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Abstract—Mixed Integer Linear Programming (MILP) can
be considered the backbone of the modern power system op-
timization process, with a large application spectrum, from Unit
Commitment and Optimal Transmission Switching to verifying
Neural Networks for power system applications. The main issue
of these formulations is the computational complexity of the
solution algorithms, as they are considered NP-Hard problems.
Quantum computing has been tested as a potential solution
towards reducing the computational burden imposed by these
problems, providing promising results, motivating the can be used
to speedup the solution of MILPs. In this work, we present a gen-
eral framework for solving power system optimization problems
with a Quantum Computer (QC), which leverages mathematical
tools and QCs’ sampling ability to provide accelerated solutions.
Our guiding applications are the optimal transmission switching
and the verification of neural networks trained to solve a DC
Optimal Power Flow. Specifically, using an accelerated version
of Benders Decomposition , we split a given MILP into an Integer
Master Problem and a linear Subproblem and solve it through
a hybrid “quantum-classical” approach, getting the best of both
worlds. We provide 2 use cases, and benchmark the developed
framework against other classical and hybrid methodologies, to
demonstrate the opportunities and challenges of hybrid quantum-
classical algorithms for power system mixed integer optimization
problems.

Index Terms—Quadratic unconstrained binary optimization,
Quantum Computing, Benders decomposition, Optimal Trans-
mission Switching, Neural Network Verification

I. INTRODUCTION

Mixed-integer linear programs (MILPs) are pivotal in the
realm of power systems engineering. These mathematical
optimization methods, dubbed as such due to their inclusion of
both continuous and discrete variables, are harnessed for the
modeling and resolution of a diverse array of issues related
to the operation, planning, and control of electrical power
systems. For example, fundamental challenges such as unit
commitment [1], investment planning [2], and optimal trans-
mission switching (OTS) [3] are cast as MILPs. Furthermore,
there is a growing trend toward utilizing additional tools, such
as Neural Network constraint-violation verification [4], which
can also be framed as MILPs.

Nevertheless, the integer aspect introduces a combinatorial
element to the problem, as the solver must traverse various
combinations of discrete choices. With an increase in the
number of discrete variables and their potential values, the
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solution space grows exponentially, classifying the problem
of finding the global solution of MILP models within the NP-
Hard problem category.

Quantum computing is a promising direction to deliver
a solution to the high computational complexity of MILPs.
Recently, authors in [5],[6] have provided compelling evidence
to support the notion that QCs can currently offer valuable
capabilities, even with their inherent noise at the moment, and
prior to the advent of fault-tolerant systems. This includes the
currently available processors. Considering the rapid progress
in the quantum computing field, we expect that these capa-
bilities will increase substantially when effective fault-tolerant
systems for QCs develop in the near future. Therefore, it is
necessary to explore this track, as it can be a methodology that
would help us solve a set of MILP power system problems
that have so far been impossible to solve in an acceptable time
window with reasonable computational recourses, and operate
more efficient, safe, and resilient power grids.

Quantum computing has been investigated for the solution
of MILPs, for instance, in [7] where the authors propose
a Benders decomposition approach to solve a general form
of MILPs, using a QC. However, according to [8] there
are numerous challenges resulting from this method, such
as the choice of inferior feasibility and optimality cuts and
slow convergence towards the end of the algorithm. In [8], a
multi-cut Benders decomposition is presented, during which
the Quantum Processing Unit (QPU) is specifically allocated
to execute a binary optimization subroutine focused on se-
lecting the cuts that should be incorporated into the Master
Problem (MP) to minimize the problem’s size and accelerate
the solution. However, this is done while both the MP and
the Subproblems (SPs) are solved through classical methods,
which slows the algorithm down significantly.

In the current literature, the exploration of quantum al-
gorithms’ application to power systems is still limited [9].
Among them, Ref. [10] presented the first successful solution
of an AC power flow in a real QC. They successfully solved
it for 3 and 5 bus systems, and they discussed scalability
and noise issues of the current ”noisy-era” QCs. Before
that, Ref [11] proposed an algorithm to solve a power flow
with quantum computing but only demonstrated in simulated
quantum simulations. Ref. [12] put forward the idea of com-
bining machine learning and quantum computing to potentially
tackle security and reliability issues in large-scale power grid
systems. Furthermore, in [13] authors use Quantum Annealing
to solve a simple version of optimal phasor measurement unit
placement, which is a crucial problem for the next-generation
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power system design. They showed that in certain cases,
the Quantum Annealing solver surpassed the classical solver
CPLEX in performance.

