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Abstract—A precise, straightforward, and efficient data-driven 
methodology is introduced to estimate the most important 
aggregated generation-load parameters of the power system 
frequency response model i.e., the inertia constant and the load 
damping. The estimation method depends on defining specific 
base systems characterized by particular frequency features. A 
sensitivity analysis is carried out to determine the most suitable 
base system for each real-time application. The data collected 
from PMUs is then compared to the attributes of the base system 
to make accurate estimations of the parameters of interest. The 
effectiveness of the proposed methodologies is assessed using 
datasets that include both simulated data from the New York-
New England benchmark and actual measurements collected 
from six historical power system disturbances within a national 
power grid. 

Index Terms—inertia constant, imbalance size, frequency 
dynamics, frequency modelling, load damping, RoCoF, system 
frequency response model.  

I. INTRODUCTION  
The reliable and secure operation of modern power systems 

relies on the vital role played by frequency regulation 
mechanisms. The control loops engaged in frequency 
regulation are employed to ensure the frequency remains within 
a predetermined range during both transient and steady-state 
operational periods [1]. Hence, it is highly important to carry 
out thorough research into frequency response modeling. 
Accordingly, five different approaches have been proposed in 
the literature to tackle the modeling and prediction of frequency 
response [2]: 1) measurement-based modelling, as discussed in 
[3], [4] 2) time-domain simulation-based modeling, as 

discussed in [5], 3) linearized-based modeling, as explored in 
[6], 4) artificial intelligence-based modeling, as examined in 
[7], and 5) single-machine equivalent-based modeling, as 
elaborated in [8], [9].   

Although local frequencies hold great significance in 
modern power systems, developing a system frequency 
response (SFR) model, belonging to the last category, is crucial 
for various reasons. Firstly, it provides a valuable tool for 
system operators (SOs) to determine and allocate the minimum 
necessary frequency response reserve [10]. Secondly, it enables 
the analysis of the impact of inverter-based resources on 
frequency regulation [11]. The key elements, however, within 
the SFR model that impact these objectives are linked to 
rotational inertia and load damping coefficients.  

Generally, investigations into inertia and load damping 
estimation can be categorized into two approaches [12]: 1) 
model-based methods, and 2) measurement-based methods. 
The model-based inertia estimation approaches, relying on a 
dynamic model of synchronous generators (SGs), are 
essentially divided into single SG inertia estimation and 
regional system inertia estimation. Estimating the inertia of a 
single SG involves employing methods such as the extended 
Kalman filter [13], least-squares [14], optimization techniques 
[15], and various Kalman filter methods [16] when the 
generator is subjected to significant disturbances. The regional 
system inertia estimation, on the other hand, relies on 
developing a dynamic equivalent model for a group of coherent 
generators to estimate rotational inertia and load damping. This 
leads to a reduction in computational complexity when solving 
differential-algebraic equations with numerous SGs. 
Investigation into the development of a dynamic equivalent 
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model for SGs and loads, utilizing a genetic algorithm, is 
outlined in [17]. The division of dynamic equivalencing into 
two stages, covering mechanical and electrical components, is 
explored in [18]. In [19], the authors establish the dynamic 
equivalent for each area within a multi-area power system by 
defining the mathematical relationship between dynamic 
parameters and electromechanical oscillation parameters 
acquired from phasor measurement units (PMUs). It should be 
noted that the accuracy of the estimation in this category highly 
depends on the precision of the utilized model. Furthermore, 
relying on identifying coherent generators is another limitation 
of this category.  

To overcome the challenges associated with the model-
based approach, different inertia estimation strategies using 
PMU measurements have been proposed in recent years. This 
category is initially divided into two subcategories: 1) 
measurement-based inertia estimation using large disturbance 
data, and 2) measurement-based inertia estimation using 
ambient data. The former relies on the estimation of Rate of 
Change of Frequency (RoCoF) in the system to estimate the 
inertia constant. Estimation of RoCoF based on different 
approaches, including a 500 ms sliding window [20], variable-
order polynomial fitting [21], and equivalent second-order 
homogeneous differential equation [22], are some approaches 
in this field. In contrast, techniques utilizing ambient data 
depend on data acquired from PMUs, representing the 
stochastic response time series of the system. In [23], the 
authors employ the Markov Gaussian approach for equivalent 
inertia estimation. The estimation of system inertia is expressed 
as a regression model in [4]. In most cases, research focused on 
deriving measurement-based parameter estimation primarily 
concentrates on estimating only rotational inertia, often 
overlooking the load damping parameter. However, for 
accurate results, these techniques require real-time data related 
to load levels, the composition of generation sources, the size 
of power imbalance, and the aggregated load model. 
Furthermore, a noteworthy challenge observed in previous 
research pertains to the reliance on the observability of the 
studied system. 

