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Abstract—This paper studies the use of conformal prediction
(CP), an emerging probabilistic forecasting method, for day-
ahead photovoltaic power predictions to enhance participation
in electricity markets. First, machine learning models are used
to construct point predictions. Thereafter, several variants of CP
are implemented to quantify the uncertainty of those predictions
by creating CP intervals and cumulative distribution functions.
Optimal quantity bids for the electricity market are estimated
using several bidding strategies under uncertainty, namely:
trust-the-forecast, worst-case, Newsvendor and expected utility
maximization (EUM). Results show that CP in combination
with k-nearest neighbors and/or Mondrian binning outperforms
its corresponding linear quantile regressors. Using CP in com-
bination with certain bidding strategies can yield high profit
with minimal energy imbalance. In concrete, using conformal
predictive systems with k-nearest neighbors and Mondrian bin-
ning after random forest regression yields the best profit and
imbalance regardless of the decision-making strategy. Combining
this uncertainty quantification method with the EUM strategy
with conditional value at risk (CVaR) can yield up to 93% of
the potential profit with minimal energy imbalance.

Index Terms—Conformal prediction; Electricity markets; Ma-
chine learning; Photovoltaic power; Stochastic optimization

I. INTRODUCTION

In the day-ahead market (DAM) for electricity, suppliers
offer a specific volume of electricity that they will be able
to supply the next day along with their minimum selling
price. Meanwhile, buyers bid a volume that they are willing to
receive the following day along with a maximum buying price.
In the Netherlands, this auction-based market mechanism has
an hourly resolution and closes at noon the day before delivery
[1]. If suppliers or buyers deviate from their accepted bid in
real-time, they are subject to high imbalance costs in the real-
time market (RTM). Therefore, it is generally beneficial for
electricity suppliers to avoid deficiencies and surpluses. For
this reason, reliable solar photovoltaic (PV) power forecasts
are required for electricity suppliers with PV assets. Similarly,
grid operators require insight into the expected PV generation
to make estimates about the congestion levels in their network.
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The rapidly increasing adoption of PV increases the overall
uncertainty in power markets, underscoring the necessity for
accurate PV power predictions. Extensive research, as high-
lighted in literature reviews [2], [3], has focused on solar
irradiance and PV power forecasting. Probabilistic forecasting
enhances the reliability of PV power predictions by providing
information about their full probability distributions [4]. This
is particularly important for decision-making in electricity
markets where uncertainty plays a significant role [5].

Conformal prediction (CP) is an emerging distribution-
free and model-agnostic probabilistic forecasting method that
offers a measure of confidence by transforming point predic-
tions into prediction intervals [6]. In its most basic form, the
residuals of predictions from a calibration dataset are used
to calibrate prediction intervals from a test dataset so those
intervals have a probabilistic guarantee of covering the true
outcome. This makes CP particularly useful in applications
with uncertainty where reliability is essential, such as decision-
making on electricity markets. Various adaptations of CP
contribute to conditional guarantees, making it a very flexible
method. The application of CP for decision making under
uncertainty is rather new. One study utilized CP to minimize a
worst-case scenario based on simulated data [7]. Furthermore,
CP has been employed to optimize prediction intervals for gas
demand, albeit without connecting this to decision-making in
the energy market [8]. To the authors’ knowledge, there is no
study utilizing CP for PV power predictions or directly linking
the quantified uncertainty of those predictions to decision-
making in electricity markets.

