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Abstract—Europe is transitioning towards a sustainable energy
economy. Planning these future power and energy systems
is multifaceted and complex, requiring long-term projections
of future electricity market dynamics. The prognostication of
future prices is crucial for power system planning, as these
prices will drive investments and impact incentives to build
and improve new systems. The price of electricity in different
regions impacts transmission investment. Energy systems models
have high-dimensional output and are expensive to evaluate,
leading to unique challenges in managing the uncertainty in
model assumptions. This study presents a novel methodology
for determining which cost assumptions are most impactful
on the output of a detailed model of the European energy
system. Because this model is computationally intensive, only a
small number of samples are available to us. A multiple-output
support vector regression is used as a surrogate of predicted
electricity prices timeseries. We find that solar and wind costs
are the primary drivers of electricity prices, but natural gas costs
generally drive peak electricity prices and those far in the future.

Index Terms—energy systems, sensitivity, uncertainty

I. INTRODUCTION

Europe is transitioning toward a sustainable energy econ-

omy with a strong focus on carbon neutrality. The move is

intertwined with investments in renewable energy technolo-

gies, flexible generators, energy storage, and sector coupling.

Energy system planning models, in this context, provide least-

cost pathways for decarbonization. They also provide insights

into electricity price trajectories, which subsequently influence

the investments and profitability of the generation fleet. Prices,

and especially price differences between regions, also impact

transmission investments. These models are complex and

require long-term projections spanning future weather patterns,

energy demand, and economic parameters. The outcomes of

these models are highly sensitive to the assumptions around

commodity prices, technology costs, and carbon taxes. While

planning models assume perfect foresight to reduce compu-

tational complexities, the uncertainty around the assumptions

can be handled by developing various scenarios, with each

scenario defining a set of assumptions. Nevertheless, studying
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diverse scenarios with such complex models is a cumbersome

task.

In the European context, energy system models such as Bal-

morel [1], PyPSA [2], and TIMES [3] have gained prominence

as tools for expansion studies. These models are developed

using a comprehensive set of equations to optimize the mix

of generation technologies while capturing the diverse energy

dynamics across European regions. These models often use

baseline values of technology cost projections from sources

such as the Danish Energy Agency [4]. There is significant

uncertainty in these cost projections. These cost uncertainties

can impact the projected mix of technologies and concomi-

tant electricity prices. For optimal investment decisions, it is

essential to determine the key drivers that influence electricity

price trends. The computational intensity of these models is

significant, with some scenarios taking more than a day to

process.

In this study, we examine the sensitivity of day-ahead

spot market electricity prices in an aggressive decarbonization

scenario with respect to different technology costs. We present

a framework for applying surrogate modeling and sensitivity

analysis techniques to energy system planning models like

Balmorel to better understand how different technology costs

will impact future electricity prices. This framework can be

applied to any similar energy systems model. [5] examined

the sensitivity of future grid dynamics by assuming different

climate, energy, and demand scenarios. [6] examined the

sensitivity of a UK energy systems model to technology costs

given a single scenario using Monte Carlo sampling with linear

regression. [7] studied the same problem using pseudo-Monte

Carlo sampling with the method of Morris. In a recent review

paper, it is acknowledged that uncertainty in technology is an

important aspect of energy systems modeling that deserves

more attention [8]. While surrogate methods have been used

in the design and analysis of other energy systems models [9],

[10], we are not aware of previous publications that apply the

proposed timeseries surrogate approach to energy systems.

Sensitivity is quantified on a regional and annual basis.

The sensitivity is computed using Monte Carlo simulation,

which requires a large number of model samples. One sample

of the Balmorel model requires significant computational

resources to solve, as it involves an enormous set of linear

equations. A single evaluation required approximately two
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days to evaluate when using three 128 GB computational

nodes. Due to the expense of the full model, we conduct a

surrogate-based sensitivity analysis. A multiple output support

vector regression surrogate is employed. The accuracy of the

surrogate is confirmed using a leave-one-out (LOO) analysis.

