in admittance matrices are
depicted in Fig. 6. When the TVEs are increased, the error
of admittance matrix estimation increases significantly and
raises up to 30%. Therefore, the methods relying on µ-PMUs
data and their provided phase angles for estimating admittance
matrix are prone to large errors. The proposed method of this
paper does not rely on phase angles.
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Fig. 6. Absolute differences between the actual admittance matrix
and the estimated ones by problem (5) in simulation.

The absolute differences between the actual admittance
matrix and the estimated ones are shown in Fig. 7 when the
low-cost measurement devices are installed in the grid and
the proposed method is employed. With simulation, two sets
of data are generated, assuming that the error in measuring
voltage magnitudes is 0.02% and 0.1%. By comparing Figs.
6 and 7, we observe that the proposed method is effective
since the error in estimating the admittance matrix using the
proposed method is insensitive to measurement errors and
negligible.

7The TVE is mathematically defined as TVE =
||Vm−V̂ ||

V̂
×100%, where

Vm is the measured phasor vector, V̂ is the actual phasor vector, and ||.||
denotes the Euclidean norm. The TVE of µ-PMUs available on the market is
around 0.02% [7].
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Fig. 7. Absolute differences between the actual admittance matrix
and the estimated ones by proposed method in simulation.

B. Performance Assessment: Second Case “LAB”

The grid in Fig. 4 and the parameters in Table II are
emulated within the ReIne laboratory. The ReIne8 has been
built at the HEIG-VD to study and plan distribution grid
changes [15]. ReIne is a hardware and software platform that
fully mimics a wide range of LV grid topologies as well as
MV grid topologies on a per-unit basis. The flexibility of this
laboratory, which uses both lumped grid elements and actual
electrical sources and end-users, distinguishes it from other
existing structures, e.g., [18], [19].

The ReIne is composed of a switchboard cabinet that
connects production, passive and active end-users, and bidirec-
tional power electronics converters. The grid-emulating section
of the laboratory is made up of nine lines arranged in a matrix
with variable resistances and inductances. The resistance-to-
inductance ratios can be adjusted from 0.3 to 3.5, which
represent most of the real-world MV and LV distribution grids.
Two adaptive 50 kW power electronic converters, built in-
house and capable of consuming and generating variable active
and reactive power, also emulate different load time series.

In the locations of nodes N2 and N6 (Fig. 4), ten days
of loading values are emulated. Using the measured data
and solving the problem (13), the estimated resistance and
reactance of positive sequences are as shown in Table IV. The
difference between the estimated and the actual admittance
matrices is depicted in Fig. 8. In addition, the column “diff ” of
Table IV shows the difference between estimated values and
actual resistance and reactance values. Although the differ-
ences are acceptable, the differences are due to the following
reasons: First, the measurement devices consume a load that
is not measured on their own. This load is comparable to the
actual loading value during low load periods, which causes the
estimated line parameters to change9. Second, the accuracy of
estimating the reactance value is lower because the reactive
power variations are not as large in the real world.

In [17], the estimated admittance matrices for the sequences
zero and negative can also be found, which are not reported
here. Note that the accuracy of estimated resistance and

8Réseaux intelligents, French acronym for “Smart Grids”.
9In one test scenario, we measured power and voltage magnitudes with

another measurement device that has another power source, resulting in a
more accurate estimate of the admittance matrix.

TABLE IV
ESTIMATED LINES PARAMETERS OF THE FIRST GRID (FIG. 4).

r̂
(pos)
n (Ohm) x̂

(pos)
n (Ohm) diff (%)

L1 0.077946 0.072152 11.5987
L2 0.064411 0.064411 6.1523
L3 0.084847 0.069227 14.6247
L4 0.106323 0.076457 5.0064
L5 0.052123 0.062134 12.4726
L6 0.108537 0.072360 1.2836
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Fig. 8. Absolute difference between the actual and estimated admit-
tance matrices by proposed method in laboratory.

reactance for other sequences is highly dependent on load
imbalance.

