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Abstract—Hybrid Energy Systems (HES), amalgamating re-
newable sources, energy storage, and conventional generation,
have emerged as a responsive resource for providing valuable
grid services. Subsequently, modeling and analysis of HES have
become critical, and the quality of grid services hedges on it.
Currently, most HES models are temperature-agnostic. However,
temperature-dependent factors can significantly impact HES
performance, necessitating advanced modeling and optimization
techniques. With the inclusion of temperature-dependent models,
the challenges and complexity of solving optimization problems
increase. In this paper, the electro-thermal modeling of HES is
discussed. Based on this model, a nonlinear predictive optimiza-
tion framework is formulated. A simplified model is developed
to address the challenges associated with solving nonlinear
problems (NLP). Further, projection and homotopy approaches
are proposed. In the homotopy method, the NLP is solved by
incrementally changing the C-rating of the battery. Simulation-
based analysis of the algorithms highlights the effects of dif-
ferent battery ratings, ambient temperatures, and energy price
variations. Finally, comparative assessments with a temperature-
agnostic approach illustrate the effectiveness of electro-thermal
methods in optimizing HES.

Index Terms—Hybrid energy systems, energy storage, solar
PV, temperature-dependent modeling, predictive optimization,
homotopy, projection

I. INTRODUCTION

The imperative to decarbonize the electric power sector and
fortify grid resilience has sparked heightened interest in the
seamless integration of renewable energy sources [1]. Dis-
tributed generation (DG) localized generation and enhanced
grid robustness [2]. However, the inherent intermittency of
renewable sources poses significant challenges to grid stability
and reliability. Addressing these limitations requires a trans-
formative shift towards adopting cutting-edge Hybrid Energy
Systems (HES), intelligently combining diverse energy sources
and advanced storage technologies [3]. Through precise or-
chestration of energy source integration, these HES exhibit
remarkable potential in mitigating the drawbacks associated
with DG and microgrids, thereby ensuring reliable power
[4]. Through a cohesive approach that harnesses renewable
energy sources alongside state-of-the-art energy storage, HES
offers enhanced grid stability, improved energy management,
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increased resilience, flexibility, reduced emissions and cost-
effectiveness through optimized energy management, lever-
aging diverse energy sources and storage technologies with
greater energy security over DG and micro-grids [5], [6].

As the number of HES technologies increases, the tech-
nology gap associated with their analysis becomes more
significant [7]. This significance is accentuated under extreme
weather conditions, where the temperature dependence of
various HES components becomes crucial. The 2021 winter
storm Uri, Texas proved a fantastic revenue opportunity for
batteries, enabling some systems to return multiples of their
capital installation costs in a single year. The battery resources
with the highest and lowest revenue differed by two primary
factors: bidding optimization and time in the market [8].
Similarly, the September 2022 California heat wave high-
lighted batteries’ substantial role by contributing a significant
portion of their capacity to the market, impacting regulation
dynamics. Operating constraints, particularly those tied to the
state of charge (SoC) and related factors, emerge as pivotal
under exigent circumstances like extreme weather [9]. These
variables collectively underscore the disproportionate revenue
impact experienced amidst extreme weather conditions.

Many battery manufacturers ignore ambient weather’s in-
fluence on performance, opting for large, insulated enclo-
sures to mitigate environmental effects using HVAC systems.
As demand for fast-charging batteries rises, HVAC com-
plexity grows. Consequently, battery dispatch scheduling be-
comes highly temperature-dependent and must consider HVAC
performance and power consumption. To enable predictive
scheduling in such systems, temperature-dependent models are
crucial. These models, tailored to high-rate discharge batteries,
ensure efficient utilization amidst varying weather conditions,
aligning battery performance with evolving energy system
needs [10]. Optimal scheduling of HES using temperature-
dependent models entails several challenges, such as model
complexity, the introduction of non-linearities into the sys-
tem’s behavior, mixed integer nature due to discrete operating
modes, increased dynamic nature, and limited data associated
with thermal variables.

Numerous contemporary studies have explored solutions
to these problems. In [11], a machine learning-based al-
gorithm was proposed to optimize the HES. However, this
approach does not prevent the possibility of simultaneous
charging and discharging (SCD) in the battery. In [12], the
emergence of suboptimal solutions due to SCD has been
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discussed and a convex battery model is introduced to ensure
optimal outcomes. Notably, this model is applicable only if
battery power is not exported back to the grid. In [13], a
weighted battery power term was introduced into the objective
function to mitigate SCD in multi-period distributed energy
resources (DER) dispatch, aiming at objectives such as voltage
regulation, line loss minimization, and power reference point
tracking. A non-linear IVQ model for battery optimization is
proposed in [14], where a cubic spline (a piecewise polynomial
function) is fitted to experimental data from a Nissan Leaf
cell battery. This process aims to model losses and establish
relationships between voltage, current, and charge. However,
since this model is specifically tailored to the characteristics
of a particular battery, its applicability to different battery
types remains uncertain. Most of these models do not account
for thermal constraints limiting battery charge and discharge.
Temperature effect and thermal impact on the performance of
Li-ion batteries are detailed in [15]. Hence, a comprehensive
electro-thermal model was developed that emphasizes the
physical attributes of the battery and associated losses [16].
Different electro-thermal battery models are presented and it
can be observed that battery system complexity increases with
thermodynamic considerations [17].