In light of the aforementioned concerns, the current paper 
aims to propose a data-driven method to simultaneously 
estimate the inertia constant, the load damping factor, and the 
size of power imbalance. To address the difficulties related to 
system observability, the proposed approach involves 
estimating the parameters of interest through a comparison of 
frequency dynamics with a baseline frequency dynamic 
associated with a specific operating point of the system. 
Generally stated, the main contributions of this paper are 
twofold:  

• Proposing an analytical approach to estimate inertia 
constant and load power imbalance for SFR model using 
PMU data.  

• Proposing a mathematical approach to estimate load 
damping factor of the system.   

 
Fig. 1. A general description of the proposed estimation scheme. 
 

II. PROPOSED ESTIMATION METHOD 
This section introduces a systematic method for estimating 

the key parameters in the SFR model. The suggested 
framework comprises three modules: 1) cleaning PMU signals, 
2) determining the inertia constant and power imbalance 
magnitude, and 3) estimating the load damping factor. A 
diagram illustrating the proposed scheme, along with the input 
and output signals for each module, is presented in Fig. 1.  
A. Data Denoising  

Consider a vector, denoted as "Freq" with a length of L, 
representing noisy frequency measurements. Each element 
within "Freq" corresponds to the system's center of inertia 
(COI) based on measurements obtained from available PMUs. 
The primary aim is to derive a clean signal from the "Freq". 

In a practical context, one can employ a moving-average 
window for the purpose of denoising the "Freq". Given a 
window of N samples, the implementation of the smoothing 
filter can be formally expressed using convolution notation as 
[24]: 

𝐅𝐅 =
1
𝑁𝑁

(𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 ∗ 𝐈𝐈)                                      (1) 

where F and I denote the clean frequency signal and the unit 
vector of length N, respectively, and "*" is the convolution 
operator.  

When examining a stability phenomenon under 
investigation, it is crucial to maintain the desired frequency 
components within the "Freq" data while effectively 
diminishing the influence of other frequency components. This 
can be accomplished by appropriately adjusting the parameter 
N in (1), as suggested by the same authors in [24], as 
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𝑁𝑁 ≥
�0.1962 + 𝐹𝐹𝐶𝐶𝐶𝐶2

𝐹𝐹𝐶𝐶𝐶𝐶
                                  (2) 

where  
𝐹𝐹𝐶𝐶𝐶𝐶 =

𝑓𝑓𝑐𝑐𝑐𝑐
𝑓𝑓𝑠𝑠

                                        (3) 

In (3), fco and fs represent the specific cut-off frequency and 
PMU sampling rate, respectively.  
B. Inertia Constant Estimation  

To calculate the aggregated inertia constant within the SFR 
model, the motion of the grid is expressed using the classical 
swing equation (4) [1].  

    2𝐻𝐻 𝑑𝑑(∆𝜔𝜔)
𝑑𝑑𝑑𝑑
�
𝑅𝑅𝑐𝑐𝐶𝐶𝑐𝑐𝑜𝑜

= 𝑃𝑃𝐷𝐷                                     (4𝑎𝑎) 
where     

                              ∆𝜔𝜔 = ∑ 𝐻𝐻𝑖𝑖𝐾𝐾
𝑖𝑖=1 ∆𝜔𝜔𝑖𝑖
∑ 𝐻𝐻𝑖𝑖𝐾𝐾
𝑖𝑖=1

                                      (4𝑏𝑏) 
In (4), H, Hi, ꞷ and PD represent the aggregated rotational 
inertia constant, inertia constant of generator i, average inertia-
weighted angular speed, and size of power imbalance, 
respectively. Furthermore, K represents the number of PV 
buses equipped with PMUs.  

Let’s consider two power system models: 1) the base 
system, which characterized by specific parameters inertia 
constant 𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏, power imbalance size 𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷  and droop 𝑅𝑅𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏, 
and 2) the under-study system, which involves unknown 
inertia constant 𝐻𝐻𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠. Assume that 𝐻𝐻𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 and 
𝑃𝑃𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝐷𝐷  can be represented incrementally as part of the 
evolving model (5).  