C. Performance Assessment: Third Case “REAL”
We used ten-minute average measurements acquired during

a month from 20/09/2019 to 19/10/2019 from a real-world
distribution grid in Switzerland. With this one-month data, we
were able to get a good approximation of the lines’ resistance
and reactance values. The ratio of training to testing data is
assumed to be 5 : 1; thus, 25 days of data are considered
for training. The estimated resistance and the reactance of
the grid’s lines for positive, negative, and zero sequences are
shown in Table V. Note that the estimated resistances of the
lines are close to their nominal resistances; however, there
is a difference between the estimated and nominal reactance
values. The difference between measurement-based reactance
and nominal reactance may be due to the fact that the lines
are underground and the surrounding environment effects such
as inductive coupling with other parallel wires or pipelines
must be considered, whereas nominal reactance quantifies the
reactance while excluding these effects.

TABLE V
ESTIMATED LINES PARAMETERS OF THE SECOND GRID (FIG. 5).

L1 L2 L3 L4

r̂
(pos)
n (Ohm) 0.018525 0.030595 0.061533 0.011633
r̂
(neg)
n (Ohm) 0.012616 0.019504 0.037250 0.007460

r̂
(zero)
n (Ohm) 0.017566 0.016984 0.025118 0.017818
x̂
(pos)
n (Ohm) 0.012342 0.013592 0.022595 0.008708

x̂
(neg)
n (Ohm) 0.006777 0.015167 0.026787 0.008581

x̂
(zero)
n (Ohm) 0.009399 0.013925 0.034954 0.009440

diff (%) 34.64 32.75 26.96 62.04

We perform a load flow calculation on the testing data
(the remaining 5 days of the data) to evaluate the perfor-
mance of the estimated admittance matrix. The error δ

(s)
n
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(the objective of problem (13)) is shown for the testing data
in Table VI. It can be seen that the error of a load flow
when using the estimated parameters is often lower than
when using the nominal parameters. Moreover, the actual
ψ
(s)
N2,t = (V

(s)
N2,t)

2−(V
(s)
up(N2),t)

2 is compared in Figs. 9 and 10,

for s ∈ {pos, zero}, with (ψ
(s)
N2,t)

′ = 2 · r̂(s)N2 · P̃
(s)
N2,t +2 · x̂(s)N2 ·

Q̃
(s)
N2,t − ((r̂

(s)
N2)

2 + (x̂
(s)
N2)

2) · (Ĩ(s)N2,t)
2 using the lines nominal

data and (ψ
(s)
N2,t)

′′ = 2 ·r(s)N2 · P̃
(s)
N2,t+2 ·x(s)N2 ·Q̃

(s)
N2,t−((r

(s)
N2)

2+

(x
(s)
N2)

2) · (Ĩ(s)N2,t)
2 using the estimated parameters of the lines.

It is discovered that the proposed estimation leads to a better
prediction of ψ(s)

N2,t. There are similar figures for other lines
and sequences that are not depicted in this paper due to the
page limitations. All of the figures and additional scenarios
can be found on [17].

TABLE VI
ERROR δ

(s)
n FOR THE TESTING DATA (IN %).

s N2 N3 N4 N5
Nominal pos 9.47E-4 2.52E-4 1.37E-3 5.89E-4

Proposed method pos 4.72E-4 1.58E-4 9.4E-4 2.76E-4
Nominal zero 1.51E-7 3.71E-7 8.42E-7 2.87E-7

Proposed method zero 1.35E-7 2.46E-7 1.15E-6 2.98E-7
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Fig. 9. Prediction of ψ(pos)
N2,t using nominal and estimated data.
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Fig. 10. Prediction of ψ(zero)
N2,t using nominal and estimated data.

V. CONCLUSION

The paper proposes a method for estimating the admittance
matrix of a three-phase radial distribution grid using data from
low-cost measurement devices that only record ten-minute
three-phase voltage magnitudes, active power, and reactive
power with a certain level of precision. The proposed method
is based on the distribution flow (DistFlow) model and solves
a regression problem to determine the best-fitting DistFlow
equations for the measurement data. The proposed method
outperforms the state-of-the-art methods that use voltage pha-
sors. This is more evident in the presence of measurement
noise. In future works, the transversal elements of the grid’s
lines and transformers will be estimated using measurements
of low-cost devices. Additionally, we intend to evaluate the
robustness of our method under various operating scenarios
and its applicability to larger distribution grids.
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