Many studies have been focused in solving the Unit Com-
mitment problem. In particular, [14] proposed a distributed
algorithm for solving unit commitment. Furthermore, [15]
proposed quantum-circuit-based algorithms for microgrid state
estimation. Following the work of [16], authors of [17] have
proposed a three-block alternating direction method, to solve
the unit commitment problem.

In this work, we provide a framework for transforming
MILP models of power system problems to a ”quantum-
classical solvable form”. In contrast to alternative approaches,
our methodology incorporates mathematical tools or harnesses
the sampling capabilities of quantum solvers to expedite the
solution process. Specifically, in quantum computing, mea-
surements collapse the superposition of qubits’ states to a
specific outcome. The probabilities of different outcomes are
determined by the amplitudes of the quantum states. Repeated
measurements allow for the sampling of these outcomes
according to their probabilities. Similarly, at the end of the
annealing process, the quantum annealer samples from the
final quantum state to obtain solutions to the optimization
problem. The resulting combinatorial problems are solved
solely in a QPU. The derived approximated solution, in
some cases, has been empirically proven to converge faster
to the optimal solution than the classical branch and bound
method. Additionally, we offer a comprehensive Python code
in the form of a tutorial available on our GitHub repository
([18]), which instructs users on how to convert any Mixed-
Integer Linear Program (MILP) into the specified format. We
benchmark this approach on OTS [3] and NN verification
for DC-OPF [4], using both of the two prevailing quantum
approaches: quantum annealing and quantum circuits.

Summarizing, the contributions of this paper are:

• We provide a framework for transforming MILP mod-
els of power system problems to a ”quantum-classical
solvable form”, providing two different acceleration tech-
niques. As part of the contributions of this paper, a
comprehensive Python code, in the form of a tutorial,
on how to solve any MILP problem in this framework is
made publicly available in [18].

• We provide extensive numerical results for large enough
instances that arrive at the limits of the capacity con-
straints of the current available QCs and we discuss the
benefits of each method and the challenges that need to
be addressed to exploit the future quantum advantage.

This paper is organized as follows. Section II covers
Benders decomposition theory, its enhancements, and the
conversion of the MP to a quantum solvable Quadratic Un-
constrained Optimization problem (QUBO). In Section III,
we detail the optimization models for benchmarking, while
Section IV showcases the numerical experiments evaluating
the framework’s performance. Section V discusses the results
and current challenges, and Section VI concludes.

II. PROBLEM FORMULATION

A variety of power system problems can be formulated in
the form:

max
z,y

iTz + cTy

s.t. Az +By ≤ b

z ∈ Z, z ∈ {0, 1}n,y ∈ Rp
+

(1)

where iT and cT are the coefficient matrices of integer and
continuous variables in the objective function, and A and B
correspond to coefficient matrices of integer and continuous
variables in the constraints, respectively. Moreover, b is a
vector of real numbers. These models are a special form of a
bigger umbrella of the MILP models because they consist of
binary variables z (instead of general integer variables) and
continuous variables y.

To exploit the speedup of quantum algorithms [19], [20]
in solving combinatorial optimization problems, which are
integer programs with binary variables, we should separate
the aforementioned MILP models into an integer program
and a continuous program. This can be done using Benders
Decomposition (BD) [21]. The main idea of Benders is that
for each feasible z, the optimal y is determined via a linear
program. Treating y as a function of z, we use a scalar variable
to represent the best y choice for a given z, replacing its
contribution to the objective. Initially, a coarse estimation of
y is employed, followed by a sequence of dual solutions to
tighten the approximation. This process converts the original
MILP problem into a simpler MILP Master Problem and a
linear Subproblem.

According to the above, we can first fix the binary variables
in (1), transforming them to the vector z(n). Therefore we can
write the primal form of the SubProblem as a linear program:

max
y

iTz(n) + cTy (SP)

s.t. By ≤ b−Az(n) : λ (2)

where (n) index denotes the current iteration number. As (SP)
is a convex linear program consisting only of continuous deci-
sion variables, a strong duality condition holds. Consequently
we can define λ as the vector of dual variables associated to
constraints (2) and so we can express its dual form as:

x(z) = min
λ

λ(b−Az(n))T (Dual-SP)

s.t. Bλ ≥ c

λ ≥ 0

At this point, we define extreme points set T and extreme rays
set K. We denote extreme point t as pt and extreme ray k as
rk and they belong to the polyhedron:

Q = {λ ∈ Rm
+ | Bλ ≥ c} (3)

Extreme rays and extreme points can be acquired from
(Dual-SP)’s decision variables. Specifically, the (Dual-SP) is
unbounded and x(z) = −∞, then λ expresses a dual ray rk

′

,
rendering (SP) infeasible. This means that x does not allow a
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feasible solution to (1), and that helps us to introduce a new
feasibility cut in the MP as:

(b−Az)rk
′

≥ 0 k
′
∈ K (4)

However when (Dual-SP) is feasible, then dual variables λ

denote an extreme point pt
′

, shaping an optimality cut as:

(b−Az)pt
′

≥ s t
′
∈ T (5)

where s is a scalar value denoting the contribution of contin-
uous variables to the MP:

max
z

iTz + s (MP)

s.t. pt(b−Az) ≥ s for t ∈ T

rk(b−Az) ≥ 0 for k ∈ K

The algorithm iteratively reduces the optimality gap. The
process is interrupted if the optimality gap is lower than a
small positive number ϵ. It has been shown that Benders
Decomposition converges to the global optimum of the initial
MILP problem [8].

A. Improvements

1) Optimization Method I: It has been reported that in some
cases Benders Decomposition can have slow convergence
times. However, as pointed out in references [22], [23], [24],
there are multiple strategies, from the classical mathematical
programming perspective, to enhance Benders decomposition.
Consequently, we modify the conventional BD algorithm to
tackle the slow convergence problems, by guiding the choice
of binary variables and selecting efficient cuts.

Smart cuts or Pareto-optimal cuts selection were investi-
gated in [22]. The authors of the aforementioned paper first
introduced the term ”domination” for cuts. Specifically a cut
l
′
(b−Az) dominating the cut l

′′
(b−Az) when:

l
′
(b−Az) ≥ l

′′
(b−Az) ∀ z ∈ Z (6)

for all z for a strict inequality for at least one solution z.
Therefore they denote the pareto-optimal cut as the cut that
does not get dominated by any other cuts.

Furthermore in [22], the definition of the core point was
introduced and they connected it to the selection of Pareto
optimal cuts. The core point of Z (denoted as z(n)) is any
point from the set Z that lies within the relative interior of the
convex hull Yc of Y . Finally, [24], exploited the connection
between core points and Pareto optimal cuts, proposing an
independent optimization problem to generate Pareto optimal
cuts as:

min
λ

λ(b−Az(n))T (Pareto-SP)

s.t. Bλ ≥ c

λ ≥ 0

where z(n) is a core point of Z. The optimal solution in the
proposed problem is Pareto optimal.

Still, according to [25], [26], it is very hard to find a core
point z(n). To tackle that, [24] used the following core point
approximation technique:

z(n) =
1

2
z(n−1) +

1

2
z(n−1) (7)

with a random z(0). With this we can approximate a core point
gradually, as in every iteration, we get a point between two
solutions, which gradually approaches a core point.

Another problem of BD is the tailing effect [23]. Specif-
ically, in [23], it has been observed that algorithms present
an unstable behavior when they approximate the solution.
Therefore, they proposed to add an extra regularizing term
to the objective function. This term is the Hamming distance
between z(n) and z(n−1). Consequently, we can write the
resulting MP as:

max
z

iTz + s+ ||z − z(n−1)|| (MP-Opt)

s.t. pt(b−Az) ≥ s for t ∈ T

rk(b−Az) ≥ 0 for k ∈ K

A benefit of this method is that we can remove previous cuts
if the algorithm has to execute many iterations [23]. This can
reduce the memory alongside the qubits requirements of the
algorithm. The whole algorithm with optimization method I
can be described by Algorithm 1.

Algorithm 1: Optimization Method I
Data: Problem (1)
Result: z∗,y∗

n← 1;
z, z(0) ← 0;
while |UB − LB| > ϵ do

Solve (Dual-SP) and get x(n)(z);
LB ← x

(n)
z ;

z(n) = 1
2z

(n−1) + 1
2z

(n−1);
Solve (Pareto-SP) and get x(z(n)),λ;
if x(z(n))) = −∞ then

Add extreme ray K ∪ {k};
else

Add extreme point T ∪ {t};
end
Solve (MP-Opt) and get s(p), z(n);
UB ← s(p);
n← n+ 1;

