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Abstract—In this paper, a novel Energy Management System
(EMS) algorithm to achieve optimal Electric Vehicle (EV) charg-
ing scheduling at the parking lots of electric railway stations
is proposed. The proposed approach uncovers the potential of
leveraging EV charging flexibility to prevent overloading in the
combined EV charging and railway operation along with re-
newable generation, railway regenerative capabilities, and energy
storage. Specifically, to realize end-user flexibility, each EV state
of charge at departure time is introduced as an optimization
variable. Peak load constraints are included in the railway EMS
to properly adjust EV charging requirements during periods of
high railway demand. A comprehensive numerical study using a
scenario-tree approach on an actual railway line in Switzerland
demonstrates the effectiveness and the feasibility of the proposed
method in a practical setting under multiple scenarios.

Index Terms—electric vehicles, energy management, peak load
reduction, railway stations, regenerative braking

NOMENCLATURE

In this section, the main nomenclature used throughout the
paper is introduced. Any additional notation is defined where
it first appears in the text.

Abbreviations

EMS Energy Management Systems
ESS Energy Storage Systems
EV Electric Vehicle
PLR Peak Load Reduction
PV Photovoltaic
RB Regenerative Braking
V2G Vehicle to Grid

Indices

t Time instant
s Scenario

Parameters

∆t Time step
ϵB− Self-discharge coefficient
ηB+ ESS charging efficiency
ηB− ESS discharging efficiency
P̄B+ ESS charging rate

This work is supported in part by the ETH Mobility Initiative un-
der MI-GRANT 2020-HS-396 and La Caixa Foundation under fellowship
LCF/BQ/EU22/11930096.

P̄B− ESS discharging rate
ηEV,i Electric car charging efficiency
P̄G Maximum power drawn from the main grid
Pr Rated capacity of the solar installation
P̄S Maximum power sold back to the grid
πs Probability of each scenario
rc Radiation threshold - Quadratic impact
rstd Radiation threshold - Standard environment
SoC0

B Initial ESS state of charge
SoCmax

B Maximum ESS state of charge
SoCmin

B Minimum ESS state of charge
SoC0

EV,i Initial state of charge of EV i
taEV,i Arrival time of EV i

tdEV,i Departure time of EV i
NEV Number of EVs
P̄ t,s
RBE Available power from regenerative braking

wP , wθ Weighting factors
P 0
EV,i Nominal charging rate of EV i

P̄EV,i Maximum charging rate of EV i
Pmax Maximum limit for EV and railway load
κ EV charging flexibility parameter

Variables

βt,s Measured solar radiation
Ct,s

G Time-dependent purchasing electricity price
Ct,s

S Time-dependent selling electricity price
P t,s
B+ ESS charging power

P t,s
B− ESS discharging power

P t,s
D Train demand

P t,s
EV,i Charging power of EV i

P t,s
EV Aggregated EV charging power

P t,s
G Power bought from the main grid

P t,s
PV Active PV power output

P t,s
RBE Regenerative braking power utilized for ESS

charging
P t,s
S Power sold back to the main grid

SoCt,s
B ESS state of charge

Ec
EV,i Requested state of charge of EV i upon depar-

ture
SoCt,s

EV,i State of charge of EV i
θsEV,i State of charge of EV i upon departure
ut,s
B Binary variable to indicate ESS charging status

ut,s
G Binary variable to indicate power exchange
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I. INTRODUCTION

The rapidly growing trend of transportation electrification
creates new challenges in power system operation as grid
load demand increases. As more private and commercial
vehicles become electrified, suitable charging infrastructure
and efficient Energy Management Systems (EMS) are needed
to supply the required charging and reduce potential negative
impacts, such as grid overloading. A promising solution lies in
the integration of Electric Vehicle (EV) parking lots in electric
railway systems, which have the potential to serve as major
energy hubs. Such concept can leverage the available power
from Regenerative Braking (RB) that is produced during the
braking mode of trains as well as renewable generation and
Energy Storage Systems (ESS) to satisfy the combined railway
and EV charging demand [1], [2], [3].

