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Abstract—The transition from centralised, fossil fuel-powered
generating units to distributed energy resources (DER) represents
a significant step forward, offering numerous benefits. However,
this shift also presents operational challenges for distribution
network service providers (DNSPs) and the electricity markets.
In this paper, we introduce our innovative solution for allocating
network capacity in the form of operating envelopes, shaped
to enhance customer participation in energy and reserve mar-
kets. Our approach also provides DNSPs with network support
flexibility of DER which can be leveraged to either increase
network throughput for market services or postpone network
augmentation. This study outlines our initial findings from
Project Converge1—a comprehensive real-world trial involving
1000 active customers (the largest participant cohort in Australia)
located in the Australian Capital Territory. Within, we discuss
the challenges we have encountered, the opportunities that have
arisen, potential avenues for future expansion, and the invaluable
insights gained during the pre-trial phase of the project.

Index Terms—Co-optimisation, Coordination, DER, DOE,
FCAS Market, Network Support, Renewable Energy, SOE.

I. INTRODUCTION

Distributed energy resources (DER) are at the forefront of
the world’s swift transition towards renewable energy. The
replacement of centralised fossil fuel-powered generating units
with DER is largely a positive development, but it also creates
new challenges for both distribution network service providers
(DNSPs) and electricity markets. Upgrading networks to keep
up with the rapid uptake of DER can be challenging for
DNSPs, or in some cases, (especially along the transition) not
economically viable. For the market operators, securing the
system with enough reserves in the absence of conventional
large-scale units is a difficult task.

Our approach to tackling the aforementioned challenges
builds on the concept of the dynamic operating envelope
(DOE) [1]. DOEs are convex regions that serve as protective
rail guards within distribution networks, ensuring customers
operate within the network’s safe operational range. While en-
suring network safety, DOEs are calculated purely for network
safety and thus might be too limiting to enable market partici-
pation of DER. Furthermore, given the widespread adoption of
rooftop PV systems, specific segments of the network might
already have encountered voltage or thermal constraints (as

1https://arena.gov.au/projects/project-converge-act-distributed-energy-
resources-demonstration-pilot/

discussed further in our results section). Nonetheless, DOEs
cannot resolve these pre-existing network issues.

To solve the challenges encountered by DOEs, in this paper
we extend the literature in two dimensions, 1) we shape
the operating envelopes, called hereinafter shaped operating
envelopes (SOE), to increase DER market participation and 2)
we propose a new functionality within which customers (or ag-
gregators on behalves of the customers) submit generation and
load network support offers to DNSPs. Such offers are used
either to resolve networks’ pre-existing issues or to increase
market participation of DER. Without loss of generality, this
paper studies the market participation of DER in generation
and load energy markets as well raise and lower 6-second,
60-second, and 5-minute frequency control ancillary service
(FCAS) markets. Therefore, together with network support
offers, we co-optimise to obtain SOEs across 10 different
revenue stream. We position this study within the literature
and highlight our contributions in following section.

II. RELATED WORK

With the growing market share of coordinated DER, the
role of DNSPs is expanding to allow the participation of
customer/aggregators to energy and reserve markets. In this
new paradigm, ensuring safe operation of the grid as well
as appropriate / economic plans to upgrade network infras-
tructures are becoming more challenging. Optimal power flow
(OPF)-based analysis, either central or distributed, have been
suggested to resolve the operation challenges [2]. Yet they
often struggle to scale to realistically-sized networks, require
direct access to all DER assets, e.g., [3], or face computational
/ convergence issue, e.g., [4]–[7]. In addition, these approaches
are effective when there is a well-defined operating point,
whereas a known operating point may not exist when bidding
into energy and reserve markets; this is because the operating
point can vary depending on market output and whether
reserves services are activated.