This paper proposes and investigates the added value of
a framework for stochastic decision-making considering PV
power participation in electricity markets. This framework is
based on the implementation of point prediction models that
predict PV power day-ahead based on weather forecasts. This
is then combined with CP to quantify the uncertainty of point
predictions in the form of prediction intervals or cumulative
distribution functions (CDF). Subsequently, several bidding
strategies, including Trust-the-forecast, worst-case, Newsven-
dor and expected utility maximization (EUM), are employed to
facilitate decision-making for market participants on the DAM
using the developed CP methods to enhance reliability. The
purpose of those bidding strategies is to determine the optimal
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quantity a PV power supplier should offer in the DAM to yield
a high overall profit with minimal energy imbalance. Lastly,
the performance of this framework is evaluated using actual
data from the Netherlands. This research is mainly relevant
for market participants to increase profit while being aware of
the associated risk, and for grid operators to improve insights
into the expected grid loading. The main contribution can be
summarized as follows:

• Proposing a novel framework using CP to aid decision-
making for PV power market participants on the DAM;

• Developing, applying, and evaluating various combina-
tions of CP with bidding strategies, using actual weather
and energy market data from the Netherlands.

The remainder of the paper is organized as follows. Sec-
tion II describes the regression, CP and stochastic optimization
methods. The input data and simulation outline are described
in Section III. The results are then presented in Section IV.
The discussion is provided in Section V, with pointers for
future work. Finally, the paper is concluded in Section VI.

II. METHODS

Classical machine learning models fail to properly estimate
the uncertainty of their predictions [9], and most quantile
regression methods have underlying assumptions of the data
distribution, which might not reflect reality. This is where CP
comes into play. CP is a relatively new methodology, witness-
ing a growing body of literature on the subject annually. In
Scopus, it has been rising from no publications in 2006 to 30
in 2015 and to 73 in 20221. There are conformal regressors
and conformal classifiers, but as this study focuses on regres-
sion, any mention of CP refers to conformal regressors. CP
transforms point predictions into uncertainty intervals without
the need for distributional assumptions on the data [6]. The
uncertainty intervals are rigorous, indicating a probabilistic
guarantee of covering the true outcome. In other words, CP
guarantees marginal coverage, for which the user chooses an
error rate, α.

Fig. 1 identifies three steps in the proposed framework to
determine DAM bids for PV generation using a CP method.
In the first step, point predictions are made for PV generation,
after which the uncertainty of these predictions is quantified.
Lastly, the optimal bids for the DAM are determined. The
following sections introduce the models used in each step.

A. Point prediction models

This study considers three models for making PV power
point predictions: Simple and multiple linear regression (SLR
& MLR, respectively) and random forest regression (RFR).
Linear and tree-based models are selected, because those have
shown to perform at least as good as more complicated models
for the forecasting of electricity consumption and PV power
[10], [11]. The superiority of tree-based models on tabular data
stems from their capacity to accommodate irregular patterns

1Using scope title, abstract and keyword on the 6th of February 2023
with the search query: (”conformal predict*” OR ”conformal inference” OR
”conformal regressor”)

Fig. 1: Diagram of the proposed framework with the prediction
methods and decision-making strategies used.

and maintain robustness [12]. RFR is particularly adopted
since it is the best-performing day-ahead PV power forecast
model [11], and it typically yields more efficient conformal
predictors compared to other models [13].

Before making point predictions, the input data should be
split into a training, calibration and test set. The training set
is used to determine the optimal predictor feature set using
forward subset selection with 10-fold cross-validation and for
hyperparameter tuning for the RFR model. Eventually, the
model is trained using the training dataset with the optimal
hyperparameter and feature sets, and the datapoints in the
calibration and test datasets are predicted with the fitted model.

B. Uncertainty quantification methods

For the quantification of uncertainty, different CP methods
are considered in this work, which are introduced below and
summarized in Table I. Simple and multiple linear quantile
regression (SLQR & MLQR, respectively) serve as benchmark
models. For these models, the same optimal predictor feature
sets as for the SLR and MLR models have been assumed.

TABLE I: Overview of the considered CP methods in this
study.