Considering the operation of EV parking lots along with
electric railways has been addressed in several works in the
literature. In [2], an optimal EMS that minimizes the daily
operating cost of a railway station with EV demand, renewable
energy, ESS, and RB power is implemented. Receding horizon
control is leveraged in a railway EMS in [3] to minimize the
daily operating costs and peak power spent on EV charging. A
method that fully utilizes RB power from electric railways to
feed EV charging stations through a power electronics inter-
face is proposed in [4]. In [5], an optimal energy management
strategy that utilizes the existing rail system along with RB,
ESS, and renewable generation to meet the demand for an EV
parking lot is presented. A study on the capacity to charge
EVs based on the energy performances of an Italian metro
line and a Spanish metro line is conducted in [6]. In [7], an
energy analysis on the utilization of RB power from metro-
transit systems for EV charging is realized. An optimal energy
management model aiming to minimize the total line losses of
the railway network while covering EV charging is proposed
in [8]. Model predictive control is leveraged in [9] to realize
train-to-vehicle technology. However, EV charging flexibility
was not included.

To fully realize the potential of electric railway stations as
energy hubs, it is important to take advantage of the charging
coordination and flexibility of EVs. To this end, various
strategies for flexible end-user EV charging scheduling aiming
at different objectives, such as Peak Load Reduction (PLR)
[10], may be incorporated in the EMS of electric railways
with EV parking lots. Incentives, such as a charging rate
reduction, can encourage EV owners choosing the “park and
rail” option to participate in a flexible charging scheme, where
both technical and economic benefits can be achieved.

Limited work has been done on integrating flexible end-user
EV scheduling at electric railway systems. In [11], a Vehicle-
to-Grid (V2G) charging scheduling scheme that contributes to
peak power reduction and cost savings at a railway station is
presented. A method that combines V2G for flexible charging
with RB power is proposed in [12]. Nevertheless, a compre-
hensive solution that optimizes end-user EV flexibility and

combines railway and EV charging requirements along with
renewable generation, ESS, and RB power is lacking.

In this work, a novel EMS algorithm for electric railway
systems considering EV charging flexibility is designed. The
proposed method takes into account railway and EV charging
requirements as well as renewable generation, ESS, and RB
power at the railway system. To prevent grid overloading
during periods of high railway demand, peak load constraints
set by the grid operator are integrated to properly adjust EV
charging requirements and realize end-user flexibility. The
main contributions of the paper are as follows:

• An approach is proposed for the railway and EV charg-
ing operator that achieves optimal flexible EV charging
scheduling, in terms of maximizing the final state of
charge for the EVs participating in the flexible scheme
while respecting loading limits set by the grid operator.

• The importance of utilizing various elements, such as the
regenerative capabilities of trains and renewable gener-
ation is revealed, as they can be leveraged to improve
flexible EV charging decisions and further maximize the
final charging requirements and customer satisfaction.

• A realistic numerical study on a railway line in Switzer-
land demonstrates the feasibility and effectiveness of the
proposed method under various scenarios generated by a
scenario-tree approach and actual historical data.

II. RAILWAY EMS MODELING

In this work, an AC energy hub is integrated into the electric
railway system, which allows the collection of electricity
production from the main grid, renewable generation, or the
braking of trains and its delivery to the connected loads,
like trains, EV charging infrastructure, or as feedback to the
grid, as illustrated in Fig. 1. Such a concept may use the
mature technology of AC electric railways to fully allow the
harvesting of renewable sources and supply-charging infras-
tructures in strategic parking areas close to railway stations,
facilitating sustainable intermodal mobility [13]. To coordinate
the different types of infrastructure and quantities, such as train
and EV charging demand, renewable generation, RB power,
energy storage, and grid power exchange, an EMS is designed
at the electric railway system level. This section describes
the main components, in terms of constraints included in the
railway EMS. Superscripts s = 1, 2, ..., Ns and t = 1, 2, ..., Nt

denote the considered scenario and time instant, respectively,
with the time being t ·∆t where ∆t is the time step size.