Sobol main effects indices are computed using Monte Carlo

simulation of the surrogate model. The results of the sensitivity

analysis offers several insights into the future dynamics of the

European electric grid.

The remainder of this manuscript is structured as follows.

Section II presents the surrogate model and sensitivity analysis

methodology. Section III presents the Balmorel model and

discusses the specific scenario modeled in this study, as well as

the ranges of technology costs examined. Section IV presents

the results of the LOO and sensitivity analysis. These results

are discussed in Section V. Finally, Section VI concludes the

study.

II. METHODOLOGY

This study presents a surrogate-based sensitivity analysis

methodology. The surrogate model is selected to be accurate

and memory efficient. This selection includes a detailed conti-

nuity analysis, which is supported by a subspace analysis and

use of a random forest model.

A. MSVR Surrogate Model

The output of Balmorel is represented using the multiple

output support vector regression (MSVR) surrogate model sug-

gested by Bao et al. [11]. In the surrogate, a separate MSVR

is trained for each region, year, and output examined. The

MSVR approach was chosen because it is able to efficiently

model thousands of outputs.

Given a set of observed inputs xlj , where l is the sample

number and j is the input dimension, the electricity price

timeseries is approximated as

ppp(xxx) ≈ βββHHH , (1)

where ppp is a nm × nt matrix of observed timeseries, βββ is a

nt × nm matrix of free parameters, HHH is a nm × nm matrix

constructed from the observations, xxx, using the scikit-learn

pairwise kernels function [12], nt is the number of observed

times, and nm is the number of observed samples of xxx.

The βββ parameters are determined using a linear constrained

optimized algorithm to minimize a loss function, Lp. It is

defined as

Lp(βββ) = R(βββ) + C

M∑
m=1

L(βββ,pppm) , (2)

where R is a regularization function and C is a hyperparameter

intended to control the model complexity. Larger values of C
are designed to yield more complex models, at the risk of

overfitting the observed trends. The regularization term, R, is

computed as

R(βββ) =
1

2
diag (βijHjiβij) . (3)

.

The loss term L(βββ, pmt) is the sum of squared prediction

errors, where the root mean squared error (RMSE) is greater

than a predefined threshold, ε,

L(βββ,pppm) =

M∑
m=1

(u2
m − 2εum + ε2) · I(um > ε) , (4)

where um is the RMSE associated with sample m, and I is

an indicator function, which returns 1 if the condition inside

the parentheses is true, and 0 otherwise. The error function,

um, is defined as

um =

[
1

nt

nt∑
t=1

(pmt − βmlHlt)
2

]1/2

. (5)

When making predictions, the βββ matrix remains constant,

and the HHH matrix is recomputed using Scikit-learn’s pairwise

kernel, using the convolution of the observed input xxx and the

input prediction points.

B. Leave-One-Out Analysis

One might wonder how many samples are necessary for

adequate sensitivity analysis of the energy systems model. The

truth is that a perfect sensitivity analysis will require an infinite

number of model samples, which is of course impossible.

However, mathematical models may be assessed in terms of

asymptotic behavior. Any required measure of accuracy can be

achieved by adding more samples until an agreeable threshold

is reached.

Model accuracy is determined using cross-validation, where

the model is blinded to selected samples, then challenged to

predict these cases. The difference between the predictions and

observations is quantified using the root-mean-squared error

(RMSE) between the observed and predicted timeseries.

The hyperparameters of the MSVR surrogate were selected

using a leave-one-out (LOO) cross-validation analysis. We

selected the best performing model overall, as well as the best

performing linear model, to compare the different model char-

acteristics. By best-performing, we mean the model with the

lowest mean RMSE across all LOO samples. The asymptotic

behavior of the model is examined with respect to the number

of model observations by reporting the average RMSE versus

sample size, shuffling the sampled data several times.