Abbreviation Model
M1 Basic CP
M2 CP with KNN
M3 CP with KNN and with Mondrian binning
M4 CPS with KNN
M5 CPS with KNN and with Mondrian binning

1) Basic CP: The first step for basic CP is to apply a
point prediction model to the calibration dataset, after which
the residuals of these predictions are extracted. The absolute
values of the residuals are used as nonconformity scores,
which is a measure indicating how ’atypical’ a certain dat-
apoint is. After this, the variable q̂ is determined based on the
chosen value of the error rate α and the sorted nonconformity
scores, such that a fraction α of the calibration datapoints
has nonconformity scores exceeding q̂ (see Fig. 2 where q̂ is
calculated as the percentile corresponding to (1−α)). Lastly,
the point prediction model is used to predict the points in the
test set and q̂ is both added and subtracted from the point
predictions to derive the CP intervals.
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Fig. 2: Example of how q̂ is extracted from the sorted
nonconformity scores where α is chosen to be 0.10 following
that q̂ is calculated as the percentile corresponding to (1−α).
The red line shows the value for q̂, in this case 0.55, where a
fraction α of the nonconformity scores exceeds q̂.

2) CP with uncertainty scalars: The basic CP method
guarantees marginal coverage, i.e., the realized values that are
outside of the CP interval do not exceed the chosen error rate,
α. However, it does not account for conditional coverage [6],
i.e., the fact that the uncertainty of the predictions differs per
datapoint. The property of a method to give wider intervals
for points that are harder to predict is called adaptivity.

The CP method with uncertainty scalars aims to in-
crease adaptivity to approximate conditional coverage. In this
method, the difficulty of forecasting a specific datapoint is
determined by the uncertainty-estimate, which is the average
value of the residuals of the k-nearest neighbors (KNN) in
the calibration dataset that are most similar with respect to
the predictor feature scores. An iterative empirical process in
this study has shown that the optimal value for the number
of neighbors k is 50. A lower value for the number of
neighbors leads to overfitting, while a higher value reduces the
adaptivity. The nonconformity scores for a specific datapoint
are then equal to the absolute value of the residuals divided
by their uncertainty-estimates. Subsequently, the variable q̂ is
determined in the same way as with basic CP, using α and
the new nonconformity scores. As a last step, the prediction
intervals are determined by adding and subtracting the product
of q̂ and the uncertainty-estimate to the point prediction value.

3) CP with Mondrian binning: CP can also be performed
after splitting both the calibration and test datasets into Mon-
drian categories (i.e., also called Mondrian binning or simply
binning). In Mondrian binning, the predicted values for PV
power from the calibration dataset are sorted and subdivided
into a predefined number of equally-sized bins. Subsequently,
the datapoints in the test dataset are assigned to one of those
bins based on the value of the point prediction. The CP values
are determined in the same way as before, considering only the
values of the residuals in the corresponding bin. In previous
research, CP with binning was found to outperform basic CP
by differing the interval widths between bins and thus creating
adaptivity [14]. Based on empirical evaluation, the optimal
number of bins in this study has been found to be 15, as more
than 15 bins leads to overfitting, while fewer bins reduce the
adaptivity.

4) CPS: An upcoming CP variant is conformal predictive
systems (CPS) which outputs conformal predictive distribu-
tions (CPD), i.e. CDFs. CPS uses the residuals instead of the
absolute values of the residuals as nonconformity scores [15].
Consequently, a prediction is not necessarily centered in the
middle of an interval. In other words, the intervals can be
’shifted’ and the left and right hand side of the intervals are not
equal by definition (see an example in Fig. 3). Therefore, CPS
is more flexible than CP and thus preserves more information.
Most of the variants for CP can also be applied to CPS. In this
study, both KNN and binning are used in combination with
CPS.
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Fig. 3: Theoretical example showing prediction intervals cre-
ated by basic CP and CPS showing that the upper and lower
sides of the interval are not necessarily equally sized for CPS.

C. Bidding strategies

Subsequently, different bidding strategies are applied to
the test dataset to determine the optimal quantity bids for
PV power in the DAM. All strategies are evaluated on both
profit and imbalance, assuming perfect foresight of the DAM
prices. A perfect strategy yields high revenue with minimal
imbalance. The profit for evaluation is based on the proposed
bids times the DAM price, and on the imbalance volumes mul-
tiplied by their respective actual RTM prices. The imbalance
volumes are based on the difference between the bids and the
actual PV power. Five bidding strategies are considered in this
work.