�
𝐻𝐻𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 = 𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 + ∆𝐻𝐻
𝑃𝑃𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝐷𝐷 = 𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷 + ∆𝑃𝑃𝐷𝐷                        (5) 

In this context, it is crucial to highlight that the base system 
and the under-study system are fundamentally identical, 
distinguished only by varying commitments of generating 
units and operational points. The characteristics of the base 
system, including the committed generating units, 𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷 , 
𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏, and RoCoF signal, can be easily obtained from 
historical data.  

Now, the Taylor expansion of (4) is introduced to calculate 
𝐻𝐻𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 and 𝑃𝑃𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝐷𝐷  in (5), namely   

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 + ∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹���������������
𝑅𝑅𝑐𝑐𝐶𝐶𝑐𝑐𝑜𝑜𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑠𝑠

=
𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷

2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
+

1
2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

∆𝑃𝑃𝐷𝐷 −
2𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷

4𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏2 ∆𝐻𝐻   (6) 

Drawing upon (6) and utilizing the definitions of 
parameters in (5), one has:   
∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹 =

1
2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

�𝑃𝑃𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝐷𝐷 − 𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷 �

−
2𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷

4𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏2 �𝐻𝐻𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 − 𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏�                   (7) 

Given that the left side of (7) is tailored to the 
measurements from PMUs, the current objective is to calculate 
two unspecified parameters 𝐻𝐻𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 and 𝑃𝑃𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝐷𝐷 . 
To complete the set of two equations with these two unknowns, 
one can express another relationship using (4).  

In this context, it is important to emphasize that when 
addressing 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹 in (4) and (7), only the initial sample 

following the onset of the fault, referred to as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹•
𝑜𝑜𝐹𝐹, is 

regarded as the influence of the governor, and load damping is 
minimal.  

Further simplification can be attained by consolidating (4) 
and (7) into a more concise form of   

�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝑜𝑜𝐹𝐹 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑜𝑜𝐹𝐹���������������������
∆𝑅𝑅𝑐𝑐𝐶𝐶𝑐𝑐𝑜𝑜𝐹𝐹𝐹𝐹

0
�

= �
1

2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷

2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏2

−1 2𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝑜𝑜𝐹𝐹
� × �

𝑃𝑃𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝐷𝐷

𝐻𝐻𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠
�

− �
1

2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷

2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏2

0 0
� �𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

𝐷𝐷

𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
�                                                              (8)  

By rearranging the terms in (8) and using the definition of 
𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷  in (4) i.e., 𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷 = 2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑜𝑜𝐹𝐹 , one has  

�
𝑃𝑃𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝐷𝐷

𝐻𝐻𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠
�

=
𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝑜𝑜𝐹𝐹 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑜𝑜𝐹𝐹

⎣
⎢
⎢
⎢
⎡2𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝑜𝑜𝐹𝐹 −

𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷

2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏2

1
1

2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 ⎦
⎥
⎥
⎥
⎤

× ��∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹
𝑜𝑜𝐹𝐹

0
� + �

1
2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷

2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏2

0 0
� �𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

𝐷𝐷

𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
��                              (9)  

Eq. (9) elucidates the inertia constant and disturbance 
magnitude within the under-study system by leveraging the 
established characteristics of the base system, along with the 
utilization of PMU data. The necessary prerequisite to obtain 
an accurate estimate of the variables using (9) is to have an 
equal number of PMUs for determining 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝑜𝑜𝐹𝐹  and  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑜𝑜𝐹𝐹 , i.e. K in (4b).  

An important concern, however, lies in the selection of the 
base system to ensure accurate results in the under-study 
system. Since (9) relies on the Taylor expansion around the 
base system's operating point, opting for an unsuitable base 
case can lead to values that diverge significantly from the true 
values. To tackle this challenge, an analytical approach based 
on sensitivity analysis is recommended.  