C. Xgboost Surrogate Model

This study used the extreme gradient boosting algorithm

(xgboost) as a secondary surrogate model to verify the results

of the MSVR surrogate. Xgboost is a random forest regression

model. The xgboost surrogate was trained to predict one

electricity price percentile at a time, as opposed to the MSVR

surrogate, which predicts the entire timeseries. Unlike MSVR,

the xgboost random forest structure does not assume that the

approximated function is continuous.
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D. Sliced Inverse Regression Analysis

We characterize the developed surrogate models using

sliced inverse regression (SIR), a technique that seeks low-

dimensional manifolds that can be used for dimension re-

duction of complex models [13], [14], [15]. Specifically, this

yields an eigen decomposition of the input parameter space

with respect to the variance in the output.

This is a convenient tool for visualizing data. The data can

be plotted against the input dotted with the leading eigenvector,

revealing the primary trends of the model. In this work, the

sliced inverse regression package [16] is used to compare

the behavior of the different surrogate models examined.

A continuity analysis is performed to compare the model

structure, i.e. to identify which variables cause an increase in a

specific electricity price percentile. SIR was used for subspace

analysis to identify trends and discontinuities. The xgboost

algorithm was used as a neutral reference for identifying trends

and discontinuities.

E. Sensitivity Metric Approximation

An MSVR surrogate model is used to estimate the sensitiv-

ity of different outputs with respect to different inputs. In this

study, sensitivity is primarily quantified via the main Sobol

effects index, which is defined as

Si =
VarXi

(EX∼i
(Y |Xi))

Var(Y )
, (6)

where Si is the main effects Sobol index associated with input

i, VarXi
is the variance with respect to input i, and EX∼i

is

the expectation with respect to all inputs except input i.

The main effects Sobol index quantifies the variation in a

quantity of interest that can be attributed to variation in the

examined input. We select this sensitivity metric because it is

widely used and relatively simple to compute.

The main effects index is estimated using the procedure

of Saltelli [17]. First, two independent sets of samples are

generated, xxxA and xxxB . For each variable, a third set of inputs

is constructed as a modification of the first two, to isolate the

effects of X∼i and Xi:

A ∼ U (−1, 1)
B ∼ U (−1, 1)
evaluate model on sample f(A), f(B)
for i in 1, 2, · · · , dim(x) do

ABi = A.copy()

ABi[i] = B[i]
evaluate model on sample f(ABi)

end for
The main effects indices are then approximated as

Mi ≈ E[f(ABi)f(B)]− E[f(A)]E[f(B)])

E(A2)− [E(A)]
2 (7)

where Mi is the main effects index associated with input i and

E denotes the expectation with respect to the uncertain cost

multipliers.

III. APPLICATION

A. Balmorel Energy Model

In this study, the Balmorel model is used to make projec-

tions about potential future energy markets, using the sector

coupling structure presented in [18], [19], [20]. The Balmorel

model is solved in two stages. The first stage is the capacity

expansion optimization, which is used to analyze the energy

transitions towards 2050. The capacity expansion optimization

is solved at limited temporal granularity (limited number of

weeks for each scenario year, 2025, 2035, and 2045 to reduce

computational complexity) and aims at finding the needed in-

vestment in generation and transmission to meet the electricity,

heat and transportation demands for the lowest cost to society.

The capacity expansion considers both capital and operational

expenditures (CAPEX and OPEX) to optimize the investment

decisions. After the capacity expansion optimization is solved,

a dispatch run is done, considering all hours of the scenario

year, which is equivalent to day-ahead or spot market. The

electricity prices presented in this paper are based on this

dispatch run, where only the operational and maintenance

costs (fixed and variable) play a role, given a generation and

transmission capacity per region. While the variable OPEX

costs of wind and solar technologies are virtually zero, their

fixed OPEX costs (which account for maintenance and labour

costs) can impact electricity prices. The different regions

of Europe modeled in this study are shown in Fig. 1. The

renewable energy generation uses the ERA5 weather data

set, with wind modeled as presented in [21]. The technology

CAPEX and OPEX are based on a Danish Energy Agency

catalogue [4], which provides technology costs for several

years. These projections are are all used in Balmorel for the

different years.