Different frameworks such as introducing new local electric-
ity market within distribution network that coordinates DER
biding with distribution networks in [8] has been suggested.
A local flexibility market has been proposed in [9] and
[10]. However, coordinating local markets within distribution
networks prior to market clearing process of the overarching
market is not only complicated but requires a structural change
to the existing market.
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To tackle the aforementioned challenge, the concept of flex-
ibility regions has emerged, calculated either at the substation
level, as evidenced by Capitanescu et al. [11], Contreras et al.
[12], and Silva et al. [13], or the distribution network node
level, as demonstrated by Mahmoodi et al. [14], Petrou et
al. [15], [16], and Nazir et al. [17]. Approaches aiming to
determine a flexibility region at the root often do so by solving
OPFs problems under distinct power factors or load/generation
scenarios. However, in practical power system operation, the
primary objective (second to feasibility) is to minimise the
operation cost and not maximise such operating regions.

Contrary to this objective, [11], and [12] can prioritise
more expensive (and less efficient) DER over cheaper (and
more efficient) alternatives if such an allocation results in a
larger operating region at the interconnection of DNSP-TNSP.
We further discuss this in the result section. To counteract
this, works such as [13] offer operating regions along with
associated costs that the market could utilise to dispatch the
distribution network more efficiently. However, these works
still require DNSPs to centrally control all DER to deliver the
operating point within the feasible region. In many jurisdic-
tions, the DNSP does not have control over consumer-owned
DER nor can operate them. Instead, consumers participate in
the market through an aggregator that is not affiliated with the
DNSP.

The works based on dynamic operating envelopes (DOEs)
[14]–[17] can solve the above issue by providing agency for
aggregator to operate their assets. However, current DOEs are
calculated to solely ensure network safety, thus they might
limit market participation of DER. We extend the existing
DOE literature to shaped operating envelopes (SOE). SOEs
allocate network capacity based on market benefit of DER
to maximise social welfare. To provide a balance between
increasing market share of DER and treating residential cus-
tomers fairly, we provide a built in fairness index that allows
DNSP to increase DER market benefit while ensuring every
customer is allocated a minimum envelope.

To reduce investment costs for DNSPs, we introduce a
novel functionality termed “network support” within the SOE
engine. This feature has been successfully tested in the Con-
verge project within different feeders with real-world data.
Through the network support mechanism, aggregators submit
their price offers along with generation (injection) or load
(consumption) network support for each kWh to DNSPs.
Subsequently, DNSPs can strategically dispatch this network
support. The objective is two-fold: either to avert the necessity
for network augmentation or to amplify network capacity,
thereby facilitating increased DER integration into the market.

To incorporate uncertainty effect, such as those around
market prices, background load and PV power, we employ
a model predictive control framework, wherein our approach
is rerun every 5 minutes. By leveraging the most current
uncertainty data, we derive more representative operating en-
velopes for customers. This approach ensures the adaptability
of our methodology to evolving circumstances, enhancing its
effectiveness in practical applications.

In summary, compared to approaches centred on attaining
the largest feasible operating region at the root of the distri-
bution network, such as those presented in [11], [12], SOEs
exhibit a distinct advantage by offering enhanced agency to
aggregators as well as providing the market operator with
the cost associated with dispatching DER. Unlike [11]–[13],
our approach does not require a DNSP to directly control /
operate DER to deliver DER market commitments. In con-
trast to DOE studies [14]–[18], SOEs demonstrate a more
efficient allocation of network capacity. They strike a balance
between advocating fairness and boosting the market share of
coordinated DER. Furthermore, the unique network support
feature inherent to SOEs empowers DNSPs to defer network
augmentation, thus contributing to cost savings and optimising
grid operation. The comprehensive integration of these features
renders SOEs a robust and innovative framework for managing
the challenges arising from DER integration into distribution
networks.

A. Contributions

In the following we present our novel contribution in terms
of concept, algorithm and experiments.

Concept: Our principal innovation is the introduction of
shaped operating envelopes – a novel extension of dynamic
operating envelopes. SOEs refine DOEs by more accurately
capturing consumer behaviour, thereby optimising the utilisa-
tion of existing network capacity. Additionally, we introduce
the concept of a network support feature within SOEs. This
feature functions as a local market within the distribution net-
work, empowering DNSPs to postpone network augmentation
/ facilitate secure market participation of DER.

Algorithm: Our approach is methodically structured as a co-
optimisation problem, wherein we tackle the joint optimisation
of shaped operating envelopes and network support. This
formulation incorporates all network constraints and adheres
to the specific bidding prerequisites of market and aggregators.