A. Solar Generation

Photovoltaic (PV) generation is assumed to be installed at
unity power factor, i.e., only active power is considered [14].
By utilizing historical data for the solar radiation that are
available on-site, the generated active power from PVs can be
estimated from the following equation relating solar radiation
and the PV output [15]:
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Fig. 1. Electric railway systems as energy hubs.

P t,s
PV = P t,s

PV (β
t,s) =



βt,s2

rcrstd
Pr 0 ≤ βt,s < rc

βt,s

rstd
Pr rc ≤ βt,s < rstd

Pr βt,s ≥ rstd

(1)

where P t,s
PV is the power generated from the PV installation

at the railway line, βt,s is the measured solar radiation, rc is
a radiation threshold up to which there is a quadratic impact
of the solar radiation on the PV output, rstd is a radiation
threshold in the standard environment where further increase
does not lead to an increase in the PV output, and Pr is the
rated capacity of the PV installation.

B. Power Balance

The most important equality to be respected by the railway
EMS is the balance of the electric power. Particularly, the
power requirements at the train line (e.g., railway and EV
charging demand, ESS charging) should be supplied by avail-
able generated power (e.g., main grid power, solar generation,
ESS discharging). This translates into the following constraints
that balance electric power at every time instant and scenario:

P t,s
G + P t,s

PV + P t,s
B− = P t,s

D + P t,s
EV + P t,s

B+ + P t,s
S ∀t, s (2)

where P t,s
G is the power supplied from the utility grid, P t,s

B−

is the power discharged by the ESS, P t,s
D is the train active

power demand, P t,s
EV is the aggregated EV charging active

power demand, P t,s
B+ is the power charged by the ESS, and

P t,s
S is the power that can be sold to the main grid.

C. Grid Power Exchange

The railway EMS model assumes that power is either bought
from or sold back to the main grid. However, limitations on
this grid power exchange, such as maximum power limits or
the avoidance of simultaneous power exchange from and back

to the grid during the same time interval should be considered.
Thus, the following constraints are added to the railway EMS:

P t,s
G ≤ P̄Gu

t,s
G ∀t, s (3)

P t,s
S ≤ P̄S(1− ut,s

G ) ∀t, s (4)

where P̄G is a limit on the maximum power that can be bought,
P̄S is a limit on the maximum amount of power that can be
sold back to the main grid, and ut,s

G is a binary variable to
denote the power flow direction, i.e., it is 1 when power is
bought and 0 when power is sold.

D. Energy Storage Model

A wayside ESS installed along the contact line is considered
in the railway EMS. In this work, ESS may be deployed
to leverage the regenerative capabilities of trains, i.e., utilize
available RB power. Particularly, instead of being wasted or
directly fed back to the main grid, available RB power is
reused in the ESS charging process [2], [16]. Although the
amount of RB power that can be exploited may be limited by
the ESS capacity, this approach allows to use RB power in
a more flexible way, e.g., depending on EV charging needs.
Hence, the ESS behavior is modeled as:

P t,s
RBE + P t,s

B+ ≤ P̄B+u
t,s
B ∀t, s (5)

P t,s
B− ≤ P̄B−(1− ut,s

B ) ∀t, s (6)

P t,s
B+ , P

t,s
B− ≥ 0 ∀t, s (7)

SoCt,s
B = SoCt−1,s

B − ϵB−SoC
t−1,s
B (8)

+ ηB+(P
t,s
RBE + P t,s

B+)∆t

− ηB−P
t,s
B−∆t ∀t, s

SoCt,s
B = SoC0

B ∀t = t0, s (9)
SoCt,s

B ≤ SoCmax
B ∀t, s (10)

SoCt,s
B ≥ SoCmin

B ∀t, s (11)

where P t,s
RBE is the utilized RB power, ut,s

B is a binary variable
to denote whether ESS is charged or discharged, i.e., it is 1
during ESS charging and 0 during ESS discharging, SoCt,s

B is
the state of charge of the ESS, ϵB− is the self-discharge rate
that reflects a decrease of the shelf life of ESS, ηB+, ηB−
are the charging and discharging efficiencies of the ESS,
respectively, SoC0

B is the initial state of charge of the ESS,
SoCmin

B , SoCmax
B are the minimum and maximum levels for

the state of charge of the ESS, respectively.