The results associated with the baseline model are shown

in Fig. 2. The baseline model reflects the EU’s decarboniza-

tion initiatives in terms of variable renewable energy (VRE)

dominant electricity generation, electrification of transport and

heat sectors, and production of green hydrogen. The transition

is expected to result in more than a twofold increase in

electricity demand by 2045 compared to 2025, as shown

in Fig. 2(a). Towards 2045, VRE technologies, especially

wind and solar, dominate the generation mix, while some of

the required flexibility in the electricity sector is contributed

by combined heat and power (CHP), thermal, and hydro

generators, as illustrated in Fig. 2(b). The fossil-fuel driven

heat and hydrogen sectors will transition to electricity as a

primary source. Starting from 2035, the major portion of

heating demand will be met by heat pumps. Also, electrolyzer

operations will cater to heating needs as shown in Fig. 2(c).

Apart from controllable generators, VRE uptake is driven by

the energy storage operations across all sectors, as depicted

in Fig. 2(d). Electric vehicles operating in grid-to-vehicle and

vehicle-to-grid modes result in deferred investments in short-

term energy storage, such as batteries.

The uncertainty in the underlying CAPEX and OPEX

assumptions is modeled by multiplying the technology cost
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Fig. 1. A map depicting the different European regions modeled in this study.
DK1-DK2, NO1-NO5, and SE1-SE4 represent the existing electricity market
bidding zones of Denmark, Norway, and Sweden. Germany (DE) is split into
four regions – east, west, north and south. BE, EE, FIN, FR, LI, LV, NL,
PL, and UK represent Belgium, Estonia, Finland, France, Lithuania, Latvia,
Netherlands, Poland, and the United Kingdom, respectively.

evolution for both CAPEX and OPEX by a constant cost factor

across time. The multiplicative factors associated with each

technology cost are shown in Table I. A multiplicative factor

of one corresponds to the baseline case presented in Fig. 2,

it assumes the cost projections originally made by the Danish

Energy Agency.

An MSVR surrogate model was trained to predict the elec-

tricity prices as a function of the uncertainty cost factors using

34 model evaluations. The first 12 model evaluations were

selected by changing one input at a time. These evaluations

were also used to internally inspect the Balmorel configuration

used in this study. The remaining 22 samples were randomly

selected using the Latin hypercube sampling method [22].

Individual MSVR models were trained to predict each region-

and scenario-year-specific electricity price timeseries.

The inputs and outputs are normalized in a preprocessing

step. The inputs are normalized to range from 0 to 1 using

the scikit-learn standard scaler, which applies a linear trans-

formation. The price timeseries are normalized from 0 to 1

using the scikit-learn quantile transformer, which ensures that

the transformed output follows a uniform distribution. This

step encodes the observed range of time-specific prices. This

(a)

(b)

(c)

(d)

Fig. 2. Simulation results associated with the baseline technology costs
model: (a) Sector-wise electricity demand. (b) Technology-wise electricity
production. (c) Heat and hydrogen production. (d) Energy storage dispatch
for each scenario year. These are the aggregated results across all regions.

TABLE I
LOWER AND UPPER BOUNDS OF COST MULTIPLIERS CONSIDERED IN THE

ENERGY SYSTEM SIMULATION

Parameter Lower Bound Upper Bound
Onshore Wind Cost 0.8 1.2
Offshore Wind Cost 0.7 1.3
Solar PV Cost 0.8 1.2
Natural Gas Price 1 10
CO2 Bond Price 0.8 1.2
Heat Pump Costs 0.8 1.2
Electrolyzer Cost 0.8 1.2

time-specific scaling avoids the complication of variability due

to seasonal effects. We used 100 quantiles when normalizing

the observed electricity prices. When performing Monte Carlo

sampling of the surrogate model, we used 100,000 samples to

compute the Sobol main effects index.
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B. Leave-One-Out Hyperparameter Grid Search

A LOO analysis was performed to select the hyperparam-

eters of the surrogate model. The LOO error is computed by

leaving one sample out of the data set at a time. The model,

trained with this slightly reduced data set, is used to predict

the electricity prices associated with the unseen data point.