Real-world Experiments: We implement our approach on
real-world networks in Australia with more that 1000 cus-
tomers and compare the effectiveness of our approach with
the available alternatives in the literature. To the best of our
knowledge, this project marks the most extensive endeavour
of its kind conducted in Australia.

III. OVERVIEW

Project Converge is exploring an approach to calculating
operating envelopes that factors in and integrates aggregator
/ customer preferences, the value of the wholesale market
services they offer, and network support. The outcome is what
we refer to as shaped operating envelopes, to reflect the fact
that the operating envelopes are shaped by these values that
go beyond pure network constraint management.

Every 5 minutes the DNSP runs the SOE-engine prior to
the wholesale market dispatch on a receding horizon manner.
This allows aggregators and network to use their most recent
uncertainty realisation and minimise the errors associated with
uncertainty. Our receding horizon implementation also allows
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using the latest SOE and accounts for FCAS realisations in
every 5 minute interval. In this paper, aggregators participate
in both the energy and FCAS markets, which have different
action times— i.e., 6 seconds, 60 seconds, and 5 minutes.
Within the optimisation process, we ensure that aggregators
can fulfil the FCAS requirements in the next 5 minutes2. SOE
calculation is served as a pre-evaluation phase for aggregator
bids to ensure that they comply with the distribution network
constraints. The SOE framework has three key steps as pre-
sented in Figure 1. The steps are:

1) Aggregators send their network support availability, mar-
ket bids, and customer contributions to the DNSP.

2) The DNSP computes shaped operating envelopes and
network support requirements, and communicate them
back to the aggregators.

3) Aggregators submit their final rebids to the market.

DNSP/DSO Aggregators Market

3
2

1

Fig. 1: Information flow for the key steps of SOE framework.

A. Step 1: Bids and Contributions

This first step is where aggregators inform the DNSP of
their intentions and capabilities. The aggregator provides their
day-ahead wholesale market bids and rebids to the DNSP
(before sending them to market). Alongside these market-
related inputs, aggregators also provide details regarding their
network support availability. Each aggregator also sends a
plan for how their customers individually will contribute to
delivering the offered market services. For each NMI (National
Meter Identifier) this plan is made up of:

• Capacity contribution to each market and network support
bid band; and

• Forecast uncontrolled consumption / production (+ op-
tional confidence interval).

This information allows the DNSPs to effectively disag-
gregate the wholesale bids, from National Electricity Market
(NEM) regions down to the LV distribution network level,
enabling a more targeted optimisation of the envelopes to meet
constraints within the distribution network.

B. Step 2: Envelope Calculation

At this step, the DNSP solves an optimisation problem
to constrain the wholesale bids of aggregators and allocate
operating envelopes for customers. This is done by solving a
specially formulated OPF problem. We refer to this calculation

2If aggregators participate in different markets cleared at different
timescales, our model would need modification to accommodate such situ-
ations.

as shaping the bids and operating envelopes, with the outputs
being network support requirements and shaped operating
envelopes.

Using wholesale market pre-dispatch prices, this calculation
selects a subset of aggregator bids that remain compliant
with network constraints. This DER coordination process is
to maximise the following objectives:

• Expected value of the bids to the wholesale market, after
accounting for any network support costs; and

• Similarity of envelopes across NMIs of similar type.
This is a multi-objective problem that in practice is solved

by weighting the importance of these two objectives. At times
the objectives can be in conflict, so it will be up to the DNSP
to set an appropriate weighting between them, possibly under
the direction of the regulator.

As part of this calculation, distribution network support
instructions may be provisioned for customers where this will
improve the objective. These instructions are a redirection of
a part of the customer’s energy market bid capacity toward
network support (that will be provided irrespective of the
energy market outcome). This is a form of short-term network
support that is either compensated at one of several market-
derived rates or based on pre-negotiated rates. The cost of this
network support is factored into the SOE calculation.

The resulting shaped operating envelopes, and network
support are communicated back to the aggregator.

C. Step 3: Final Rebids

As a final step, the aggregator submits their final rebids
for the upcoming dispatch interval to the wholesale market.
In theory, the shaped rebids calculated by the DNSP could
be forwarded to Australian Energy Market Operator (AEMO).
Alternatively, an aggregator can independently calculate their
final rebids. In order to avoid manipulation, the resulting rebids
must be consistent with the SOEs and the original bids DNSP
based its calculation on.