This paper discusses a temperature-dependent model for
HES based on physical dynamics. It formulates and analyzes
a non-convex, non-linear problem (NLP) for predictive HES
scheduling using temperature-dependent models. It introduces
a simplified mixed-integer problem to obtain the best solution
under simplified constraints while identifying the bounds of
the objective. However, this simplified solution may not guar-
antee feasibility in the original NLP. Therefore, a projection
algorithm is proposed to find the closest feasible NLP solution
to the best solution obtained from the simplified model.
Additionally, an incremental homotopy algorithm is introduced
to ensure the best NLP solution over the battery’s C-ratings.
The paper presents various case studies demonstrating the
performance of both the NLP and simplified HES models,
along with the projection and homotopy algorithms. Further-
more, a temperature-agnostic HES model has been used and
compared with the original NLP model’s solution to assess
its dispatch schedule’s feasibility. The predictive optimization
has been stress-tested against the negative energy prices. The
PV curtailment approach has been integrated into problem
formulation to avoid the loss of revenue during negative
pricing.

The structure of the paper is given as: Section II and
Section III, detail HES and its subcomponent models including
temperature dependencies, respectively. Section IV formulates
a revenue maximization problem and discusses associated
challenges. Section V presents performance comparisons of
HES models under different conditions. Section VI provides
the paper’s conclusion.

II. HYBRID ENERGY SYSTEM DESCRIPTION

A HES represents an amalgamation of energy generation,
storage, and conversion assets whose coordination achieves

desired operational objectives. For example, HES applications
can range from GW-scale multi-energy systems that leverage
waste heat from thermal generators to improve electrolyzer
production to electricity-only, colocated battery+PV off-grid
microgrids to multi-locational virtual power plants (VPPs) [4].
These hybrid PV+battery systems have the potential to reduce
costs and increase the energy output compared to separate PV
and battery storage systems of similar size. Today, PV+battery
HES are being deployed at an increasing rate and is the focus
of this paper [18].

The schematic of a PV+ battery storage HES is shown in
Fig. 1. The PV and battery storage systems are tied to the
grid through a power converter having part-load efficiency.
The part-load efficiency of the power converter depends on
the input DC power. The total power injected into the grid,
denoted as Phes, is calculated as the combined sum of PV
and battery power contributions, with the ambient temperature
dependency. In the figure, P c

batt and P d
batt represent charging

and discharging power respectively, while P dc
pv is the total dc

power output of the PV arrays with icell and vcell as dc currents
and voltages of each PV cell, respectively. Further details
regarding the electro-thermal battery model can be found in
the subsequent subsection as shown in Fig. 2.

Fig. 1: Schematic diagram of hybrid energy system.

III. TEMPERATURE-DEPENDENT HES MODELS

The paper focuses on optimizing accurate temperature-
dependent models for HES constituents, including PV, battery
storage, and inverters. These models pave the way for metic-
ulous fine-tuning of energy generation, storage, and distribu-
tion, thereby orchestrating effective energy management and
informed decision-making. The ensuing sections delve into the
temperature-dependent modeling intricacies of the HES sub-
components.

A. Power converter model

The power converter interfaces the HES sub-components
(PV and battery) with the grid, assuming a stiff grid voltage.
The relationship between the grid-side power P ac and the input
dc power P dc is determined by the part-load inverter efficiency
ηiv and it is given by [19]:

P ac(t) = ηiv(t)P
dc(t) (1a)

ηiv(t) =
ηmax

1 + e−γP dc(t)
, (1b)

where γ represents the gradient of the inverter’s efficiency
curve. The DC side of the power converter is connected to
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the PV and battery. It has been observed from the test results
presented in [20] that the inverter efficiencies typically do not
have a strong temperature dependence. Subsequently, the PV
and battery systems connected to the DC side of the power
converter are discussed.

B. The Photovoltaic (PV) model

One of the simplest and most popular PV model for system-
level studies, is based on the efficiency of the PV cells (ηcell)
and solar irradiance (SI(t)), which is given by [19]:

Pcell(t) = ηcellApvSI(t) (2)
where Pcell(t) represents the power generation from each cell,
and Apv is the area of PV cells in m2. However, this model
has limitations, notably due to the exclusion of semiconductor
physics, temperature impacts, and contact losses. It has been
used as a temperature-agnostic PV model in this paper. This
underscores the necessity for a more accurate PV characteriza-
tion model. These limitations can be addressed by building the
PV model from the cell level and expanding it to PV arrays.
For this work, an equivalent circuit model of PV has been
used [21], whose behavior can be described by:

icell(t) = isc(t)− I0

(
e38.9v

pv
oc (t) − 1

)
−
(
vpv

oc (t)

RP

)
(3)

where isc(t) is the short circuit current and vpv
oc (t) is the

open circuit terminal voltage, i.e., the photodiode voltage
when conducting. The constant value 38.9 is calculated at
300K operating temperature from the charge and Boltzmann’s
constant. RP is the parallel resistance denoting the shading
effect. Here, the isc(t) is proportional to the irradiance SI(t).
The voltage and power equations are given by:

vcell(t) = vpv
oc (t)− icell(t)RS (4a)

Pcell(t) = icell(t)vcell(t) (4b)
P g

pv(t) = (L M K) Pcell(t) (4c)
where RS is the series resistance denoting the contact losses,
L is the series connected modules per string, M is parallel
strings and K is the number of PV arrays. The PV output
power is sensitive to changes in temperature. The relation
between ambient temperature (Tamb) and PV cell temperature
(Tcell) is given by:

Tcell(t) = Tamb(t) +

(
(NOCT− 20o)

800

)
SI(t) (5)

where NOCT is nominal operating cell temperature when
Tamb = 20◦C and wind speed is 1 m/s. The temperature-
dependent power and voltage equations of PV cell are given
by [21]:

vpv
oc (t) = V std

oc [1− CVT(Tcell(t)− 25)] (6a)
Pcell(t) = icell(t)vcell(t)[1− CPT(Tcell(t)− 25)] (6b)

Here, CVT and CPT are temperature sensitivity coefficients for
voltage and power respectively. The V std

oc is the open circuit
voltage at standard temperature of Tcell = 25oC. The described
PV model is nonlinear due to the diode current and the bilinear
i− v relation to cell power. However, solar PV output is also
inherently variable, which can strain grid stability. When faced

with high PV generation, low demand, or negative energy
prices, PV curtailment can be employed as a solution [22].
PV curtailment can be achieved using a curtailment factor
βcur ∈ [0, 1]. For the total PV power generated P g

pv, the power
exported to the grid would be denoted as Ppv. Mathematically,
this relationship is expressed as follows:

Ppv(t) = βcurP
g
pv(t) (7)

Secondly, By adding batteries to PV installations to engender a
HES, energy can be stored during periods of excess generation
and discharged when needed. Thus, (partly) overcoming solar
PV’s intermittency, thereby enhancing the reliability, utiliza-
tion, and sustainability of HES.

C. The battery model

In the realm of battery modeling, a spectrum of approaches
graces the literature, encompassing both rudimentary approx-
imations and intricate physical precision. In the context of
HES applications, an ideal pursuit is a model that seamlessly
merges computational efficiency with versatility [23]. The
Energy Reservoir Model (ERM) is commonly used in system
level research. In this model, the battery’s SoC dynamics,
E(t) ∈ [E, Ē], depend on the charging and discharging power,
P c

batt and P d
batt, respectively. The ERM model is as follows [24]:

E(t) = E0 +
1

Ec

∫ t

0

(
ηbatt

iv P c
batt(τ) +

1

ηbatt
iv

P d
batt(τ)

)
dτ (8a)

SoC limits : E ≤ E(t) ≤ Ē (8b)
0 ≤ P c

batt(t) ≤ Pmax
batt , − Pmax

batt ≤ P d
batt(t) ≤ 0 (8c)

where Ec is the energy capacity of the battery in kWh. This
model is sufficiently accurate when the battery operates over a
small voltage range but has inaccuracies when a larger range
of voltage values are encountered [17]. Further, this model
ignores temperature’s impact on SoC and charging/discharging
schedules. Striking a balance between exactitude and intricacy,
an electro-thermal Equivalent Circuit Model (ECM) for Li-
ion battery is used as shown in Fig. 2. A zeroth-order ECM
(second-order model with neglected dynamics) has been used.
As our study focuses on steady-state systems, we have con-
sidered only resistive elements [25].

Fig. 2: Battery’s ECM with enclosure and HVAC.

Mathematically, this model can be defined by:

CAh
∂E(t)

∂t
= ibatt(t) (9a)

vbatt(t) = VOC + ibatt(t)Req (9b)
VOC = VmE(t) + V0 (9c)

where ibatt and vbatt are battery net current and terminal
volatge respectively, Req is equivalent internal resistance, CAh
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is charge capacity in Ah and VOC is open circuit battery voltage
at 100% SoC. The slope and intercepts of a linear VOC model
are represented by Vm and V0, respectively. Maintaining battery
temperature within limits is crucial for preserving SoC and
state of health (SoH), preventing damage and safety risks,
particularly in hot conditions or high-power usage. To extend
the thermal capability of a battery, an HVAC system, as shown
in Fig. 2, can be used to keep the battery temperature within
its design limits i.e. Tbatt ∈ [Tmin

batt , T
max
batt ]. Considering battery

within an enclosure with an HVAC system, overall thermal
dynamics are given by the following two equations:

CT
∂Tbatt(t)

∂t
= Reqi

2
batt(t) + U(Ten(t)− Tbatt(t)) (10a)

Cen
∂Ten(t)

∂t
= Ncell [U(Tbatt(t)− Ten(t))] + Uen(Tamb(t)

(10b)
− Ten(t))− ηhvPhv(t)

where CT and Cen are the heat capacity of the lumped volume
and battery enclosure respectively, U represents the thermal
transmittance between the battery surface and the enclosure,
while Uen pertains to the thermal transmittance between the
enclosure and the surrounding environment, and Ncell is the
number of battery cells in the enclosure. The ηhv and Phv
are efficiency and power drawn by HVAC, respectively. This
model assumes constant or no airflow. The battery power is
given as follows:

P c
batt(t) = ic

batt(t)vbatt(t) (11a)

P d
batt(t) = id

batt(t)vbatt(t) (11b)

ibatt(t) = ic
batt(t) + id

batt(t), (11c)
where ic

batt and id
batt represent charging and discharging battery

currents respectively with ic
batt(t) ≥ 0 and id

batt(t) ≤ 0. Using
these models of the inverter, PV and battery, the predictive
optimization problem has been formulated and discussed in
the next section.