To avoid computations that would otherwise have been too

burdensome, we limit our analysis to the United Kingdom in

2045 during the LOO analysis.

A grid search was conducted to characterize the model

input. The model parameters considered are shown in Table

II. All combinations of these hyperparameters were evaluated

using the LOO cross validation score. The kernel, k(xxxi,xxxj), is

the function that defines the construction of the HHH matrix. The

length scale, γ, controls the width of the radial basis function

(RBF) and Laplace kernels, and influences the polynomial

kernel. The complexity parameter, C, controls the influence

of the regularization term, R. The ε parameter determines the

minimum acceptable error. Note that the degree parameter is

only applicable to the polynomial kernel.

TABLE II
RANGE OF PARAMETERS CONSIDERED IN THE GRID SWEEP LOO

ANALYSIS.

Parameter Swept Values
kernel polynomial, Laplace, RBF
γ 0.001, 0.05, 0.1, 0.2, 0.4, 0.8, 1, 5
C 1, 10, 102, 103, 104, 105, 1010, 1020

ε 10−12, 10−2, 10−1, 1, 5, 10
degree 1, 2, 3, 4

tolerance 10−1, 10−3, 10−5, 10−8, 10−12

IV. RESULTS

The surrogate model was created using the 34 sampled

points. The first 12 points were selected by setting individual

values to their upper and lower bounds, keeping the rest at the

baseline, for verification purposes. The remaining 22 points

were selected using Latin hypercube sampling. The surrogate

model accuracy is assessed in Section IV-A. The sensitivity

analysis is performed in Section IV-B.

A. Leave-One-Out Analysis

LOO analysis is performed to select model hyperparameters.

In this analysis, the model is blinded to one sampled model

realization at a time, and is challenged to predict the price

timeseries associated with the missing point. Additionally, the

full model (trained with all the data, including the LOO point)

is used for prediction. The RMSE of the predicted timeseries

is compared to the real Balmorel output to quantify the error in

each region-time. After a detailed hyperparameter grid search,

we selected a Laplacian kernel to minimize the mean of the

LOO RMSE errors. This is contrasted to a linear kernel,

selected as the model with a polynomial degree of 1 that yields

the lowest mean LOO RMSE across all LOO points. This

happens to set γ = 1, which corresponds exactly to a linear

kernel. The mean and maximum of the region-time LOO errors

are shown in Fig. 3. The y-axis shows errors associated with

models blinded to each LOO sample. The x-axis shows errors

associated with the full model, which is not blinded to any

of the true Balmorel samples. Although the Laplacian model

yields a maximum test RMSE of about 30 Euros/MWh, which

is one of the best-performing parameter configurations tested,

it is not very much lower than the bulk of the test errors.

The linear model has a slightly larger mean RMSE than the

Laplacian model, though it yields a slightly lower maximum

RMSE across all LOO cases. The distributions of the linear

and nonlinear model RMSE errors (across the individual LOO

samples) are visualized in Figure 4. The two models again

appear to be quite similar. They both yield essentially the same

errors in the worst LOO case. The bulk of the observed errors

have RMSE less than about 20 Euro/MWh.

Fig. 3. Results of the parameter grid sweep. The trade-offs between the
training and testing error are visualized. The red point shows the Laplacian
kernel, which was selected to minimize the RMSE associated with the LOO
analysis. The blue point shows the linear kernel, which was selected for model
simplicity.

Fig. 4. Observed LOO RMSE for the linear and nonlinear kernels selected
in Figure 3.

The selected model hyperparameters were used to train a
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production surrogate. As validation, the timeseries prediction

associated with these hyperparameters was compared to an

unseen region-year, using the previously described LOO anal-

ysis. One of the LOO timeseries is visualized in Fig. 5. Both

the linear and nonlinear models match the observations to a

reasonable degree. In this case, the linear model matched the

LOO data better than the nonlinear model.