end

2) Optimization Method II: This optimization methodology
exploits the ability of quantum algorithms to provide multiple
solutions at the same time, with a technique called sampling.
During our experiments, we found that the exchange of data
between QPU and CPU is very inefficient. Consequently, to
minimize the access time to the QPU, in every iteration we
choose to run the (Dual-SP) for the best R solutions that the
QPU provides. Therefore, Algorithm 2 leverages the ability of
QCs to provide multiple solutions, to accelerate the solution
of MILPs.
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B. QUBO transformation
Despite the two reformulations in the linear SPs, the MP

resulting from Benders Decomposition cannot be directly
solved by a QC, as it is still a MILP, as it contains the
scalar variables. As provided evidence e.g. [27] show that
QC can solve certain combinatorial problems faster than
classical computers [27], we try to transform the (MP-Opt)
to a ”quantum solvable” form: that is a QUBO. Note that
Higher-Order Binary Optimization (HOBO) is applicable as
it can be always transformed to a QUBO [28]. To this end,
we write the canonical form of optimality and feasibility cuts
constraints, adding scalar variables at1, a

k
2 ≥ 0 as:

pt(b−Az) + at1 == s (8)

rk(b−Az) + ak2 == 0 (9)

Then, following the table shown in [7], we add the penalty
weights P1, P2 and we raise the constraints to the square,
before writing the resulting QUBO as:

max
z

iTz + s+ ||z − z(n−1)||+ (MP-QUBO)∑
t∈T

P1(p
t(b−Az)− s+ at1)

2+∑
k∈K

P2(r
k(b−Az) + ak2)

2

However, (MP-QUBO) still consists of continuous variables,
which cannot be understood by the QC. To tackle this problem
we use a fundamental computer science technique, to approx-
imate the continuous variables, called discretization or fixed-
point approximation which is a two’s-complement number
system that encodes positive and negative numbers in a binary
representation as:

s(p) ≈
acc∑
i=0

2ippos
i +

acc∑
i=0

2−ipdec
i −

acc∑
i=0

2ipneg
i

at1 ≈
e1cc∑
i=0

2ia
[t]
i

ak2 ≈
e2cc∑
i=0

2ia
[k]
i

where acc are the number of qubits that are used to ap-
proximate either the positive, decimal, or negative part of s.
Furthermore, t is the number of extreme points for at1 and k
is the number of extreme rays. Notice that s is approximated
with some negative, positive, and decimal numbers, but at1, a

k
2

are only approximated as positive integer variables. This
does not degrade the quality of the solutions, because of the
unconstrained nature of the resulting problem. The number of
qubits required for approximating s is expressed by acc which,
must follow the following equation:

acc ≥ log2(1 + max
y

cTy) (10)

According to (10), the number of qubits used to approximate
the scalar variable s, which represents the contribution of the
continuous function cTy to (MP-Opt)’s objective function,

must be sufficiently large to be greater than equal than the
maximum value this function can take. Moreover, following
(10):

e1cc ≥ log2(max
z,s

pt(b−Az)− s) (11)

e2cc ≥ log2(max
z

rk(b−Az)) (12)

Note that the auxiliary variables at1 and ak2 need to be allocated
with a sufficient number of qubits to accurately approximate
the maximum value of the sum of the remaining terms in
equations (8) and (9), respectively.

Algorithm 2: Optimization Method II
Data: Problem (1), R
Result: z∗,y∗

n← 1;
z, z(n) ← 0;
while |UB − LB| > ϵ do

for i ← 0 to R do
Solve (Dual-SP) and get x(n)

i (z),λ;
LB ← x

(n)
i (z);

if |UB − LB| > ϵ then
Finish;

end
if x(z(n))) = −∞ then

Add extreme ray K ∪ {k};
else

Add extreme point T ∪ {t};
end

end
Solve (MP-Opt) and get s(p), z(n);
UB ← s(p);
n← n+ 1;

end

We note that according to [29], it is feasible to ensure
convergence without the necessity of solving the MP to
optimality in each iteration. However, this study does not delve
into the practical implications of such an approach.

III. BENCHMARK MODELS

In this section, we outline the formulation of both the
OTS and NN verification problem. We have selected these
two problems as benchmarks because the former’s solution is
pivotal in Power Systems, while the latter presents a relatively
novel problem with the potential to transform Power Systems
Operation.