1) Trust-the-forecast: This strategy does not consider the
uncertainty in predictions and is applied to the point prediction
methods (SLR, MLR and RFR), the quantile prediction meth-
ods (SLQR and MLQR) and the CP methods. For the point
prediction models, the bid size is equal to the point prediction.
For the quantile prediction methods and the CP methods, the
bid size is equal to the median value of the uncertainty range.

2) Worst-case: For the quantile prediction methods, the
DAM bids in this strategy are equal to the predicted 0.05
quantiles. Similarly, for the CP methods, the bid is equal to
the lower bound of the prediction interval with α=0.10.

3) Newsvendor: This bidding strategy is based on the
Newsvendor problem [16]. This is a classical mathematical
model in operations management used to determine optimal
inventory levels, based on a product’s purchase and retail price.
This work uses the ratio between the imbalance price deltas
to determine the optimal probability quantile; if the average
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upward imbalance price delta (i.e., the penalty for generating
less than the DAM bid) is higher than the average downward
imbalance price delta (i.e., the penalty for generating more
than the DAM bid), it is generally beneficial to bid higher than
the point prediction. As further explained in Section III-B,
this study uses imbalance price clusters as scenarios for
optimization. Eq. 1 is applied to each cluster to determine
the optimal probability quantile (NVpq) of the corresponding
cluster.

NVpq =
∆down

∆down +∆up
=

pDAM − pdown

(pDAM − pdown) + (pup − pDAM)
(1)

The DAM bid in this strategy is equal to the predicted PV
value corresponding to the weighted average NVpq for all
imbalance price clusters. Section III-B explains how quantile
values are determined for CP models. As proposed by [17],
this approach can be extended by adding constraints in prob-
ability and decision space. When constraining the probability
space, the NVpq values for an imbalance price cluster that fall
outside a predefined quantile interval range are updated to the
closest quantile value within this range. With decision space
constraints, the bid volume can only differ by a predefined
percentage from the point prediction.

4) Expected utility maximization (EUM): This strategy
aims to maximize the expected profit, based on RTM price
and PV power scenarios. PV scenarios are generated using the
prediction intervals of the forecasts. RTM price scenarios are
generated using historical RTM prices, as further detailed in
Section III-B. The detailed mathematical problem formulation
for the EUM strategy is outlined in Appendix A-A.

In addition to the basic EUM strategy, this work also con-
siders the EUM strategy in combination with the conditional
value at risk (CVaR), which is a risk metric for the tail
risk of the model’s objective function [18]. Depending on
the considered confidence level γ, the CVaR is equal to the
average profit of the 1-γ scenarios with the lowest profit.
In this model, both the expected costs and the CVaR are
considered in the objective function, where a specific weight
β is given to the CVaR in the objective function. The full
problem formulation for the EUM with the CVaR is shown in
Appendix A-B.

5) Perfect information: In this reference case, the bids
are equal to the actual PV power output and, therefore, the
imbalance volume is zero.

III. DATA INPUTS AND SIMULATION OUTLINE

A. Forecasting setup

The different methodological steps outlined in Section II are
applied to an open-source dataset with power measurements
of 175 PV systems in the province of Utrecht, the Nether-
lands [19]. The PV power measurements have a one-minute
resolution and cover January 2014 until December 2017. The
values are normalized to kW per kWp and are converted to the
average hourly values. Subsequently, the aggregated power for

all 175 PV systems is determined. In the data pre-processing
step, night values are set to zero and outliers are removed.

The data is split by date with years 2014 and 2015 as
training dataset, 2016 as calibration dataset and 2017 as test
dataset as shown in Fig. 4. The data covers around four to
five thousand datapoints in each year for sunrise hours. Night
values are always zero and therefore the model is trained,
calibrated and tested using the day values only.
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Fig. 4: The normalized PV power values over time split into
train, calibration and test data. The 1st of January of 2016 and
2017 are used as breaking points to split the dataset.