1) Sensitivity Analysis  
Variations in operational conditions, such as different unit 

commitment configurations and changes in power imbalances, 
can potentially impact the effectiveness of the proposed 
method in accurately estimating under-study parameters. To 
assess this potential influence, a sensitivity analysis is 
conducted, focusing on the foundational characteristics of the 
base system. For this purpose, (7) is utilized to calculate the 
sensitivity of power mismatch size with respect to the base case 
operating condition, Hbase, as follows: 



23rd Power Systems Computation Conference
     

Paris, France — June 4-7, 2024 

    PSCC 2024 

𝑃𝑃𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝐷𝐷 = �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝑜𝑜𝐹𝐹 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑜𝑜𝐹𝐹

+
𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷

2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏2 �𝐻𝐻𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 − 𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏�� × 2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

+ 𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷                                                                  (10) 
Rearranging of the terms in (10) gives 

𝑃𝑃𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝐷𝐷 = �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝑜𝑜𝐹𝐹 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑜𝑜𝐹𝐹 � × 2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

+
𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷 × 𝐻𝐻𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠

𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
                                  (11) 

Now, let's express the sensitivity of power imbalance 
magnitude (11) with respect to the inertia constant using the 
Taylor expansion, as:  

∆𝑃𝑃𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝐷𝐷 =
𝑑𝑑𝑃𝑃𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝐷𝐷

𝑑𝑑𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
∆𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

= 2�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝑜𝑜𝐹𝐹 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑜𝑜𝐹𝐹 �∆𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

− 2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
𝑑𝑑𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

∆𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

−
𝐻𝐻𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 × 𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷

𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏2 ∆𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏                      (12) 

The second term on the right-hand side of (12) can be 
further simplified using the definition of RoCoF (4), leading 
to: 
∆𝑃𝑃𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝐷𝐷 = 2�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝑜𝑜𝐹𝐹 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑜𝑜𝐹𝐹 �∆𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 −
𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑢𝑢
𝐷𝐷

𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑢𝑢
∆𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 −

𝐻𝐻𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑠𝑠×𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑢𝑢
𝐷𝐷

𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑢𝑢
2 ∆𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏                                            (13)  

Rearranging the terms in (13) gives  
∆𝑃𝑃𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝐷𝐷 = 2�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝑜𝑜𝐹𝐹 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑜𝑜𝐹𝐹 �∆𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 +
(𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑢𝑢−𝐻𝐻𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑠𝑠)

𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑢𝑢
2 ∆𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏                                                                      (14)  

Applying the identical steps outlined in (11) through (14) to 
ascertain the sensitivity of the under-study system to power 
imbalance size relative to the base system yields:    

∆𝑃𝑃𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝐷𝐷 = −2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
𝑑𝑑𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷 ∆𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷

+
𝐻𝐻𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠

𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
∆𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷

=
𝐻𝐻𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠−𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
× ∆𝑃𝑃𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝐷𝐷                    (15) 

 
2) Technical Considerations  
The second term on the right side of (14) becomes 

negligible and can be disregarded. Therefore, to minimize the 
impact of the base case inertia constant on the estimated power 
mismatch size, it is essential to maintain the RoCoF of both the 
base and under-study systems as close as possible. Moreover, 
the presence of the base system's inertia in the denominator of 
(15) indicates that opting for a base system with a higher inertia 
constant can significantly diminish the impact of the base 
system power imbalance size on the results. Consequently, it 
is deduced that to substantially reduce the sensitivity of (9) to 
the base case parameters, multiple base cases should be 
defined at the WAMS center. For each under-study system, 
immediately following a fault, the base case with a RoCoF 

closest to that of the under-study system should be chosen for 
the estimation process. 
C. Load Damping Estimation 

The second phase of the paper is dedicated to the estimation 
of load damping. To calculate the load damping factor, let's 
proceed by establishing the motion of the systems based on the 
synchronizing and damping torques. To this end, consider the 
original swing equation of (3) as  

2𝐻𝐻
𝑑𝑑2𝛿𝛿
𝑑𝑑𝑡𝑡2

= 𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑏𝑏                                     (16) 
By re-writing the right-hand side of (16) based on the load-

dependent and constant power (CP) loads, one obtains  

2𝐻𝐻 𝑑𝑑2𝛿𝛿
𝑑𝑑𝑑𝑑2
�
∆�̇�𝜔

+ 𝐷𝐷 (𝜔𝜔 − 1)�����
�̇�𝛿

= 𝑃𝑃𝑚𝑚𝐶𝐶𝑃𝑃 − 𝑃𝑃𝑏𝑏𝐶𝐶𝑃𝑃                     (17) 
For the purpose of estimating the damping factor, the 

expression on the right side of (17) can be rephrased using the 
representation of a single-machine infinite-bus equivalent 
model in the following manner:  