The rest of this paper is organised as follows. Section
IV provides the detailed design and implementation of SOE
and network support. Section V presents the benchmark ap-
proaches utilised to assess the effectiveness of our proposed
approach. Section VI reports and discusses our results. In
Section VII, we conclude this paper and discuss the challenges
encountered during the real-world implementation and share
insights gained, as well as outline potential future extensions.

IV. DESIGN AND IMPLEMENTATION

The overarching problem can be formulated in its generic
form as follows:

min f(x) (1a)
gi(xi, yi) ≤ 0 ∀i ∈ N (1b)

hn(yn) ≤ 0 ∀n ∈ Ωnmi (1c)

In the following, we will begin by introducing network con-
straints denoted as g. Subsequently, we will discuss constraints
at each NMI represented by h, and finally, we will present the
objective function f .
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A. Network Model

Notations: We introduce a tree graph denoted as G = {N ∪
{0},L} to depict a radial distribution network comprising n+1
nodes and a set of L lines interconnecting these nodes. The
node 0 designates the substation node and maintains a constant
voltage. Let N := {1, ..., n} represent the index set of nodes.

For each bus i ∈ N , we employ pi and qi to represent net
generation (+) or load (-). The actual real and reactive power
flows at node i are denoted as Pi and Qi, respectively. Let Vi

denote the magnitude of the complex voltage at bus i, where
V 2
i is represented by Ui. In the case of each line (i, j) ∈ L,

the parameters Ri,j , Xi,j , and Zi,j =
√
R2

i,j +X2
i,j are

used to signify its resistance, reactance, and impedance, while
li,j represents the squared magnitude of the complex branch
current from bus i to j. The Distflow equations can be
formulated as follows:

Pi = Pj + pj −Ri,j li,j , (2a)
Qi = Qj + qj −Xi,j li,j , (2b)

Uj = Ui + 2
(
Ri,jPj +Xi,jQj

)
− Z2

i,j li,j (2c)

P 2
j +Q2

j = Uili,j (2d)

where (2a) and (2b) correspond to the equations for real and
reactive power balance, respectively. The voltage at each node
is computed using (2c). The expression for the complex power
flowing through each line is lastly provided in (2d).

In order to prevent infeasible solutions within the trial, we
treat the voltage (Ui) and thermal limits (li,j) as soft con-
straints. To do so, we introduce auxiliary variables Uaux

i ∈ R+

and Laux
i,j ∈ R+ as well as the following constraints for voltage

and transformer thermal limits, respectively.

Uaux
i ≥ Ui − U i ∀i ∈ N (3a)

Uaux
i ≥ U i − Ui ∀i ∈ N (3b)

Laux
i,j ≥ Li,j − imax

i,j
2 ∀i, j ∈ T (3c)

These auxiliary variables are incorporated into the objective
function with a penalty parameter in Section IV-C. By em-
ploying a vector representation for network variables denoted
as x = [P,Q, I, U, Uaux, Laux], and nodal injection variables
as y = [p, q], we express the OPF constraints as g(x, y) ≤ 0.
It’s important to note that due to the significant alteration in
the network’s operating region during the provision of FCAS
in both raising and lowering scenarios, we utilise two sets
of OPF constraints to ensure that the network constraints
remain valid even in the most extreme edge cases. Employing
superscripts + and − to signify the most extreme scenarios for
raising and lowering reserve services, respectively, the network
subproblem can be succinctly summarised as follows:

g+(x+, y+) ≤ 0 (4a)

g−(x−, y−) ≤ 0 (4b)

It is worth mentioning that to ensure the tractability of
trial, especially within the 5 minute time interval, we also
employed the linear version of OPF model (2a)–(2d), known

as “LinDistFlow”. In line with [19], LinDistFlow model
is achieved by ignoring the loss terms in (2a)-(2c) and the
nonlinear equation (2d). We discuss the accuracy of this
simplification in Section VI.