Fig. 5. The prediction of the leave-one-out model for the UK region in 2024
compared to the excluded data. The top panel shows the results associated with
the laplacian kernel. The middle panel shows the results associated with the
linear kernel. The bottom panel compares the absolute errors associated with
both kernels. The grey lines show the CDFS associated with each sampled
observation.

The economics of energy systems are often quantified using

a CDF of predicted energy prices. Thus, we compare the

observed CDF of three selected LOO cases to the predictions

associated with the linear and Laplacian models in Fig. 6. Both

models yield the largest RMSE when predicting LOO case 30,

shown in the left panel. The linear and nonlinear models are

very similar in this case, and the associated RMSEs only differ

by 1 Euro/MWh. The middle and right panels show cases

that highlight the different predictions between the linear and

nonlinear models.

Fig. 6. CDFs associated with the predictions of the LOO analysis compared
to the excluded data. The left panel shows the case associated with largest
RMSE in both the linear and Laplacian kernels. The middle and right panels
show selected cases. The grey lines show the CDFS associated with each
sampled observation.

The asymptotic behavior of the RMSE is examined by

performing the LOO with different sample sizes, reporting

the mean RMSE across several shuffles of the data. The

results are shown in Figure 7. While adding more samples

will undoubtedly refine the surrogate model and lower the

examined error metric, it is clear that hundreds, thousands, or

even millions of model evaluations may be necessary to satisfy

an extreme RMSE tolerance, e.g., one Euro per megawatt-

hour. The 34 samples used in this analysis appear to have

captured the main trends in the model. As a sanity check,

we internally ran the model with 58 samples, which yielded

similar sensitivity analysis results with the same conclusions

presented in the proceeding sections.

Fig. 7. Mean LOO RMSE plotted as a function of the number of samples
used to train the selected linear and nonlinear models.

Based on this analysis, it is a matter of ambiguity whether

the Laplacian model is truly a better predictor than the linear

model. While the Laplacian model yields a slightly lower mean

RMSE across all LOO cases, there are many cases where the

linear model outperforms the nonlinear model.

B. Sensitivity Analysis

This study focuses on sensitivity analysis that is relevant

to decision makers by quantifying the sensitivity of different

electricity prices with respect to different technology costs.

This necessitates a choice between the linear and Laplacian

models, so that the analysis results can be properly interpreted.

The linear surrogate captures first-order effects, imposing

a linear input-output structure, while the Laplacian model

conforms perfectly to training data, imposing a nonlinear

continuous structure to match all observations. We contrast the

two modeling choices by sampling the MSVR model with the

selected linear and Laplacian kernels, comparing the results

to those predicted by xgboost regressors trained on selected

price percentiles. The xgboost model uses a decision tree

structure to predict model outputs. This avoids any assumption

of continuity, making it a useful comparison to the MSVR

models, which assume continuity.

In Fig. 8, predicted and observed electricity price percentiles

of a selected region-year are compared along a subspace

computed by applying SIR to the Monte Carlo samples of the

surrogate. This is sometimes referred to as a “shadow plot.”

The active subspace directions, plotted as orange bars, reveal

the direction in the seven-dimensional parameter space that is

associated with the most variation in the examined quantities

of interest. While large electricity prices (i.e., the 95th per-

centile) are generally increased when increasing natural gas

costs, lower electricity prices (i.e., the 20th percentile) are
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slightly reduced when natural gas prices are increased. This is

likely due to large electricity prices driving early investments

in renewables and transmission lines. The linear model yields

an active direction that separates the observed 80th percentile

prices into a clear discontinuity. The combination of the linear

model and selected preprocessing has essentially smoothed out

this discontinuity. On the other hand, the Laplacian model

yields an active direction that orders the points into a cloud

of descending values, without a clear discontinuity.