IV. PREDICTIVE OPTIMIZATION OF HES
The predictive optimization enables the seamless integration

of various energy sources. It extends to providing grid services
(such as voltage regulation and frequency control) and efficient
use of energy storage by predicting energy demand and supply
fluctuations. This includes optimizing charge and discharge
cycles to reduce costs and elongate the system lifespan.
In this paper, predictive optimal scheduling of the HES is
formulated as an optimization problem, subject to equality
and inequality constraints governed by physics-based models
of PV, battery and inverter. The objective of the optimization
problem is maximization of revenue generated by the grid-
connected HES. This is defined by the sum of the product
of net HES power, energy price and time step. The energy
price in $/MWh denoted by P r[k], with k ∈ {1 . . . N}. The
equality constraints are defined using (1) and (9)-(11). The
inequality constraints on SoC, charging-discharging currents,
battery temperature and voltage are defined as the bounds
based on battery operation and performance. The decision
variables are denoted by x ={icbatt, i

d
batt, Phv}, each decision

variable can be denoted by vector xi where i ∈ {1 . . . 3} and
xi ∈ RN .

The HES predictive optimization, rooted in physics-based
models, addresses a single-objective, multi-period determin-
istic problem. Within this framework, two temperature-
dependent models, namely NLP and simplified (MIP), along-
side a temperature-agnostic model based on ERM battery
model and PV model from (2) have been formulated. Fur-
thermore, a projection algorithm has been introduced to yield
the optimal solution from the MIP problem within the NLP
feasible set. Additionally, a homotopy algorithm has been
proposed to guarantee the attainment of the best solution for
the original NLP.

A. NLP problem

Based on the HES model discussed in section III, a non-
convex and non-linear (NLP) predictive optimization problem
has been formulated as follows:
Objective:

max
x

Ts

N∑
k=1

P r[k]Phes[k] (12)

Subject to:
Phes[k]− Ppv[k] + Pbatt[k] + Phv[k] = 0 (13a)

Pbatt[k]− (1/ηbatt
iv [k])P c

batt[k]− ηbatt
iv [k]P d

batt[k] = 0 (13b)

ηbatt
iv [k]− ηmax

1 + e−γPbatt[k]
= 0 (13c)

P c
batt[k]− wkw (icbatt[k]vbatt[k]) = 0 (13d)

P d
batt[k]− wkw (idbatt[k]vbatt[k]) = 0 (13e)

ibatt[k]− icbatt[k]− idbatt[k] = 0 (13f)

E[k]− E[k − 1]− 1

CAh
ibatt[k − 1]Ts = 0 (13g)

ic
batt[k] i

d
batt[k] = 0 (13h)

vbatt[k]− VmE[k]− V0 − ibatt[k]Req = 0 (13i)

Tbatt[k]− Tbatt[k − 1]− 1

CT
(Reqi

2
batt[k − 1]

+U(Ten[k − 1]− Tbatt[k − 1]))Ts = 0 (13j)

Ten[k]− Ten[k − 1]− 1

Cen
(NcellU(Tbatt[k − 1]

−Ten[k − 1]) + Uen(Tamb[k − 1]− Ten[k − 1])

−ηhvPhv[k − 1])Ts = 0 (13k)
E ≤ E[k] ≤ Ē (13l)

vbatt ≤ vbatt[k] ≤ ¯vbatt (13m)

Tmin
batt ≤ Tbatt[k] ≤ Tmax

batt (13n)

Tmin
en ≤ Ten[k] ≤ Tmax

en (13o)
0 ≤ Phv[k] ≤ P̄hv (13p)
0 ≤ ic

batt[k] ≤ imax
batt (13q)

−imax
batt ≤ id

batt[k] ≤ 0 (13r)

Ten[0] = T 0
en, Tbatt[0] = T 0

batt (13s)
E[0] = E0, E[N ] = E0 (13t)
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where wkw = 0.001 is Watt to kW conversion factor. The
complementary slackness given by (13h) avoids the simulta-
neous charging and discharging of the battery. The (13l)-(13r)
represent the inequality associated with the NLP. The (13t)
ensures sustainability, i.e. the SoC should return to the initial
level at the end of the day.

In this HES system, the PV subsystem plays no role in
decision-making (except for curtailment during periods of
negative energy prices); instead, it depends on inputs SI and
Tamb. The power generated by the PV subsystem is calculated
using a temperature-dependent model described by (14). In this
case, the contact losses and shading effect in PV have been
neglected. This calculated PV power is then directly used to
compute the total HES power (Phes) in (13a). The PV model
is given as:

Ppv[k]− ηpv
iv [k]P

dc
pv [k] = 0 (14a)

ηpv
iv [k]−

ηmax

1 + e−γP dc
pv [k]]

= 0 (14b)

P dc
pv [k]− (L M K)Pcell[k] = 0 (14c)

Pcell[k]− icell[k]vcell[k][1− CPT(Tcell[k]− 25)] = 0 (14d)

icell[k]−
(

isc

Srated
I

)
SI[k] + I0

(
e38.9V

pv
oc [k] − 1

)
= 0 (14e)

vpv
oc [k]− V std

oc [1− CVT(Tcell[k]− 25)] = 0 (14f)

Tcell[k]− Tamb[k]− SI[k]

(
NOCT− 20o

800

)
= 0. (14g)

The above formulated NLP pose challenges in optimization
due to the complexity of finding the best solution amid
multiple potential optima. Secondly, the NLP problem can be
very sensitive to the initial conditions.