𝑃𝑃𝑚𝑚𝐶𝐶𝑃𝑃 − 𝑃𝑃𝑏𝑏𝐶𝐶𝑃𝑃 =
𝑉𝑉𝑔𝑔𝑉𝑉∞𝑐𝑐𝑅𝑅𝑐𝑐𝛿𝛿0
𝑋𝑋𝑙𝑙 + 𝑋𝑋′𝑑𝑑

∆𝛿𝛿 = 𝐾𝐾∆𝛿𝛿                     (18) 

where Vg, V∞, Xl, X’d are the terminal voltage of the generator, 
terminal voltage of the equivalent grid, reactance of the 
transmission line, and transient impedance of the generator, 
respectively.   

Considering the relationship ∆�̇�𝛿 = ∆𝜔𝜔 in addition to the 
definition provided in (18), (17) can be expressed in its final 
form as 

 ∆�̇�𝜔 = − 𝐾𝐾
2𝐻𝐻
∆𝛿𝛿 − 𝐷𝐷

2𝐻𝐻
∆𝜔𝜔                             (19) 

If the system under investigation is fully observable, then, 
with the availability of data from PMUs for ∆δ, ∆ω, and 
RoCoF, it becomes possible to construct a curve in the 
following format: 

∆�̇�𝜔 = 𝐴𝐴∆𝛿𝛿 + 𝐵𝐵∆𝜔𝜔                             (20) 
It is crucial to emphasize that the values of constants A and 

B in (20) are established through the curve fitting procedure. 
Then, with H obtained from (9), one could express D as: 

−
𝐷𝐷

2𝐻𝐻 = 𝐵𝐵 → 𝐷𝐷 = −2𝐻𝐻 × 𝐵𝐵                        (21) 

However, to compute damping in systems with a limited 
number of PMUs and address observability concerns, let's 
return to the base system once again. Accordingly, one can 
write (19) for the base system as: 

∆�̇�𝜔𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 = −
𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
∆𝛿𝛿𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 −

𝐷𝐷𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

∆𝜔𝜔𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏           (22) 

Furthermore, one has (22) for the under-study system as   
∆�̇�𝜔𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 = −

𝐾𝐾𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠
2𝐻𝐻𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠

∆𝛿𝛿𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠

−
𝐷𝐷𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠

2𝐻𝐻𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠
∆𝜔𝜔𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠                   (23) 

The contrast between the two second terms on the right-
hand side of (22) and (23) can be substantiated by employing 
a Taylor expansion of the form   
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(
𝐷𝐷

2𝐻𝐻)𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 − �
𝐷𝐷

2𝐻𝐻�𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
=
∆𝜔𝜔𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

2𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
 ∆𝐷𝐷 −

2𝐷𝐷𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏∆𝜔𝜔𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

4𝐻𝐻2
𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

∆𝐻𝐻               (24) 

Considering that the left side of (24) is obtained from the 
fitted curves, ∆𝐷𝐷 represents the only unspecified parameter. 
Once ∆𝐷𝐷 is calculated, one can express 𝐷𝐷𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 as: 

𝐷𝐷𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 = 𝐷𝐷𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 + ∆𝐷𝐷                              (25) 
III. APPLICATION RESULTS 

Exploratory investigations are carried out to evaluate the 
efficacy of the suggested formulations, employing both 
simulated and actual measured data.  

The initial study demonstrates the application of the 
methods to noise-free observational data. Data derived from 
transient stability simulations of the 68-bus New York-New 
England (NYNE) test system, using MATLAB 2018b, which 
includes the power system toolbox (PST) [25], were used to 
assess the accuracy of the developed procedures. Fig. 2 
presents a single-line diagram of the NYNE test system, 
displaying generator buses with PMUs and the locations of 
breakers where contingencies are applied. Detailed models of 
generating units and their controllers were incorporated into 
the simulations. Specifically, generators G1 to G12 were 
equipped with fourth-order type II power system stabilizers, 
tuned to offer adequate damping [26]. 

Measured data from eight disturbance events, recorded by 
PMUs using a sampling rate of 60 Hz, in the NYNE test system 
are used to assess the efficiency of the proposed formulations. 
It is assumed that scenarios related to the tripping of generator 
number 12 and shedding of load at bus 52 are considered as the 
base systems. Results reported in Table I show high efficiency 
of the proposed method to estimate the parameters of interest 
in the system. 