Different predictor variables are considered in the fore-
casts. First, temporal and physical properties are considered,
including the hour of the day (presented as cos( 2π∗HoD

24 ) and
sin( 2π∗HoD

24 ) with HoD as the hour of the day to reflect its
cyclic nature [20]). Besides, clear sky irradiance, solar zenith
and solar azimuth angle are used, which are all determined
using the Python PVlib package [21]. In addition, weather
forecast data from the Meteorological Archival and Retrieval
System of the European Centre for Medium-Range Weather
Forecasts (ECMWF) [22] has been used as predictor variables.
This dataset contains hourly weather predictions for January
2014 till December 2017 on noon of day T for day T+1,
matching the requirements of day-ahead solar PV forecasting
(e.g., 24 hours ahead with a one-hour resolution). It contains
predictions on variables such as surface pressure, cloud cover,
wind speed, temperature, precipitation and solar irradiance.
The predictions are for De Bilt in the province of Utrecht.

After the forward subset selection, the optimal predictor
variable set for the MLR model is found to be the hour of
the day, zonal wind speed, total cloud cover, surface solar
radiation (SSR) and cos( 2π∗HoD

24 ). For SLR, the considered
predictor variable is the day-ahead forecast of the surface solar
radiation downwards (SSRD), as it has the highest correlation
with PV power. For the SLQR and MLQR models, the same
optimal predictor variable sets as the SLR and MLR models,
respectively, have been assumed. The hyperparameter tuning
for RFR indicates that the model performs best with 375 trees
and with a maximum of 3 features per tree.

B. Optimization setup

For the different strategies used to determine the quantity
bid for the DAM, DAM prices for the Netherlands in the
considered time period have been extracted from the ENTSO-
E Transparency Platform [23]. The up- and down-regulation
prices in the RTM come from TenneT [24], the Dutch TSO.
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All CP methods, except the basic CP, are performed with
the help of the crepes package (version 0.1.0) [25] in Python.
The Newsvendor strategy is considered without any constraints
and with 10% and 20% constraints in both the decision and
probability space. Quantile values for the CP models are
determined by taking the upper or lower bounds of uncertainty
intervals after running the model for different values of α.

The EUM models are run using Gurobi (version 10.0.1)
as a solver in Python (version 3.8.10). For every timestep,
99 PV power scenarios were considered which equal the
0.01 to 0.99 quantile predictions. Since the RTM prices are
highly dependent on the DAM prices, historical imbalance
price deltas (i.e., the difference between the DAM price and
the RTM price) are used instead of absolute RTM prices.
Hourly average RTM prices were used to generate imbalance
price deltas. This study has taken all imbalance price deltas in
the calibration period and clustered them into twenty clusters
using k-means clustering. Subsequently, the average imbalance
price delta for each cluster is taken, and added to the DAM
price in the test dataset to get twenty RTM price scenarios
per timestep. Fig. 5 shows the clusters for the up- and down-
regulation deltas. The up- and down-regulation deltas are
related, so each scenario represents a specific combination of
up- and down-regulation deltas. In the optimization models,
the sizes of the clusters are considered as weights for the
scenarios.
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Fig. 5: The up-regulation deltas against the down-regulation
deltas in the calibration dataset colored by their clusters.

IV. RESULTS

A. Point prediction models

Table II shows the adjusted R2 for each point prediction
model on the test dataset. The RFR performs best, followed
by MLR and SLR, in that order.