B. Simplified Model
A significant challenge in solving the NLP problem is the

prevalence of numerous local optima, often causing optimiza-
tion algorithms to converge to suboptimal solutions. In the pre-
viously formulated optimization problem, the equations (13c)-
(13e), (13h)-(13j) introduce non-linearity and non-convexity.
Specifically, equations (13d) and (13e) exhibit bilinear char-
acteristics. To mitigate this bilinearity effect, it is possible
to make an approximation by considering a constant battery
voltage V batt at a specific SoC. The simplified equations are
given by:

P c
batt[k]− ic

batt[k]V batt = 0 (15a)

P d
batt[k]− id

batt[k]V batt = 0 (15b)
for k ∈ {1 . . . N}. This approach linearizes the bilinearity

associated with the P c
batt and P d

batt w.r.t the vbatt. Secondly, The
non-convexity due to the complementary slackness condition
can be reformulated as a mixed-integer problem (MIP), pre-
sented as follows [12]:

0 ≤ ic
batt[k] ≤ Z[k]imax

batt (16a)

(Z[k]− 1)imax
batt ≤ id

batt[k] ≤ 0 (16b)
for k ∈ {1 . . . N}. Where Z[k] ∈ {0, 1} such that if Z[k] = 1
→ id

batt[k] = 0 and ic
batt[k] ∈ [0, imax

batt ]. To handle non-linearity
in (13j), we apply second-order conic programming (SOCP)

relaxation, which linearizes quadratic terms for efficient opti-
mization while preserving convexity. The SOCP relaxation is
expressed as follows:

α[k] ≥ i2batt[k] (17)
for k ∈ {1 . . . N}. The non-linearity associated with the
inverter efficiency is addressed by taking ηbatt = 0.95. Now,
the original NLP has been reformulated as mixed integer linear
program using (15)-(17). The robust MIP solvers (e.g. Gurobi,
CPLEX, etc) enable feasible and fast solutions leveraging the
optimality gap as a measure of the quality of the solution.
Utilizing the solution derived from the relaxed problem as an
initial point significantly enhances the efficiency of the NLP
solver when seeking the optimal solution to the original, more
intricate NLP.

C. Projection
The solutions obtained from the simplified model are most

likely a global optimal based on the optimality gap. However,
it may yield solutions that partially adhere to the NLP’s
constraints, which are based on the physics of the HES model.
Hence, the projection technique is used to ensure that the
obtained solutions are best and feasible, bridging the gap
between the mathematical rigour and the physics of the model.
The objective of the projection problem is often defined as
finding the solutions that minimize the 2-norm between the
solution from simplified model (x∗) and projected solutions
(x). It is given as:
Objective:

min
x
∥(x[k]− x∗[k])∥2 (18)

for k ∈ {1 . . . N}. The equality and inequality constraints
are same as the NLP problem defined by (13). Even though
projection is still an NLP problem, it gives the solution in
the vicinity of the best solution obtained from the simplified
model while satisfying the feasibility of the NLP model.

D. Homotopy
The homotopy algorithm is frequently used to tackle intri-

cate non-convex optimization problems across various fields
[26]. Homotopy employs a continuous trajectory in NLP,
transitioning from the initial complex problem to a tractable
one. By varying the homotopy factor (in this case, the C-
rating of the battery), the problem is transformed into a
sequence of sub-problems, each solved sequentially. The first
subproblem is trivial, whose solution can be easily obtained,
and subsequent ones converge rapidly, starting from the prior
subproblem’s solution, eventually leading to the original prob-
lem and facilitating robust mathematical convergence [27]. In
this subsection, the homotopy method is explored to tackle
battery optimization problems with varying C-ratings which is
an essential factor affecting battery performance, determining
the imax

batt .
In this case, the NLP trajectory starts with a battery C-rating
of ≈ 0.0, where the solution space is notably limited but easily
navigable. From there, it progressively increases the battery’s
C-rating, moving towards higher C-ratings, with a small step
size denoted as ∆Crating. This gradual transition allows the

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



6

optimization algorithm to explore solutions incrementally,
avoiding abrupt jumps which might lead to convergence issues.
Moving through intermediate C-ratings efficiently traverses
the entire spectrum of feasible solutions, ensuring potential
optimum haven’t been overlooked. The gradual transition from
a small C-rating to higher values enables thorough exploration
of the solution space, significantly enhancing the chances
of finding a global solution. Fig. 3 illustrates the contour
path depicting the NLP’s feasible space and the progressive
navigation through the homotopy solution space, with an
emphasis on ascending C-ratings. Additionally, it provides a
clear depiction of the projection of the simplified solution
within the NLP’s feasible space.

Fig. 3: Illustrating the different methods presented herein, including
the iterative homotopy approach based on the battery’s C-rating.

Algorithm 1: Homotopy via battery’s C-rating
1: Parse: Battery data, energy price, Tamb, Ppv and Ts.
2: Decision: ic

batt[k], i
d
batt[k], and Phv[k]

3: Warm start: Enable warm_start_init_point
4: Initialize: set Crating ≈ 0, calculate current limits

imax
batt := Crating × CAh

5: while Crating ≤ Cmax

• Solve the NLP(Crating)⇒ (x∗, λ∗, µ∗),
• If primal and dual feasibility
• Then increment Crating ← Crating +∆Crating
• Update the previous solution to warm start NLP.