Fig. 8. Surrogate predictions are compared to a leave-one-out sample from
SE1 year 2045. Different percentiles of the electricity price in this region-
year in Sweden are predicted based on three different models. The first two
models (linear and Laplacian) refer to the MSVR surrogates, which model
the entire timeseries. The third model, xgboost, is trained to directly predict
the examined percentile, using the aforementioned leave-one-out approach.
The leading eignvector resulting from SIR analysis of the surrogate model
samples is denoted as W1.

The leading eigenvector discovered by SIR quantifies the

importance of the different inputs with respect to the variance

in an examined quantity of interest. While this does not include

additional eigenvectors, and is not a widely used sensitivity

metric, the presented SIR analysis results are generally aligned

with the trends revealed by the full Sobol effects sensitivity

analysis presented in Fig. 9 and in the Appendix in Fig.

11. High electricity prices are driven by natural gas costs.

Solar and onshore/offshore wind costs drive the majority of

electricity prices, particularly in 2025 and 2035; and natural

gas costs drive peaks in electricity prices. Norway prices stand

out as more sensitive to offshore wind costs and less sensitive

to natural gas costs than other regions. The electricity price

in France stands out as being particularly sensitive to solar

photovoltaic costs. There is a complex shift around the 80th

electricity price percentile, where peak pricing starts to take

effect. The sensitivity of natural gas costs tends to form a

trough around higher electricity prices in later years, indicating

that other factors will drive this sometimes narrow range of

electricity prices. There is some sensitivity to the electrolyzer,

heat pump, and CO2 bond costs; but these are all clearly

secondary factors, given the assumed range of variation in

costs.

Fig. 9. Main Sobol effects index associated with solar and onshore wind
costs. The results of the selected linear and nonlinear kernels are compared
in the upper and lower rows. The left column shows the sensitivity of 2024
prices with respect to solar technology costs and the right column shows
the sensitivity of 2035 prices with respect to onshore wind technology costs.
France and Norway region 4 are highlighted as outlier regions. The grey lines
shows the results associated with all other regions. The price sensitivity is
reported as a function of the price percentile.

While the electrolyzer, heat pump, and CO2 bond costs were

not found to be significant when examining the SIR leading

eigenvector, the Sobol main effects analyses indicate that elec-

tricity prices around the 80th percentile show some sensitivity

to these costs. Most notably, the linear and Laplacian models

report different trends in the sensitivity of low- to medium-

price electricity percentiles with respect to natural gas costs.

This is highlighted in Fig. 10.

Fig. 10. Sobol main sensitivity of different electricity price percentiles
with respect to the cost of natural gas. The different columns correspond
to different years. The top row shows results associated with the linear kernel
and the bottom row shows results associated with the nonlinear kernel. Results
associated with different regions are shown as grey lines. The NO1 region is
highlighted as an outlier.

V. DISCUSSION

The observed difference in sensitivity metrics approximated

using the linear and nonlinear models is likely due to dis-

continuities associated with transmission line construction.

Construction of these lines is based on differences in region-

specific electricity prices. Early transmission line construction
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can have profound impacts when examining long-term changes

in electricity prices. While the specific prices predicted by

the Laplacian model are likely imperfect predictions, the goal

of our analysis is to quantify the sensitivity of an aggregate

of the predicted electricity price timeseries. There will likely

be discontinuities in future electricity market prices, so we

select the Laplacian model as being most representative of

realistic market dynamics for the purposes of our sensitiv-

ity analysis. While the reported Sobol indices quantify the

variance attributed to each model input, they do not offer

information regarding the direction of variation, or if the

output is smooth. The SIR model is used to compliment

the Sobol index analysis, giving the reader an idea of the

direction of output price variation associated with variation

in the technology costs, as well as the smoothness of the

predicted prices with respect to these costs.

Observing discontinuities in the subspace analysis initially

raised some alarm bells, as discontinuities can be a significant

challenge to nonlinear kernels. After re-examination of the

LOO analysis, we determined that the discontinuities predicted

by xgboost were likely the results of spikes in electricity prices

that were captured by the nonlinear model, as noted in the

LOO analysis. It seems likely that these discontinuities are

the result of transmission lines being built between regions.