B. Constraints at each NMI

Notations: Each aggregator denoted as a ∈ Ωa manages
a group of customers Ωan . Let egb,n, elb,n, f l

b,n, fr
b,n, sgb,n,

and slb,n denote the energy generation, energy load, FCAS
lower, FCAS raise, network support generation, and network
support load offers of customer n ∈ Ωan within bid band
b ∈ Ωb3. Please note that the FCAS market in Australia is
rarely activated in the event of a contingency. Consequently,
we have not directly modelled the operation of FCAS within
our model. If FCAS is activated in a 5 minute interval, we take
it into account through our receding horizon implementation
for the next optimisation. We employ the placeholder variable
zb,n to denote these nodal bid parameters. We introduce binary
variables: ug

b,n, ul
b,n, ufl

b,n, ufr
b,n, u

sg
b,n, and uslb, with the

placeholder variable ub,n, which are used to calculate the bid
aggregate at every NMI n.

Every individual costumer is associated with a unique NMI
n and has the following parameters / aggregate bid value :

• Reservation interval: every customer has an associated
reservation interval [Rl

n, R
u
n], which delineates the lower

and upper bounds of the customer’s baseline load. The
utilisation of an interval accounts for the inherent un-
certainty in customer demand. It’s worth noting that
this interval can comprise a single value if there is no
uncertainty associated with customer’s demand.

• Nodal bid variables: for every n ∈ Ωan , we define:
– energy market load / generation bids: El

n/E
g
n ∈ R.

– FCAS lower / raise bid: F l
n/F

r
n ∈ R+.

• Network support: customers can offer network support
load / generation, shown by Sl

n ∈ R+ / Sg
n ∈ R+.

We use the place holder variable Zn for El
n, Eg

n, F r
n , F l

n, Sl
n,

Sg
n an the following constraints to calculate the aggregate bid

for every NMI n. .

Zn =
∑
b

zb,n × ub,n (5a)

g(El
z, E

g
z , F

l
z, F

r
z ) ≤ 0 (5b)

Equation (5a) derives the admissible offers of aggregator a4 for
each NMI, while considering any interdependency constraints,
modelled via (5b), known as trapezium in the NEM. We next
limit these offers within the operating envelopes as follows:

Sn = Sg
n − Sl

n, (6a)

Ol
n ≤ Rl

n + Sn − El
n − F l

n (6b)
Ou

n ≥ Ru
n + Sn + Eg

n + F r
n (6c)

3It’s important to note that our approach is designed based on the NEM
framework, wherein participants submit bids to the market across up to 10
price bands.

4Notice that these variables have an implicit index a to account for the
aggregators which for now we have omitted to increase readability.

23nd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



5

Equation (6a) computes the overall network support for each
customer, which will be utilised in determining their envelope
values. The lower and upper bounds of these envelopes are
established through (6b) and (6c).

In addition, shaped operating envelopes have a simple built-
in fairness index. Our fairness objective strives to increase the
size of the smallest envelope, ensuring that no customer is left
with no network access. Notice that, if our primary concern
is fairness, all customers will ultimately will get envelopes of
equal sizes. To incorporate this, we introduce variables Ol and
Ou, along with constraint 7, applicable to all n ∈ Ωan :

Ol ≤ Ol
n Ou ≤ Ou

n (7)

C. Objective Function

The objective function is composed of four distinct terms,
encompassing the following objectives: 1) maximising the
aggregator’s benefit in the market, 2) maximising fairness, 3)
minimising network support costs for the DNSP, and 4) min-
imising the breach of soft constraints through the application
of penalty measures. This can be written as follows:

max
(
(1− µ)CM + µCF − CP − CNS

)
(8)

The fairness index µ, ranging between 0 and 1, serves as a
means to strike a balance between enhancing the market share
of DER and ensuring an equitable distribution of network
capacity among all customers.