6: end for loop

E. Temperature agnostic model

A comparison with the temperature-agnostic model is
crucial to assess the impacts and benefits of temperature-
dependent model. In this subsection, the predictive optimiza-
tion employs the temperature-agnostic model which is formu-
lated using (2) and (8) as discussed in Section III. The problem
formulation is as follows:
Objective:

max
x

N∑
k=1

P r[k]Phes[k]Ts (19)

Subject to:
Phes[k]− Ppv[k] + Pbatt[k] = 0 (20a)

Pbatt[k]− P c
batt[k]− P d

batt[k] = 0 (20b)

P c
batt[k] P

d
batt[k] = 0 (20c)

E[k]− E[k − 1]− (1/EC)[η
batt
iv P c

batt[k − 1] (20d)

+(1/ηbatt
iv )P d

batt[k − 1]]Ts = 0 (20e)
E ≤ E[k] ≤ Ē (20f)

0 ≤ P c
batt[k] ≤ Pmax

batt (20g)

−Pmax
batt ≤ P d

batt[k] ≤ 0 (20h)
E[0] = E0, E[N ] = E0 (20i)

In this case, the temperature agnostic PV model, given by
(2) is used to calculate the Ppv over the periodic horizon,
k ∈ {1, . . . , N}. The discretized PV equations are given as
follows:

P dc
pv [k]− (L M K)ηcell Apv SI[k] = 0 (21a)

ηpv
iv [k]−

ηmax

1 + e−γP dc
pv [k]]

= 0 (21b)

Ppv[k]− ηpv
iv [k]P

dc
pv [k] = 0 (21c)

Various case studies demonstrating the performance of dif-
ferent HES models with different battery ratings and under
different ambient temperatures are presented and discussed in
the next section.

V. CASE STUDIES
The codebase of the HES predictive optimization problem

has been developed in Pyomo (a Python-based, open-source
optimization modeling tool). The NLP problems (including
projection, homotopy and temperature agnostic model) are
solved using IPOPT (Interior Point OPTimizer) solver, while
the simplified MIP problem has been solved using the Gurobi
solver. The original NLP problem was warm-started by the
solution of the simplified model. All the problems have been
solved assuming constant ambient temperature throughout 24
hours.

A. With ISO New England energy price

The input data, P r for 15 minutes energy market is taken
from ISO New England with a time step Ts = 0.25 hour and
SI are shown in Fig.4. These data are only used to realize
real-world settings and do not represent any particular event.
Further, the HES’s battery parameters are given in Table I. The
initial values of state variable SoC, Tbatt and Ten are assumed
to be E0, T 0

batt and T 0
en respectively. The PV consists of 120

modules and it is configured to form a 40 kW PV array. For
temperature agnostic model, ηcell of PV is 19.76%, Apv=1.67
m2 and energy capacity of the battery Ec is taken as 43.2
kWh. To better align with real-world systems and observe the
impact, we have scaled up our system by a factor of 1000,
transitioning from a kW setup to a MW-scale configuration.

In the electro-thermal model, battery temperature plays
a critical role while making the charging and discharging
decisions as the Tbatt is correlated to ibatt and Phv as shown
in (13j) i.e. if the Tbatt hits the Tmax

batt or Tmin
batt , the charging
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TABLE I: Battery parameters

Parameter Value Parameter Value

imax
batt 50A (1C) E0 0.5

Ē 0.95 E 0.2

¯vbatt 976 V vbatt 714 V

Tmin
batt 15oC Tmax

batt 35oC

Tmin
en 15oC Tmax

en 35oC

CAh 50 Ah CT 10 KJ/oC

U 0.2 W/oC Uen 0.001 kW/oC

R0 0.0716 Ω Cen 30 KJ/oC

Ncell 100 T 0
batt/ T

0
en 20oC
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Fig. 4: Input data: NE-ISO energy price and solar irradiance at 15-
minute intervals for a day (24 hours).

and discharging processes will be halted until the temperature
falls back to a lower temperature level. Notably, the higher
temperature limit will give more flexibility in charging and
discharging but requires more HVAC power to maintain the
temperature within the limits. The choice of an appropriate
temperature limit is pivotal and hinges upon the objectives
of predictive optimization. Fig. 5 shows the maximum HES
revenue and expense of using HVAC by solving the NLP prob-
lem under varying ∆TBatt condition. Here, ∆TBatt represents
the temperature bound i.e. ∆TBatt = (Tmax

batt - Tmin
batt ).

0 5 10 15 20

 T
Batt

: Battery Temperature Bound, C

4000

4500

5000

R
ev

en
u
e 

($
)

0

50

Revenue HVAC cost

Fig. 5: Impact of variation in ∆TBatt on overall revenue and HVAC
cost at ambient temperature of 20o C, 0.5C battery.

It is observed that the maximum revenue of the HES
increases by 1.25 times while the HVAC cost increases by 20
times as the ∆TBatt increases from 10C to 200C. The increased

limit will affect the battery’s health by permitting rapid high
charging and discharging, providing the option for complete
discharges when prices are elevated. Thus, there exists a trade-
off between revenue and battery health. In this paper, values
of Tmax

batt = 350C and Tmin
batt = 150C have been selected.

The Fig. 6 shows the predicted revenue of the temperature-
dependent optimization problem formulated in Section IV. The
problem has been solved for different Tamb and C-ratings of
the battery.
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(a) 0.25C battery
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(b) 0.5C battery
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(c) 1C battery
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Fig. 6: Predicted revenue comparison of various models under
different ambient temperatures. Note that the simplified model’s
predicted revenue is not always realizable because it violates physical
constraints.