For instance, consider the shedding of load at bus 49. 
Substituting the measured quantities into (9) and taking into 
account the base system of load shedding at bus 52 yields 

�
𝑃𝑃𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠𝐷𝐷

𝐻𝐻𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠
�

=
5.50

0.0053 + 0.0051
⎣
⎢
⎢
⎡2 × 0.0053 −

0.0545
2(5.50)2

1
1

2(5.50) ⎦
⎥
⎥
⎤

× ��0.0053 − 0.0051
0 � + �

1
2(5.50)

0.0545
2(5.50)2

0 0
� �0.0545

5.50 ��

= �0.0567
5.3462�                                                                                              (26)  

In another attempt, Fig. 3 illustrates the trajectories of 
synchronizing and damping torques, with Fig. 3(a) related to 
the base system represented using (22), as 

∆�̇�𝜔𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 = 0.0034∆𝛿𝛿𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 + 1.073∆𝜔𝜔𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏               (27) 
Moreover, one can express the under-study system as: 
∆�̇�𝜔𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 = 0.0127∆𝛿𝛿𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠

+ 1.287∆𝜔𝜔𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠                                    (28) 

 
Fig. 2. Single line diagram of the 68-bus system showing PMUs locations. Red 
points indicate locations of breakers where contingencies are applied. 
 

 
(a) 

 

 
(b) 

Fig. 3. Trajectory of synchronizing and damping torques in response to 
shedding of load at bus 37; a) base system, b) under-study system. 

 
The coefficient of determination, R2, for (27) and (28), 

derived from 30 samples, is 0.9982 and 0.09892, respectively, 
indicating a highly accurate fitness.  
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TABLE I 
ESTIMATION OF FREQUENCY RESPONSE MODEL PARAMETERS FOR VARIOUS 

LOAD AND GENERATION TRIPPING SCENARIOS 
Scenario Hest Hreal PD

L,est PD
L,real Dest Dreal 

L26 5.0142 5.02 0.0521 0.05 1.88 1.8 
L3 6.2267 6.30 0.077 0.076 1.12 1.1 
L46 4.9718 5.10 0.316 0.309 2.16 2.1 
L49 5.3462 5.30 0.0567 0.060 4.401 4.40 
L52 - 5.50 - 0.0545 - 3 
G12 - 5.15 - 0.065 - 1.6 
G8 4.0461 4.10 0.0645 0.0635 2.93 3 
G14 3.7513 3.85 0.0931 0.0950 3.78 3.8 

 
TABLE II 

ESTIMATION OF THE POWER IMBALANCE AND THE INERTIA  
  Dest Dreal Error Hreal Hest Error 

Event 1 3.16 3.2 1.25% 4.5047 4.4873 0.39% 
Event 2 4.87 - - 6.4767 - - 
Event 3 4.23 4.25 0.4% 2.9653 3.0041 1.31% 
Event 4 5.12 - - 2.5924 - - 
Event 5 4.92 5 1.6% 2.6355 2.6566 0.10% 
Event 6 3.54 - - 9.2289 - - 
Event 7 3.49 3.50 0.28% 5.8455 5.8900 0.70% 
Event 8 4.22 4.16 1.44% 8.0710 8.2103 1.72% 
Event 9 2.50 2.48 0.81% 7.3116 7.3009 ~0.00% 
 
To calculate the damping factor for the under-study system, 

let us substitute the quantities into (24) as follows: 

1.287 − 1.073 =
2 × 𝜋𝜋(50 − 49.87)

5.50
∆𝐷𝐷

−
2 × 3 × 2 × 𝜋𝜋(−50 + 49.87)

4(5.50)2 (5.50

− 5.3462) → ∆𝐷𝐷 = 1.401                               (29) 
Then, one can calculate the damping factor as  

𝐷𝐷𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 = ∆𝐷𝐷 + 𝐷𝐷𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 → 𝐷𝐷𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 = 1.401 + 3
→ 𝐷𝐷𝑢𝑢𝑢𝑢𝑑𝑑𝑏𝑏𝑢𝑢−𝑠𝑠𝑑𝑑𝑢𝑢𝑑𝑑𝑠𝑠 = 4.401                                 (30) 

The second study examines the application of the methods 
to actual data. Measured data recorded by PMUs using a 25 Hz 
sampling rate in the national power grid are used to assess the 
efficacy of the proposed formulations. The grid has 16 regional 
electric companies with a 50 Hz nominal frequency and 76428 
MW capacity [27].  