The market benefit CM represents the difference between
revenue and costs. The revenue is calculated using pre-dispatch
prices, which are forecasted prices provided by AEMO. These
prices are denoted as Π = [Πg,Πl,Πfr ,Πfl ]. Additionally, we
incorporate aggregator network secure bids, denoted as:

E =

[ ∑
n∈Ωan

Eg
n,

∑
n∈Ωan

El
n,

∑
n∈Ωan

F r
n ,

∑
n∈Ωan

F l
n

]
(9)

The cost is determined based on the initial offers of ag-
gregators for each bid band, denoted as capacity: eb,i =
[egb,n, e

l
b,n, f

r
b,n, f

l
b,n], and price: πb = [πg, πl, π

fr , πfl ]. These
values are further influenced by the binary decision variables
ub,n = [ug

b,n, u
l
b,n, u

frb, n, uflb, n]. In other words, the calcu-
lation of cost takes into account the specified offers for capac-
ity and their corresponding prices, along with the decisions
made through the binary variables. Finally, the market benefit
can be obtained as follows:

CM =

ΠE −
∑

i∈Ωai

∑
b∈Ωb

eb,iπbub,i

 (10)

Considering the minimum-sized envelopes Ol and Ou, the
fairness component CF can be articulated as follows:

CF = Ol +Ou (11)

The first term within the objective function seeks to max-
imise overall social welfare, while the secondary term con-
tributes to enhancing fairness in the envelope calculation
process. The parameter µ represents a user-defined value that

dictates the priority assigned to either objective. We posit that
the initial segment of the objective function (µ = 0) inherently
embodies an equitable aspect, as it aligns with the overarching
objective of electricity markets, which is to optimise social
welfare on a global scale. Nonetheless, our approach extends
the capability for DNSPs to equitably address low voltage (LV)
customers if they choose to do so.

The penalty associated with violation of soft constraints is
added with a penalty parameter µ as follows:

CP = µ

∑
i∈N

Uaux
i +

∑
i,j∈T

Laux
i,j

 (12)

Finally, given network support cost at every NMI, i.e., πNS
b,n =

[πns,g
b,n , πns,l

b,n ], the nodal network support capacities at band b,
i.e., sb,n = [sgb,n, s

l
b,n] as well as the binary decision variables

us
b,n = [u

sg
b,n, u

sl
b,n], can be written as follows:

CNS =
∑

n∈Ωan

∑
b∈Ωb

πNS
b,n sb,nu

s
b,n (13)

Notice that the all values above has written for a single
aggregator and thus the index a has been omited to increase
readability.

V. BENCHMARK

In this section, we introduce the benchmark approaches that
we employ to assess and contrast the performance of our
method. These approaches are dynamic operating envelopes
that are generated using optimal power flow and each possess
distinct characteristics as described in the following.

Equal-width (EW): This approach involves assigning en-
velopes of the same size to all customers, regardless of whether
they own DER or the capacity of their DER. While this method
is straightforward and does not require any customer infor-
mation, it may result in a sub-optimal allocation of network
capacity. This is because some customers may have no DER
or have DER with varying capacities, and assigning them the
same envelope size may lead to an inefficient distribution of
network capacity.

Proportionally Equal-Width (PEW): This approach involves
allocating envelopes that are proportional in size to customers’
installed DER capacity. This method requires access to the
DER capacity of every customer and enables more effective
allocation of network capacity amongst customers.

Maximising Feeder Throughput (MFT): This approach aims
to increase the throughput of the distribution network by
generating envelopes that prioritise customers located closer
to the root of the network. Unlike proportionally equal-width
envelopes, MFT does not provide proportional equal envelopes
and while some customers can have envelopes equal to their
installed DER capacity, others (especially those located at end
nodes) might get little or no envelope capacity.

Fair MFT: This approach is designed to optimise the
throughput of the system while ensuring that all customers are
treated fairly. Specifically, this approach generates envelopes
that maximise the feeder’s throughput while (similarly to our
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approach) ensuring that the smallest envelope in the system is
wide enough. This is achieved by striking a balance between
maximising throughput and increasing the size of the smallest
envelope in the network.

VI. RESULTS

This section evaluates the effectiveness of our approach
from different aspects, including accuracy in Section VI-A,
data requirement in Section VI-B, customer flexibility in
Section VI-C, aggregator benefit in Section Section VI-D,
problem size and computation time in Section VI-E.

For our analysis, we employed real and reactive power
data from customers’ smart meters, specifically recorded for
the month of February 2022. For the offline simulations,
we generated aggregators’ energy and reserve bids using the
historical data from Lake Bonney Battery (LBB) and Ballarat
Battery (BAL) grid-scale batteries, as reported by AEMO5.
Capacities and trapeziums (bid feasible dispatch regions) were
proportionally scaled according to the summed inverter capac-
ity of aggregators at each node.