E. RB Power

As shown in (5), P t,s
RBE denotes the RB power that is

eventually utilized for charging the ESS. However, this amount
should be bounded by the available RB power. Hence, the
following inequality constraints should hold:

P t,s
RBE ≤ P̄ t,s

RBE ∀t, s (12)

where P̄ t,s
RBE is the available RB power extracted as negative

railway demand in the overall railway demand profiles.
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III. EV CHARGING MODELING

In this work, it is assumed that various types of EVs, such as
electric buses or cars, can be charged at the parking lot close
to the railway station. This section presents the mathematical
formulation and constraints to model the individual behavior,
i.e., charging power and state of charge, for each EV.

A. Aggregated EV Charging Power

The power balance constraints formulated in (2) consider
the aggregated EV charging demand. This is calculated as a
sum of the charging power of all plugged-in EVs as follows:

P t,s
EV =

NEV∑
i=1

P t,s
EV,i ∀t, s (13)

where P t,s
EV,i is the charging power of each EV, i =

1, 2, ..., NEV and NEV is the number of EVs.

B. Individual EV Modeling

Regarding the state of charge of each EV, once the vehicle
arrives at the parking lot, it has an initial energy level as:

SoCt,s
EV,i = SoC0

EV,i ∀i, s, t = taEV,i (14)

where SoCt,s
EV,i is the state of charge at time instant t, SoC0

EV,i

is the initial state of charge, and taEV,i is the arrival time of
EV i. At the time of arrival, a demanded state of charge Ec

EV,i

is also asked by the owner of EV i.
Assuming that a customer has agreed to participate in

a flexible charging scheme, the initially demanded state of
charge may or may not be fully satisfied. However, the state of
charge upon departure should respect at least some constraints
to guarantee customer satisfaction to some extent. Thus, the
final state of charge at the departure time of each EV is decided
in a flexible range as follows:

SoCt,s
EV,i ≥ θsEV,i ∀i, s, t = tdEV,i (15)

SoCt,s
EV,i ≤ Ec

EV,i ∀i, s, t = tdEV,i (16)

where θsEV,i is introduced as an optimization variable to realize
flexibility while ensuring customer satisfaction and tdEV,i is the
departure time of EV i.

The evolution of the state of charge for each EV in charging
mode is modeled using the state of charge at the previous time
interval as well as the charging energy at the current time step
by the following equations:

SoCt,s
EV,i = SoCt−1,s

EV,i + ηEV,iP
t,s
EV,i∆t (17)

∀i, s, t ∈ [taEV,i + 1, tdEV,i]

where ηEV,i is the charging efficiency.
Regarding EV charging powers, the charging power of each

EV should be bounded by the maximum charging rate of the
corresponding EV type as follows:

P t,s
EV,i ≤ P̄EV,i ∀i, s, t ∈ [taEV,i, t

d
EV,i] (18)

where P̄EV,i is the maximum charging rate of EV i.

However, it is worth noting that the designated variables
of each EV should only be non-zero while the vehicle is
plugged in at the parking lot, i.e., only during the time
period between its arrival and departure times. Therefore, the
following equations should be considered:

P t,s
EV,i = 0 ∀i, s, t /∈ [taEV,i, t

d
EV,i] (19)

SoCt,s
EV,i = 0 ∀i, s, t /∈ [taEV,i, t

d
EV,i] (20)

IV. THE PROPOSED RAILWAY EMS WITH FLEXIBLE EV
CHARGING UNDER PEAK LOAD CONSTRAINTS

This section presents a novel approach to optimally integrate
EV charging flexibility in the EMS of electric railways under
peak load constraints. Briefly speaking, peak load limita-
tions on the combined EV charging and railway demand are
included to respect technical constraints set by the utility
grid regarding the transmission system, such as overloading.
EV flexibility is leveraged as charging powers and the final
states of charge of EVs at departure times are integrated as
flexible variables to be optimized. The scheme is proposed
for the railway and EV charging operator to coordinate the
consumption of the flexible quantities at the railway system
level, while keeping the strain added on the main grid within
the physical limits required by the utility.