The construction of these lines is driven by price differences

across regions. The cost of natural gas likely drives peak

prices in each region, which in turn drives transmission line

construction, leading to big discontinuities in 2045.

This analysis identified three outlier regions when consid-

ering the sensitivity of each electricity price percentile with

respect to different technology costs. The FR region has a

relatively large solar resource, which likely caused the larger

sensitivity to solar costs identified in Figure 9. The NO4

region, highlighted in the same figure, yields a large sensitivity

to onshore wind costs. This is likely due to the large rural

areas available to develop wind farms, which generally have a

relatively large wind resource. In Figure 10, the NO4 region

is highlighted as being less sensitive to natural gas costs than

other regions. This is likely due to the large hydro-electric

storage facilities in the region, as well as the availability of

several neighboring regions to connect with transmission lines.

The large spikes in the electricity market are predicted based

on supply and demand. These occur during periods, usually

in winter, when there is a lot of demand for electricity but

not enough supply from renewable sources, due to weather

conditions. These large spikes are highly undesirable for

society.

VI. CONCLUSIONS

This analysis presents the construction of a surrogate for

sensitivity analysis of electricity prices predicted by the

Balmorel energy system model, yielding insights into what

technology costs will drive future electricity markets under an

aggressive decarbonization scenario. The cost of natural gas is

the biggest driver of high electricity prices, and becomes the

dominant driver of electricity prices far into the future. Wind

and solar are the biggest drivers of most electricity prices,

particularly during the early years of the decarbonization

transition.

The results of the Balmorel model are highly nonlinear and,

as seen in our analysis, exhibit extreme discontinuities. The

model is complex and computationally intensive, and the 34

samples used in this analysis required significant computa-

tional and human resources. We selected an MSVR surrogate

model to represent the complexity of the high-dimensional

output.

We closely examined linear and nonlinear models during

this analysis, and ultimately selected the nonlinear kernel,

because it captured sudden electricity price discontinuities,

which are crucial to the sensitivity analysis results. In other

settings, the linear model may be more appropriate, as the

spikes in electricity prices are difficult for the nonlinear

model to reliably predict. However, in our analysis, it is most

important that the trends in electricity prices accurately reflect

the true sensitivity of the model, which the nonlinear kernel

accomplishes best. While the nonlinear and linear models

yielded similar sensitivity analysis results concerning solar and

onshore wind costs, both predicting outliers in the FR and NO4

regions, there is a significant difference between the different

models’ analysis results when examining sensitivity to natural

gas costs.

In future work, we plan to address limitations of this

analysis by drastically increasing the sample size, accounting

for more realistic weather forecasts with different potential

weather conditions, and analyzing different scenarios, in ad-

dition to parameter uncertainties.
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VII. APPENDIX

The sensitivity of the electricity price was quantified across

three years and all the regions shown in Fig. 1 on a percentile

basis. The full results of the sensitivity analysis are shown in

Fig. 11. The columns are divided by choice of kernel (linear

or Laplacian), and further subdivided by the year analyzed.

The sensitivity of the electricity price, with respect to each of

the seven technology costs examined, is shown as a function

of the electricity price percentile associated with each region-

year. These sensitivities are represented as circles filled by

the national flag of the associated region. Note that different

regions associated with the same country (e.g., DK1 and DK2)

are represented with identical markers.

The linear and nonlinear kernels result in similar sensitivity

trends, with the notable exception of natural gas sensitivity,

as discussed in the main text. Both models predict that CO2

bond prices have noticeable sensitivity in 2025. The linear

model indicates that there is some sensitivity with respect to

heat pump costs in later years. The Laplacian model indicates

similar trends with respect to the heat pump cost.
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Fig. 11. Main Sobol effects index (y-axis) associated with different electricity price percentiles (x-axis) for different regions (markers) and years (columns),
using MSVR. The three leftmost columns are associated with the linear kernel. The three rightmost columns are associated with the Laplacian kernel.
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