A. Power Flow Analysis

It is important to note that we have developed our SOE
engine flexibly such that DNSPs can plug in either non-linear
or linear OPF model. As network size increases, adopting
a linear OPF becomes more favourable due to tractability
considerations. In this section, we evaluate the error asso-
ciated with our linear model using exact power flow solved
through Newton Raphson’s method. To have a more reliable
assessment, we have done this experiments across 5 different
MV-LV feeders, ranging from 1458 to 2826 nodes. We utilise
the actual customer load data for the month of February 2022,
with a 30-minute time discretisation, i.e, 1344 scenarios (28
days × 48 time intervals).

Figure 2 plots the voltage envelope obtained by the exact
and linear approaches across all 5 feeders. In our 1,344 real-
world scenarios, we observed a maximum error of 0.6% with
an average error of 0.002% for the linear model, compared
to exact power flows. It is worth mentioning that the errors
within the linear model overestimates true voltages, which
implies that the actual voltages might be marginally lower
than those predicted by the linear model. This overestimation
is acceptable when considering the upper voltage bounds;
however, it may induce infeasibility in the lower voltage
bounds. To avoid infeasible results, we increase the lower
voltage bounds of our linear model by 1% (from [0.94, 1.1]
to [0.95, 1.1]). As a result of this modification, even for the
minimum linearly obtained voltages, the exact voltages stay
within the acceptable bound of [0.94, 1.1] in our experiments.

B. Required Information

Table I presents the required information for various DOEs
and our SOE engine. It is worth noting that our SOE engine
is capable of functioning with different sets of information,
depending on the availability of data. To study the effect of

5https://nemweb.com.au/Reports/Archive/Yesterdays Bids Reports/

Fig. 2: Voltage envelope Feb. 2022: exact vs linear

SOE with different input data, we study the effect of 5 different
cases A-E, each with a unique set of input data as reported in
Table I. If an information is ticked, that model includes the
associated data in the input.

TABLE I: The required information for different DOEs / SOEs

Approach
Information

Offers DER
Capacity ReservationNS Energy FCAS

DOE

EW – – – – ✓
Fair – – – ✓ ✓

PEW – – – ✓ ✓
MFT – – – ✓ ✓

SOE

A – – – ✓ ✓
B ✓ – – ✓ ✓
C – – ✓ ✓ ✓
D – ✓ ✓ ✓ ✓
E ✓ ✓ ✓ ✓ ✓

The “equal-width” (EW) approach requires minimal infor-
mation, i.e., only requires customer reservations forecasts.
Other DOEs require additional information on the behind-the-
meter technologies (i.e., installed DER capacity) to calculate
the envelopes. Other than the “installed DER capacity” and
“reservations”, SOE needs offers from aggregators, including
network support, as well as energy and FCAS market offers.
However, SOE engine is designed to work with or without
these information. We generate 5 sets of different inputs shown
by A–E, each lacking some types of information, to evaluate
the performance of SOE under different set of information.

C. DOE and SOE for customers

Figures 3 and 4 plots DOEs for two randomly selected
customers, each served by a different aggregator. As shown in
the figures, the DOEs obtained for each customer are different.
Since aggregators do not provide any bidding information,
the differences in DOEs are purely due to customers network
connection and the type of their installed DER. Also as plotted
in Figure 4, the envelope for the injection during the day where
there is PV and high voltage issues in the network has shrieked
compared to evening where there is need for injection.

Fig. 3: Different DOEs: a customer of Aggregator 1
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Fig. 4: Different DOEs: a customer of Aggregator 2

Contrary to DOE, SOE takes into account aggregators’
bidding intentions to optimise for the most efficient operating
envelopes. Figures 5 and 6 present SOEs for the same cus-
tomers as in Figures 3 and 4. The inclusion of aggregators’
market / network support intentions has led to more efficient
envelopes that generates higher aggregate benefits. Information
on the financial aspect of SOE and DOE is provided in the
next section.