A. Peak Load Constraints

A limit on the maximum power to satisfy the train and EV
charging demand is determined by the utility grid tasked to
supply the railway line [3], [10], [17]. Hence, the following
constraints are set:

P t,s
D + P t,s

EV ≤ Pmax ∀t, s (21)

where Pmax is the maximum power limit for the total railway
and EV charging load at the substation where the train and
EV charging stations are connected.

B. EV Charging Flexibility

In this work, EV charging flexibility is leveraged by in-
troducing the optimization variables θsEV,i, i = 1, ..., NEV as
thresholds for the EV final states of charge at departure. Equa-
tion (15) has already bounded the state of charge of each EV at
the departure time to the corresponding θsEV,i. Considering that
departure times may differ from the fulfillment times needed
to reach the initially demanded states of charge Ec

EV,i, the
following upper and lower bounds are included:

θsEV,i ≥ θmin
EV,i ∀i, s (22)

θsEV,i ≤ θmax
EV,i ∀i, s (23)

where θmax
EV,i denotes the maximum value and θmin

EV,i the mini-
mum value for θsEV,i. In this paper, θmax

EV,i is set to be equivalent
to either the initially demanded state of charge of EV i or the
one achieved considering maximum charging rates in case the
EV stays shorter than the fulfillment time, i.e.,:

θmax
EV,i = min(ηEV,iP̄EV,i(t

d
EV,i − taEV,i)∆t, Ec

EV,i) ∀i (24)
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The lower bound θmin
EV,i is selected as a percentage of either

the initially demanded state of charge of EV i or the state of
charge achieved with at least nominal charging for EV stays
shorter than the fulfillment time [18], as follows:

θmin
EV,i = κ ·min(ηEV,iP

0
EV,i(t

d
EV,i − taEV,i)∆t, Ec

EV,i) ∀i
(25)

where κ is a flexibility parameter that determines minimum
customer satisfaction upon departure and P 0

EV,i is the nominal
charging rate of EV i.

C. Objective Function

The objective of the proposed algorithm is two-fold: it aims
to achieve economic operation by minimizing the operating
costs of the railway and EV charging stations while it should
also ensure EV customer satisfaction by maximizing the final
state of charge of EVs at departure. Hence, the objective
function is formulated as follows:

min
∑
s

πs[wP

∑
t

(Ct,s
G P t,s

G − Ct,s
S P t,s

S )∆t− wθ

∑
i

θsEV,i]

(26)
where πs denotes the probability of each scenario; Ct,s

G is
the time-dependent purchasing electricity price; Ct,s

S is the
time-dependent selling electricity price; wP , wθ ∈ [0, 1] are
weighting factors to weight the relative terms and prioritize be-
tween satisfactory EV charging or more economic operations.
It is worth noting that as the optimization problem seeks to
minimize grid power while maximizing the lower bounds for
the states of charge θsEV,i, the final state of charge at departure
time for each EV will be equal to the corresponding θsEV,i. In
addition, the consideration of investment costs is outside the
scope of the work [19].

D. The Proposed Algorithm

An illustration of the proposed algorithm is presented in
Figure 2. It can be observed that Steps 1-3 are to deter-
mine the EV information and the peak load and flexibility
parameters, whereas Steps 4-8 are to determine the scenario-
based elements, such as train demand, RB availability, and PV
generation and formulate the constraints. Once all scenarios
are considered and the mathematical formulation is complete,
the railway EMS optimization problem is solved (Step 9) and
flexible EV charging scheduling is extracted (Step 10).
Remarks:

• Although in practice it would be suitable to solve for
one scenario (e.g., a day-ahead EV charging scheduling
for the parking lot run by the railway operator), multiple
scenarios based on a scenario-tree approach [19] are
considered to evaluate the impact of varying input data.
Assuming that PV scenarios are ΩPV = P1, P2, ..., PM1

,
price scenarios are ΩCG

= C1, C2, ..., CM2
, and RB

power scenarios are ΩRB = R1, R2, ..., RM3
, the final

set of scenarios using the scenario-tree approach is the
combination of every PV, price, and RB scenario. Thus,
Ωs = S1, S2, ..., SNs

where Ns = M1 ·M2 ·M3.