TABLE II: Model performance of the point prediction models

Model Adjusted R2

SLR 0.806
MLR 0.821
RFR 0.854

B. Uncertainty quantification methods

Since CP methods do not make use of quantile forecasts,
standard quantile forecasting performance metrics such as the
continuous ranked probability score (CRPS) cannot be used
to evaluate the forecasting performance of the CP methods.
Instead, this section assesses the performance of CP methods
using the weighted interval score (WIS), which approximates
the CRPS [26]. This metric is based on the interval score
(IS), which considers two elements for a specific value of α,
namely: sharpness and calibration. Sharpness is the average
interval width between the lower and upper bound of the CP
confidence interval for a specific value of α, and calibration
is the sum of the penalties for datapoints in the test dataset
outside of the interval. These penalties become more severe
for lower error rates (i.e., decreasing values of α). The WIS
can be determined by combining the IS for multiple error rates
[26]. This work considered values of α between 0.02 and 0.98
with steps of 0.02 when determining the WIS for CP models.
For the linear quantile regression (LQR) models, the WIS is
determined by considering the two different quantile values
as the lower and upper bound as the confidence intervals. For
instance with α = 0.12, the 0.06 and 0.94 quantile prediction
values formed the lower and upper bound of the confidence
interval. Lower WIS values indicate a better-performing CP
model. The reader may refer to [26] for more elaboration on
the IS and WIS metrics.

TABLE III: CP evaluation metrics for the SLQR and the
different CP methods using RFR as a point prediction model.

Method Version WIS Sharpness Calibration

LQR SLQR 0.168 0.061 0.106

M1 RFR 0.152 0.040 0.111

M2 RFR 0.142 0.044 0.098

M3 RFR 0.140 0.061 0.079

M4 RFR 0.143 0.045 0.098

M5 RFR 0.142 0.057 0.085

Table III presents the WIS scores for the different consid-
ered CP methods and for SLQR. The RFR model is used
as the point prediction model, due to its superior forecasting
performance compared to SLR and MLR. Different aspects
can be concluded from Table III. First, the forecasting perfor-
mance of all considered CP models is higher than the reference
case (SLQR). Second, the more-advanced CP models (M2-
M5) outperform the basic CP method (M1). Among the more-
advanced CP models, the models that consider CP (M2 & M3)
perform better than the models that use CPS (M4 & M5).
Similarly, the use of Mondrian binning (M3 & M5) results in
better WIS values.

Table III shows that the best-performing models in terms of
WIS score well on calibration (i.e., lower number of realized
values outside the uncertainty interval), but show a lower
sharpness, indicating that the uncertainty intervals are larger.
Overall, it can be concluded that using RFR combined with
CP with k-nearest neighbors and binning (M3) yields the
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best-weighted interval score. Fig. 6 shows an example of the
confidence intervals predicted by this method for one day.

Fig. 6: Example (June 5th 2017) of normalized point predic-
tions by the RFR model and confidence intervals from M3
after RFR.

C. Bidding strategies

Table IV provides an overview of the realized profit and
imbalance volumes for the different bidding strategies. It
reports the results for the best-performing uncertainty models.

As discussed in Section II-C, the benchmark model is
the ideal case with perfect information regarding the PV
generation output. As expected, the profit in this model is
highest and imbalance volumes are by definition 0. The
maximum profit using the trust-the-forecast strategy is equal
to 92.4% of the profit with perfect information. The ’worst-
case’ bidding strategy yields the lowest profit and highest
imbalance volumes. This is mostly caused by the conservative
nature of the PV bids with this strategy, which induces high
surpluses (i.e., a realized PV power that is higher than the
DAM bid), leading to imbalance costs in the RTM. The profit
with the Newsvendor strategy is similar to the profit with
the ’trust-the-forecast’ strategy, although imbalance volumes
are slightly higher. Adding the constraints in decision and
probability space for this strategy results in a higher profit.
Similarly, the profit for the EUM strategy without constraints
is slightly lower (0.4%) than the profit with the ’trust-the-
forecast’ strategy. The highest profit can be achieved when
using the EUM strategy with CVaR. When considering the
CVaR, the bids are more conservative and thus lower, leading
to fewer deficits and more surpluses, increasing the imbalance
volumes. The actual RTM prices in the test dataset make it
beneficial to have a surplus, resulting in higher profit.