It can be observed that the predicted revenue declines
linearly for the simplified model and follows non-linear trends
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for NLPs as the Tamb increases. The maximum deviation
occurs at Tamb = 00C, when the simplified model predicts the
3.5% extra revenue, which may not be the feasible schedule
for HES and can lead to a penalty. This deviation is due to
the simplified model’s assumed constant vbatt. The solution
obtained through projection has been close to the solution from
the NLP solution. However, across all battery ratings, the NLP
model consistently performs better. This shows that the NLP
model provides a better solution within the feasible space.
Furthermore, the homotopy demonstrates that it converges to
the NLP solution, reinforcing the earlier claim that the NLP
model finds the best solution.

The trajectory of the homotopy solution is shown in Fig. 7.

0 0.5 1 1.5 2
Battery C Rating

0

100

200

300

|| 
(i

c,
n

b
at

t-i
c,

n
-1

b
at

t
)|

| 2

(a) decision variable: icbatt

0 0.5 1 1.5 2
Battery C Rating

0

100

200

||i
d
,n

b
at

t-i
d
,n

-1
b
at

t
)|

| 2

(b) decision variable: idbatt

0 0.5 1 1.5 2
Battery C Rating

0

200

400

||(
P

n h
v
-P

n
-1

h
v

)|
| 2

(c) decision variable: Phv

0 0.5 1 1.5 2
Battery C Rating

0

100

200

300

||f
n
(x

)-
fn

-1
(X

))
|| 2

(d) Revenue

Fig. 7: Homotopy trajectory: 2-norm between previous and current
solution on a normal day (at Tamb = 20o C).

The 2-norm of the difference between the current (denoted
by superscript ’n’) and the previous (denoted by superscript ’n-
1’) decisions and the objective have been plotted. The figure is
plotted until the 2C-rating for clarity as the 2-norm converges

to 0, way before it. It can be observed that the solution is
going from significant deviation to convergence to zero 2-
norm, progressing towards the best solution by expanding
the feasible solution space with each incremental increase in
battery C-rating.

In Fig 8, a progressive increase in predicted revenue has
been observed with the transition from lower C-rated batteries
to higher ones.
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Fig. 8: Revenue comparison of different C-rated battery under
different ambient temperatures. Note that the simplified model’s
predicted revenue is not always realizable because it violates physical
constraints.

Notably, the predicted revenue by HES employing 1C and
4C batteries closely align. This convergence is attributed to
stringent temperature constraints; as these bounds become
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more restrictive, the higher charging speed associated with
4C batteries reaches a point of diminishing returns in revenue
generation. Beyond a certain threshold, the faster charging
does not significantly enhance the revenue due to thermal
limitations.

The solutions from the temperature-agnostic models are
very aggressive as they can charge or discharge very quickly
ignoring the battery’s thermal constraints. The predicted rev-
enues of the temperature agnostic model for different C-rated
batteries are given in Table II. Here, The revenue increases
with an increase in the C-rating of the battery which does
not depict the charging limitations due to excessive heating
of fast-charging batteries. The only feasible solution of the
temperature agnostic model is with a 0.25C battery and if
Tamb ≤ 15oC, other schedules are not realizable considering
the actual HES model.

TABLE II: Predicted revenue for temperature-agnostic model

C-rating Revenue Feasible# C-rating Revenue Feasible#

0.25C $5054.62 ✓ 1C $7261.83 ×
0.50C $5431.92 × 4C $8468.97 ×

# indicates whether this schedule is realizable with actual HES.

B. Negative energy price scenario and PV curtailment

In the previous case, the energy prices were always positive.
Hence, to test the robustness of the NLP and homotopy
algorithm, test price P r has been used as shown in Fig.9.
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Fig. 9: Energy price

Negative energy prices can significantly reduce or even
result in negative revenue for PV system owners. During
such periods, PV generators might incur costs to offload
excess electricity to grid operators or utilities. Curtailing PV
generation in these circumstances is financially advantageous,
preventing losses from selling surplus electricity at negative
prices. Hence, another decision variable curtailment factor βcur
is integrated in the optimization problem using (7). The PV
curtailment scheme is given by:

Ppv[k]− βcur[k]P
g
pv[k] = 0 (22a)

0 ≤ βcur[k] ≤ 1 (22b)
where P g

pv denotes generated PV power, while Ppv is total
exported PV power to the grid. Table III compares the revenue
of all the temperature-dependent models and algorithms with
and without PV curtailment under extreme temperatures and
different C-ratings. It can be observed that the homotopy
algorithm (highlighted using box) always converges to the

same solution as the original NLP. Without the PV curtailment,
the revenue increases as the ambient temperature increases due
to lesser PV generation.
TABLE III: Predicted revenue from the HES without PV curtailment

Method/Algorithm 0.25C battery 1C battery

at 0oC at 40oC at 0oC at 40oC

NLP $5235.96 $5512.94 $5452.63 $5729.61

Homotopy $5235.96 $5512.94 $5452.63 $5729.61

Simplified∗ $5245.50 $5522.47 $5462.83 $5739.80

Projection $5231.01 $5507.99 $5448.43 $5725.41

*Simplified method’s realized revenue is given by Projection value.