• The selection of the flexibility parameter κ is crucial, as
it determines the level of minimum customer satisfaction.
Smaller values of κ may unnecessarily decrease the EV
charging levels at departure and cause dissatisfaction,
while larger values may increase EV charging require-
ments and cause stressed operating conditions.

V. NUMERICAL RESULTS

This section presents the results of a comprehensive nu-
merical study to test the proposed railway EMS integrating
EV charging flexibility under peak load constraints. First,
the proposed approach is validated for one scenario under
different operation modes to evaluate and compare the impact
of various elements and inputs, such as RB power and ESS,
on the flexible EV charging decisions. Next, uncertainties
associated with renewable generation, electricity prices, and
RB availability are included and the results of the proposed
EMS for different scenarios are presented.

A. Simulation Set-up

An actual railway line connecting Sargans and Chur in
eastern Switzerland with a total length of 24.9 km and seven
railway stations is used to test the proposed method. Chur
is considered as the main train station where PV generation,
ESS, and EV charging facilities are installed.

Estimate EV arrival and departure times
and requested final states of charge

Step 1

Set flexibility parameter κ in (25) to
ensure customer satisfaction at departure

Step 2

Set peak load parameter Pmax in (21) for the
combined railway and EV charging demand

Step 3

Generate scenario sStep 4

Determine train demand P t,s
D and

available RB power P̄ t,s
RBE

Step 5

Compute PV generation by
solar radiation data using (1)Step 6

Formulate constraints (2)-(25)Step 7

s = Ns ?Step 8 s = s+ 1

Completed scenarios

Solve EMS Optimization Problem

min
∑

s πs[wP
∑

t (C
t,s
G P t,s

G −Ct,s
S P t,s

S )∆t−wθ
∑

i θ
s
EV,i]

s.t. (2)–(25)

Step 9

Extract optimal EV charging schedules P t,s
EV,i

Step 10

Yes

No

Fig. 2. Flowchart of the proposed railway EMS with EV charging flexibility.
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Regarding data sets, daily measurements for the railway
demand and RB power in 2021 as seen from the feeder directly
connected to Chur’s station are provided by the Swiss Federal
Railways and used in the simulations. Electricity price signals
consist of actual data of Switzerland’s day-ahead market in
2021 [20], where buying price Ct,s

G and selling price Ct,s
S are

assumed to follow the same time varying trajectories. Daily
solar radiation data in the area of study are also provided by
the Swiss Federal Railways. A sampling time of 10 minutes
is applied to avoid a high computational burden.

The daily trajectories of solar radiation are transformed to
PV power using (1). It is assumed that the solar capacity in-
stalled at the train station is Pr = 1000 kW, which corresponds
to 20% of the maximum train demand, and the radiation
parameters are set as rc = 150 W/m2 and rstd = 1000 W/m2.

The ESS capacity installed is assumed as SoCmax
B = 1000

kWh [21], whereas the minimum level for the ESS SoCmin
B is

10% of the total capacity. The ESS charging and discharging
rates are set as 1000 kW/min and the charging and discharging
efficiencies are ηB+ = ηB− = 0.95. The initial energy level
for the ESS SoC0

B is set as 50% of the ESS capacity. No
self-discharge phenomenon is considered, i.e., ϵB− = 0.