Fig. 5: Different SOEs: a customer of Aggregator 1

Fig. 6: Different SOEs: a customer of Aggregator 2

D. Cost benefit: SOE vs. DOE

Table II provides information on envelope capacity, market
accepted capacity and total market benefit obtained by every
envelope. Envelope capacity is sum of the raise and lower
provided by all envelopes. This might not be a reliable
indicator of the effectiveness of each approach, since large
envelopes can be allocated to customers who have no need
for. In contrast, the raise and lower market accepted power is a
better indicator of efficiency since it shows how effectively the
envelopes were allocated to customers who wish to participate
in (and be dispatched by) the electricity market.

Table II provides information on envelope capacity, market-
accepted capacity, and the overall market benefits achieved by
each envelope. Envelope capacity represents the summed raise
and lower capacity provided by all envelopes. However, it may
not be a good measure of envelope efficacy, as large envelopes
can be assigned to customers who do not wish to participate
in the market. In contrast, the market-accepted capacities is a
better indicator of efficiency, as it shows how effectively the
envelopes allowed market access.

The total benefit is the benefit obtained by all aggregators
through participation in the electricity market, including en-
ergy, 3 FCAS raise, and 3 FCAS lower markets. The results,
presented in Table II, indicates that SOE E is capable of
achieving outcomes comparable to those when network is
ignored (i.e., infinite network assumption). Note that Table II
only report the benefit for a single day, yet we have seen the
same performance, i.e., SOE outperforming DOE over longer
time period such as a month. Further details are provided in
Converge Project report6

It is worth mentioning that SOE that includes all the
information, i.e., SOE E, obtains approximately 20% higher
that the best DOE under study, i.e., DOE Fair.

TABLE II: Envelop Capacity and Total Benefits on 01/02/2022

Approach Envelope (MW) Market (MW) Total
Benefit ($)Raise Lower Raise Lower

DOE

EW 101.18 59.21 42.99 25.31 1116.18
Fair 249.87 203.33 153.51 104.70 3681.26

PEW 92.76 62.22 63.15 43.18 1597.43
MFT 249.87 203.33 153.51 104.70 3680.18

SOE

A 249.87 203.33 153.44 104.68 3679.44
B 228.01 164.89 152.19 116.93 3739.87
C 227.48 165.79 152.15 116.61 3895.70
D 177.85 184.51 142.63 130.85 4105.78
E 180.11 190.36 152.36 133.43 4421.13

No network +∞ +∞ 190.70 153.67 4660.73

E. Problem size: SOE vs DOE

Table III illustrates the problem size and computation times
for DOE and SOE calculation. All experiments were con-
ducted using Pyomo in Python on an 8-core 64-bit, 8GB
PC. Given the 5-min market clock, these computational time
provide aggregators enough time to update their decisions.
Since our model is linear, it can scale to realistically-sized
networks.

TABLE III: Problem size and solve time (a single time step)

Approach Problem Size Time (s)# Variables # Constraints
DOE 16,664 16,614 0.97
SOE 110,619 54,549 2.42

VII. CONCLUSION, CHALLENGES, FUTURE DIRECTIONS

This paper illustrated the importance of optimising various
aspects to enhance the integration of DER, get the most out of
the electricity market while supporting the grid. We reported
our findings during the pre-trial phase of the Converge project
in which we utilise real-world MV-LV feeders and consumer
data. Our real-world experiments revealed that, on average,
SOE can yield 20% higher benefits for aggregators compared
to DOE. Despite the fact that SOE requires a longer solving
time, 2.4 seconds as opposed to 0.97 seconds for DOE (due to
solving a more sophisticated optimisation problem), it remains
well below the 5-minute market rebid limit in the NEM.

6Project converge available at https://arena.gov.au/projects/project-
converge-act-distributed-energy-resources-demonstration-pilot/
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The project has also encountered its fair share of challenges,
shedding light on areas that demand attention in the future.
These include the need for enhanced coordination between
stakeholders, especially between DNSPs and aggregators. Ad-
dressing issues related to obtaining granular NMI-level data,
will be pivotal for future projects seeking to optimise DER
participation. The evolution of commercial and contractual
requirements in network support procurement and settlement
remains an area for exploration.
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