Table IV shows the predicted revenues with the PV curtail-
ment. With the incorporation of the PV curtailment scheme,
the predicted revenues grow under every condition as com-
pared to those without curtailment. It can be observed from
both the scenarios that simplified model always gives the upper
bound of the solution but predicted revenues fall when the
simplified solutions are projected in NLP space.
TABLE IV: Predicted revenue from the HES with PV curtailment

Method/Algorithm 0.25C battery 1C battery

at 0oC at 40oC at 0oC at 40oC

NLP $7363.87 $7399.37 $7580.54 $7616.04

Homotopy $7363.87 $7399.37 $7580.54 $7616.04

Simplified∗ $7373.40 $7408.91 $7590.73 $7626.24

Projection $7358.89 $7394.39 $7576.31 $7611.81

*Simplified method’s realized revenue is given by Projection value.

C. Temperature agnostic vs Temperature dependent model

To assess the effectiveness of the temperature-dependent
model for the HES, a comparison with the temperature-
agnostic model (as discussed in Section IV-E) is crucial.
The temperature-agnostic model represents a temperature-
agnostic PV+ battery model. An energy price enforcing high
discharging and charging rates with a 1C battery is employed.
For this case study, objective function excludes considerations
for HVAC usage, eliminating potential revenue loss. The
thermal transmittance coefficient U represents diverse cool-
ing systems, including air-cooled, surface-cooled, and liquid-
cooled configurations. Lower coefficient values (U) signify
slower battery cooling, while higher values represent faster
cooling rates. The capital cost for HVAC systems for different
cooling has been neglected. This model is represented by
“ECM+Th”. Table V shows the predicted revenue for the
temperature-agnostic and temperature-dependent model. For
hot summer days (Tamb = 40oC), the temperature-agnostic
model overestimates the revenue from PV by 12.5%. Similar
overestimation can be observed from the predicted battery
revenue. In Fig. 10, a ECM+Th model with a high U value
of 5 W/oC is compared with the temperature-agnostic model
(ERM). During fast cooling, generated heat dissipation within
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TABLE V: HES % change in predicted revenue comparing
temperature-agnostic and temperature-dependent model with 1C bat-
tery, at Tamb = 40oC and U= 0.1 W/oC, the capital costs of HVAC
systems for different U has been neglected

Model HES (in %) PV (in %) Battery (in %)

Temperature-agnostic∗ 14.5 12.5 16.8

Temperature-dependent

U = 0.2 W/oC 0.2 0 0.42

U = 1 W/oC 1.25 0 2.67

U = 5 W/oC 2.6 0 5.45

*Not realizable with actual HES.

the enclosure necessitates higher HVAC power consumption
to maintain the Ten within specified limits. Consequently, with
faster cooling rates, the battery can undergo rapid charging and
discharging.

Fig. 10: Comparison of predicted scheduling of HES’s 1C battery
(ERM+Th) at Tamb = 40oC, U=5 W/oC vs temperature-agnostic HES
with ERM battery model.

As the U value increases, the revenue predicted by the
temperature-dependent model improves, as shown in Fig. 11.
The change in revenue is calculated using the following
equation:

∆Revenue (%) =
RevU −Rev∗

Rev∗
× 100 (23)

The Rev∗ represented the base value of predicted revenue
when U = 0.2 W/oC while RevU represented the predicted
revenue for U ∈ [0.5, 0.8, 1, 5] W/oC. As the ERM model is
temperature-agnostic, it operates without constraints imposed
by thermal limits, resulting in overestimated predicted revenue

Fig. 11: Change in predicted revenue of temperature dependent model
with HVAC is a free variable and variation of U, the base U=
0.2W/oC. These results neglect any capital costs of HVAC systems
for different U, which are expected to be non-trivial for U ≥ 1.

that exceeds what can be realistically achieved by a physical
battery. Fig. 10 shows that temperature-agnostic HES with
ERM can discharge from Emax to Emin very quickly once the
energy prices are suitable. At the same time, the temperature-
dependent model is restricted by the Tbatt. This led to an
overestimation of predicted revenue by ERM, which the ac-
tual HES can’t deliver. The performance of the temperature-
dependent HES system is likely to be near the actual system.
This indicates that utilities employing a temperature-agnostic
model for predictive optimization may overestimate system
performance, potentially leading to penalties for unmet ex-
pectations.

VI. CONCLUSION

In this paper, a comprehensive electro-thermal model for
HES has been thoroughly discussed and analyzed to give
valuable insights. Within this framework, a predictive optimal
scheduling problem to maximize HES revenue has been for-
mulated. The intrinsic challenges arising from the system’s
nonlinear and non-convex nature, influenced by underlying
physics and thermal constraints, make this problem inher-
ently challenging. To address these complexities, a simplified
problem using mixed-integer formulation has been proposed,
which delivers the best solutions within defined constraints.
The solution obtained from this simplified model is used to
warm start the NLP. To validate the feasibility of the solution
from the simplified model, a projection algorithm has been
proposed. A homotopy algorithm has been proposed, which
iterates over the C-rating of the battery. Lastly, to underscore
the impact of temperature-dependent scheduling for HES, a
temperature-agnostic model has been used.

These models are tested under various ambient tempera-
tures, C-ratings and energy prices. Based on the performance
of the models, the homotopy solution displayed convergence
towards zero 2-norm, as the feasible solution space gradually
expands. The homotopy method also produces the same solu-
tion as the original NLP, while the simplified model provides
the upper bound during stress testing. The predicted schedules
from the temperature agnostic model are not realizable in ac-
tual plant settings. The discrepancy between the overestimated
revenue projections of the temperature-agnostic model and
the actual system performance underscores the importance of
incorporating temperature-dependent. This work will be useful
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to give insight into HES complexities while highlighting the
importance of a temperature-dependent model.
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