Regarding EV charging requirements, the EV parking lot at
the railway station may serve different types of vehicles, such
as public electric buses and private electric cars. The charging
facilities are open to EV arrivals daily from 6:00 to 22:00,
whereas departure can happen at any time. The total number of
EVs considered is NEV = 179. To fully leverage the flexibility
potential of EVs, it is assumed that all vehicles entering the
parking lot participate in the flexible charging scheme under
peak load constraints. To ensure customer satisfaction, the
parameter κ is set as 0.6 in (25), meaning that upon departure
all EVs will be charged to at least 60% of either their initially
requested state of charge or the equivalent one if nominal
charging was applied for EVs with shorter parking stays. The
peak load limit set by the utility grid for the combined railway
and EV charging demand throughout the day is 3000 kW, i.e.,
Pmax = 3000 kW in (21).

EV arrival for electric cars is simulated using a probabilistic
approach. The arrival times of private EVs are obtained by
an exponential distribution with a rate of four, i.e., four
electric cars are expected on average every hour. The departure
times of private electric cars are determined using a triangular
distribution, within a range of two hours with respect to the
fulfillment time required for achieving the demanded state
of charge levels. The initially demanded states of charge are
obtained from a uniform distribution in the interval [10, 50]
kWh. Nominal and maximum charging power rates for electric
cars are P 0

EV,i = 11 kW and P̄EV,i = 22 kW, respectively
[18], [22].

EV arrival for electric buses is simulated according to the
official timetable for the main bus stop closest to Chur’s
train station. Departure times are fixed as posted on the
public schedule [23] whereas arrival times are obtained from a
triangular distribution, allowing for a range of 10-60 minutes
prior to the departure time. The initially requested states of

charge are obtained from a uniform distribution in the interval
[100, 300] kWh. Nominal and maximum charging power rates
for electric buses are P 0

EV,i = P̄EV,i = 300 kW.
The proposed railway EMS is simulated in a MATLAB©

environment. The commercially available linear programming
solver Gurobi [24] is deployed to solve the optimization prob-
lem and obtain the optimal EV charging scheduling decisions
in Step 9 of the proposed algorithm. The weighting factors
are selected as wP = wθ = 1.

B. Validation of the Proposed Railway EMS

To validate the proposed approach and evaluate the impact
of different elements on its performance, different cases are
analyzed. For demonstration, one scenario that corresponds
to the weekday with the highest amount of PV generation is
selected. Running one scenario takes 3.944102 seconds on a
12th Gen Intel(R) Core(TM) i7-1260P 2.10 GHz. Figures 5
and 6 show the main inputs, including the daily train demand,
PV generation, RB power, and electricity price, for the selected
scenario.

1) Effect of RB Power: First, we study the performance
of the proposed method with respect to the utilization of the
regenerative braking capabilities of trains. The following two
different cases are implemented and compared:

• Case A (with ESS): RB power and ESS are leveraged and
included in the formulation, i.e., constraints (5)–(12) are
considered.

• Case B (no ESS): RB power and ESS are not included
in the formulation, i.e., there is no ESS to store the RB
power and constraints (5)–(12) are neglected. Any power
from the regenerative capabilities of trains is dissipated
as waste.

The results of the final state of charge of each EV at the
departure time for Cases A and B and the selected scenario
are presented in Fig. 3. By comparing the two cases, the
advantage of utilizing RB power in the combined railway and
EV charging is highlighted. It can be observed that Case A
achieves better EV charging results, ensuring more effective
customer satisfaction. Indeed, due to the utilization of RB
power and ESS, an increase of up to 39.43% in the final state
of charge can be achieved, which corresponds to vehicle 74. In
addition, the impact of RB power and ESS is more beneficial
to the flexible EV charging decisions for public electric buses
rather than private electric cars. This conclusion aligns with
the theoretical expectation that EVs with larger capacities have
greater potential for flexibility.

2) Effect of PV Generation: After showing the potential
benefits of the utilization of RB power and ESS on the
combined railway and flexible EV charging operation, the
impact of PV generation is examined. The following cases
are analyzed:

• Case A (with PV, with ESS): same as before, i.e., RB
power and PV generation are considered.