Table V compares the profits between the different un-
certainty models for the different bidding strategies. For the
EUM strategies the LQR models are outperformed by the CPS
models, indicating that using CPS to account for uncertainty is
superior to using quantile predictions. In general, the models
that consider CPS (M4 and M5) perform better than the CP
models without CPS (M2 and M3). Also, the CP models that
consider Mondrian binning (M3 and M5) generally outperform
their counterparts without Mondrian binning (M2 and M4).

The results show that the CPS methods yield a higher
profit than the CP methods for the Newsvendor and the EUM

TABLE IV: Realized profit and imbalance volumes for the dif-
ferent considered bidding strategies. For every bidding strategy
the results are shown for the best-performing combination of
a point prediction model and a CP method.

Bidding strategy CP
method

Profit
[C]

Imbalance
[%]

Benchmark: Perfect information 34422 0.00
Trust-the-forecast RFR-M5 31821 4.98
Worst-case RFR-M4 30648 8.81
Newsvendor (no constraint) RFR-M5 31815 5.23
Newsvendor (10% in decision
space)

RFR-M5 31863 5.10

Newsvendor (10% in probability
space)

RFR-M5 31828 5.05

EUM (no constraint) RFR-M5 31683 5.07
EUM (CVaR with γ=0.75 & β=0.1) RFR-M5 31852 5.60
EUM (CVaR with γ=0.6 & β=0.1) RFR-M5 32033 5.54
EUM (CVaR with γ=0.6 & β=0.2) RFR-M5 32761 6.76

TABLE V: Realized profit (as a % of max. profit for a specific
strategy) for different uncertainty models. With ’con’ standing
for ’constraint’ and ’dec’ for ’decision space’, and with γ=0.6
& β=0.1 for the CVaR.

Newsvendor
(no con.)

Newsvendor
(10% dec.)

EUM
(no con.)

EUM
(with CVaR)

SLQR 99.67% 99.36% 98.64% 98.48%
MLQR 99.46% 99.35% 98.96% 98.88%
RFR-M2 98.90% 98.90% 99.26% 99.06%
RFR-M3 99.16% 98.99% 98.74% 98.95%
RFR-M4 98.90% 98.92% 99.27% 99.09%
RFR-M5 100.00% 100.00% 100.00% 100.00%

strategies, despite having a higher WIS than the CP methods.
Although the WIS is worse for CPS, the additional flexibility
of CPS improves the stochastic decision-making. This flexibil-
ity arises from the fact that the CPS point predictions are not
necessarily centered in the middle of the prediction intervals
(see Fig. 3).

V. DISCUSSION

This section reflects on the different methodological as-
sumptions made in this work, alongside with the limitations
associated with these assumptions. In addition, the implica-
tions of this work is discussed.

Due to the extensive scope of this study, several simpli-
fications were necessary. For instance, it was assumed that
the DAM prices are perfectly known and that the RTM
price clusters accurately represent the actual RTM prices. In
addition, we limited our analysis to linear and tree-based point
prediction models, and considered a limited number of RTM
price clusters, PV scenarios and constraint percentages for
the Newsvendor strategy. Besides, the considered number of
neighbors with KNN and the number of bins with Mondrian
binning was determined through a simplified empirical evalu-
ation. The feature selection step considered the same optimal
feature sets for the SLR and MLR models. Despite these
simplifications, we are confident that the overall trends are
accurately portrayed. Future research could delve into more
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complex models and examine the impact of these simplifica-
tions. Additionally, future research could include the intraday
market, which offers market participants the opportunity to
correct forecasting errors, enhancing flexibility and potentially
leading to different bidding strategies.

When interpreting the results, one should keep in mind that
this study considered different aggregation steps which reduce
the number of extreme values, for instance by averaging the
15-minute RTM prices to hourly values and by aggregating the
175 PV power systems. This mainly impacts the CVaR which
restricts the extreme losses and, therefore, mostly functions
well for extreme scenarios.