The primary objective is to extract the clean signal from the 
recorded signal. This clean signal is defined as the inertia-
weighted average of data collected from PV buses. 
Considering a theoretical cut-off frequency of 1.5 Hz for slow 
power and frequency variations [24], one can determine the 
minimum required number of samples to be averaged using 
(2), namely 

𝑁𝑁 =
�0.1962 + (1.5

25)2

(1.5
25)

≅ 8                           (31) 

Comparison of the original and the noise-free signals, 
obtained by setting N equal to 8 in (1) in Fig. 4, shows the 
ability of the smoothing filter (1) to denoise the PMU data. 

After obtaining the clean signal, the efficiency of the 
developed procedure in estimating the inertia constant and load 
damping factor is tested through nine distinct contingency 

scenarios. These scenarios involve significant generation 
outages and are used to assess the accuracy of the proposed 
procedures in real-world large-scale applications. For the 
estimation procedures, three scenarios associated with events 
number 2, 4 and 6 are regarded as the base systems.  

Table II presents the estimated parameters and the 
disparities between the observed and estimated values. The 
findings illustrate the strong effectiveness of the suggested 
approach in estimating the SFR model of the system in real 
time application. For example, consider Event 3 in Table II, 
where employing the identical process as detailed in (26) and 
designating Event 4 as the reference system results in an inertia 
constant of 2.9653. The RoCoF difference between Events 3 
and 4 is approximately 0.0018 Hz, which is lower than the 
disparities observed with other base systems, highlighting the 
improved accuracy when utilizing Event 4 as the base case.  

In this context, it is important to highlight that, given the 
variation in RoCoFs across the scenarios under investigation, 
three base systems with a 0.002 Hz range have been chosen. 
However, opting for more base systems with narrower RoCoF 
spans can lead to enhanced accuracy; for example, consider 
Event 8 in Table II. Errors for D and H, totaling 1.44% and 
1.72%, respectively, are observed with the current three base 
systems. These discrepancies can be reduced to as little as 
0.14% and 0.05%, respectively, by increasing the number of 
base systems to six, each with a 0.001 Hz span. 

IV. DISCUSSION 
The implementation of the proposed estimation method 

requires consideration of a number of issues: 
1- Since (9) utilizes the first sample of RoCoF after the 

inception of the fault to estimate the parameters of interest, 
the estimation procedure in this paper is only possible 
after a disturbance. To achieve this objective, it is assumed 
that the initiation of a fault may activate the estimation 
procedure. The frequency event is identified when the 
clean frequency signal exhibits an increasing/decreasing 
trend over five consecutive observations [28]. 

 

 
Fig. 4. Denoising of PMU signal by a window of length 8 samples; a) noisy 
signal, b) clean signal, c) zoomed noisy signal in the range of 4 sec to 6 sec, d) 
zoomed clean signal in the range of 4 sec to 6 sec. 
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2- Regional inertia in the system can be estimated based on 
the center-of-gravity (COG) concept in [3], where the 
ratio of local frequencies to the frequency of the SFR 
model over time is expressed in terms of the ratio of 
regional inertia to the inertia calculated in (9). More 
precisely, regional inertia can be computed by acquiring 
local frequencies from PMUs and deducing the global 
frequency associated with SFR using the parameters of 
interest in this paper.  

V. CONCLUSION  
This research contributes to the development of an effective 

method for estimating the primary parameters of the 
aggregated SFR model of a power grid based on PMU data, 
offering valuable insights for power system control. The 
method relies on defining frequency dynamics associated with 
certain historical events within the system to estimate inertia 
constant and load damping in real-time applications. The 
findings from applying the method to both real and simulated 
data illustrate that the establishment of a set of historical 
frequency dynamics for utilization in various real-time 
scenarios significantly enhances result accuracy. The key 
indicator for selecting the most appropriate base system from 
the predefined set is determined to be the first sample of 
RoCoF after the inception of a fault. Reliance on defining base 
systems means that the requirement for system observability, 
which necessitates a substantial number of PMUs, is no longer 
considered a prerequisite for implementation in practical 
systems. The suggested approach is well-suited and holds 
promise for real-time applications due to its advantageous 
features of low computational requirements and high accuracy. 
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