• Case C (no PV, with ESS): The availability of PV gener-
ation is not considered, i.e., P t,s

PV is assumed to be 0.
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Fig. 3. The impact of RB power on the flexible EV state of charge at departure time.

Fig. 4. The impact of PV generation on the flexible EV state of charge at departure time.

(a) Train demand (b) RB power

Fig. 5. Railway power consumption and RB power for the selected scenario.

(a) PV generation (b) Day-ahead price

Fig. 6. PV generation and day-ahead electricity price for the selected scenario.

The resulting states of charge for EVs during departure for
Cases A and C and the selected scenario are shown in Fig. 4.
It can be concluded that available PV generation may greatly
contribute to further maximizing the final EV charging result.
In fact, by utilizing the available solar generation, an increase
of up to 40% in the final state of charge can be achieved,
which corresponds to vehicle 116. Hence, it is important to
fully leverage the available elements, such as PV and ESS, in
the railway and EV charging station operation.

C. A Scenario-Based Study

To further evaluate the performance of the proposed al-
gorithm under variations in input data, multiple scenarios
are considered. Specifically, Ns = 100 scenarios of equal
probability πs = 0.01 are generated with the scenario-tree
approach described in Section IV-D. The generated scenarios
are based on all possible combinations of 4 PV scenarios, 5
price scenarios, and 5 RB power scenarios. Only electric buses
are considered in the scenario-based study to highlight the

effectiveness of the proposed approach for larger EV charging
requests while reducing the overall computational burden.

The results of the analysis of multiple scenarios are pre-
sented in Figs. 7-9. In Fig. 7, the states of charge at the
departure times for selected EVs and selected scenarios of
different solar generation, price, and RB power are presented.
It can be seen that the proposed railway EMS effectively
adjusts individual EV charging requirements with respect to
the variations of inputs. For instance, considering EV 112,
the optimal state of charge at departure time may greatly
vary depending on the scenario (e.g., 150 kWh in scenarios
1, 14, and 16, 230 kWh in scenario 6, and 200 kWh in
scenario 51). This behavior can be well explained by looking
at the differences between the illustrated scenarios. Indeed, the
results of scenario 1 are less satisfactory compared to other
scenarios for the selected EVs, as it is characterized by a
significantly smaller PV generation as well as lower RB power
availability. Hence, as expected, other scenarios offer more
satisfactory charging results for most EVs. Fig. 8 illustrates
the ESS energy level for scenarios 1 and 6, as the scenarios
with the least and most satisfactory performances, respectively.
It can be observed that ESS activation is more frequent in
scenario 6 due to larger RB availability.

In addition, Fig. 9 illustrates a comparison of the aggregated
EV charging power obtained by the proposed approach in one
scenario with the one obtained by uncoordinated charging with
nominal charging power. Thanks to the integration of peak
load constraints, the proposed method can effectively reduce
the power spikes observed in the uncoordinated charging
case. Other scenarios exhibit similar behavior. Therefore, it
can be concluded that the proposed algorithm can effectively
leverage EV charging flexibility under multiple scenarios while
satisfying customer requirements and avoiding overloading.

VI. CONCLUSION

A novel EMS algorithm for optimal EV charging scheduling
in the combined electric railway and EV charging operation
is proposed. The proposed approach leverages EV flexibility
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Fig. 7. The state of charge at departure time for selected EVs and scenarios.

Fig. 8. The ESS state of charge for selected scenarios.

Fig. 9. Optimized and uncoordinated power peaks.

in an effort to respect technical constraints, such as overload-
ing. Particularly, EV charging requirements are considered as
flexible variables and peak load limitations set by the main
grid operator are included for the aggregated EV charging
and railway demand. The proposed method represents the first
attempt to uncover the potential of utilizing EV flexibility
while considering renewable generation, RB power, and ESS at
the electric railway station level. Numerical results validate the
importance of different elements, such as PV and RB power, as
well as the effectiveness under various scenarios in a practical
setting. Future work may focus on including the impact of
EV battery degradation as well as updates in the prediction of
uncertainties and EV arrival.
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