It should also be considered that the selection of the
preferred method can differ between energy suppliers. Risk
aversion leads to different considerations with respect to profit
and imbalance. When mostly considering profit, RFR-M5
combined with the EUM with CVaR (γ=0.6 & β=0.1) can be
chosen, which yields 93% of the potential profit with minimal
imbalance. However, if a low imbalance is more important,
the Newsvendor strategy with a 10% constraint in the decision
space is more fitting.

Lastly, this research is limited to quantity bids and does
not include a proposed price bid. Before this framework can
be implemented, it should be extended with a method to
determine the price bids.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel framework leveraging CP,
an emerging probabilistic forecasting method, to enhance
decision-making in electricity markets. In the first step, day-
ahead point predictions of PV power are generated. Subse-
quently, several LQR and CP methods are used to quantify the
uncertainty of the point predictions. Lastly, the prediction in-
tervals and CPD are used as input for several decision-making
strategies to determine DAM quantity bid under uncertainty.
One of the main conclusions is that CP methods outperform
other methods that quantify uncertainty, such as linear quantile
regression. In addition, results show that CPS with KNN
and binning performs best on both profit and imbalance for
almost all considered market bidding strategies. When mainly
aiming for high profits, the EUM strategy with CVaR (γ=0.6
& β=0.1) is recommended. When valuing a lower imbalance
more highly, the Newsvendor strategy with a 10% constraint
in the decision space should be used. To further improve the
decision-making strategies, intraday markets can be included
and the EUM strategy with CVaR should be further explored.

APPENDIX A
PROBLEM FORMULATION EUM STRATEGY

A. EUM without constraints

maximize
p

T∑
t=1

DAtpt+

C∑
c=1

T∑
t=1

−dtwc(DAt+Uc)+stwc(DAt−Dc)

NTcw

subject to st =
N∑

n=1

max(predn,t−pt, 0), ∀T

dt =

N∑
n=1

max(pt−predn,t, 0), ∀T

pt ∈ [0, 1], ∀T
(2)

where the indices t and n represent the timestep and PV
scenario, respectively, the decision variable pt (between 0 and
1 due to normalization) represents the bid size, predn,t is
the prediction of PV power, DAt is the DAM price, Uc is
the up-regulation price in RTM cluster c, Dc is the down-
regulation price in the RTM cluster c, dt is the sum of deficits
over all PV-scenarios, st is the sum of surpluses over all PV-
scenarios, wc is a weight for RTM cluster c, T is the number of
timestamps (i.e., 4514 for the assessment period in this study),
C is the number of RTM clusters (i.e., 20 in this study), N is
the number of PV-scenarios (i.e., 99 in this study) and Tcw is
the sum of all cluster weights (i.e., 3778 in this study, which
is the number of points in the calibration set).

B. EUM with CVaR

maximize
p

(1− β)

C∑
c=1

N∑
n=1

T∑
t=1

prc,n,t+βCVaR

subject to spvn,t = max(predn,t−pt, 0), ∀N,T

st =
N∑

n=1

spvn,t ∀T

dpvn,t = max(pt−predn,t, 0), ∀N,T

dt =

N∑
n=1

dpvn,t, ∀T

prc,n,t = ptDAt−dpvn,t(DAt+Uc)+

spvn,t(DAt−Dc), ∀C,N, T

σc,n,t ≥ VaR − prc,n,t, ∀C,N, T

σc,n,t ≤ 0, ∀C,N, T

CVaR = VaR− 1

1− γ

C∑
c=1

N∑
n=1

T∑
t=1

πc,nσc,n,t

pt ∈ [0, 1], ∀T

(3)

where β is the weight of the CVaR profit in the objective
function, γ is the confidence level, dpvn,t and spvn,t are
the deficit and surplus for PV-scenario n at timestamp t,
respectively, prc,n,t is the profit for RTM cluster c, PV-scenario
n at timestamp t. σ is an auxiliary variable, πc,n is the
probability of the scenario and VaR is the value-at-risk profit.
All other variables are defined in Section A-A.
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