A. Optimal Transmission Switching (OTS)

The Optimal Transmission Switching (OTS) is a fundamen-
tal power systems problem. It involves maximizing the effi-
ciency of the current system and addressing increasing demand
using the already established infrastructure. The model of OTS
is a mixture of an Optimal Power Flow (OPF), alongside

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



binary decisions for the optimal switching of transmission
lines. Therefore, we can formulate the OTS problem as:

min
gi,pl,θi,xl

∑
i∈B

cigi (13a)

s.t. |pl| ≤ P lxl ∀l ∈ L (13b)

0 ≤ gi ≤ P i (13c)

gi +
∑
l∈L+

i

plxl =
∑
l∈L−

i

plxl +Di (13d)

pl ≥ Bi,j(θi − θj)−M(1− xl) (13e)
pl ≤ Bi,j(θi − θj) +M(1− xl) (13f)∑
l∈L

(1− xl) ≤ E (13g)

gi, θi ∈ R ∀i, j (13h)
xl ∈ {0, 1}, pl ∈ R ∀l ∈ L (13i)

In this formulation, we have used the DC-OPF approximation
as it serves our purposes. gi expresses the generation dispatch
of generators in node i and pl expresses the power flow in
line l, while P l is the maximum power limit of the line.
Furthermore, L+

i is the set of lines that inject power to the
node i, and L−

i is the set of lines that export power from the
node. Moreover, Di represents the demand in bus i. Finally,
θi represents the voltage magnitude in bus i, Bi,j is the
susceptance of line l = (i, j) and xl is the variable that denotes
the status of the line i.e. for xl = 1 the line is operational and
for xl = 0 the line does not transmit power.

B. Neural Network verification for power systems
Neural Network constraint violation verification is a crucial

step toward finding a scalable and trustworthy parametrized
policy for problems in safety-critical systems. Recently, in
[4], the authors proposed a direct MILP transformation of
Neural networks that ensures precise worst-case performance
guarantees, on constraints violations, across the entire range
of possible inputs, for the DC-OPF problem:

max
ẑk,zk,pd,p̂g

pg − pg or p
g
− pg (14a)

s.t. p
d
≤ pd ≤ pd (14b)

(p̂g)
slack =

∑
i∈B

(Mdpd)
i −

∑
i∈B\slack

(p̂nsg
g )i (14c)

ẑ1 = W1pd + b1 (14d)
ẑk+1 = Wk+1zk + bk+1 (14e)
p̂nsg
g = WK+1zK + bK+1 (14f)

zk = σ(ẑk) (14g)
ẑk, zk ∈ R ∀k (14h)
pd ∈ R ∀d (14i)
p̂g ∈ R ∀g (14j)

Constraints (14d)-(14j) are the exact representation of a Neural
Network with K layers, and neurons with ReLU activation
functions. In (14j), zk expresses the output vector of neurons
in layer k while ẑk expresses their input vector. Function σ(.)
is the activation function, applied elementwise on vector ẑk.

Fig. 1: Solution Workflow of Proposed Methodology

In this paper, and in most neural network implementations
in recent years, we use the ReLU activation function, which
can be expressed as max(ẑk, 0). Following [4], we use the
big-M method to convert this to a set of linear constraints
with binaries (for more information, please see [4]). In (14e)-
(14f), Matrix W represents the linear weights between layers
K and K + 1, and vector bk+1 represents the biases in each
neuron of layer K+1, which are added before the application
of the activation function σ(.) in layer K + 1. Following
this work we integrated in the aforementioned formulation
the DC-OPF equations (14c). In particular, variables pd and
p̂nsg
g are the vectors of demand and generation (without the

slack bus generation) respectively. Consequently, by changing
the objective function, one could determine the maximum
constraint violation of the trained NN, for any DC-OPF
constraint. However, in the current formulation, the objective
is to find the maximum upper or lower limit violation of the
active power generation pg ∈ p̂g of the generator g, where
p̂g := {p̂nsg

g , (p̂g)
slack}

A major drawback of this NN verification method is its
scalability, although it is very accurate. Specifically, since
Neural Networks can become very large, it is very hard
computationally to run the resulting verification problems. The
proposed framework could, theoretically, reduce the computa-
tional burden of this problem, in ideal settings.

IV. NUMERICAL EVALUATION

In this section, we present the numerical evaluation of our
method, validating the proposed framework. For the quantum
solution we used the Hybrid solver provided by D-Wave Leap
[30] and for the classical solver we used Gurobi [31]. The
solution workflow, showing the information exchange between
CPU and QPU can be shown in Fig.1. We denote that for
”Mean Iteration Time” in Table I, Table II and Table III, we
include only CPU and QPU Access time [32]. Moreover, with
”Minimum objective function until Iteration” on the y axis of
Fig.2c-2h, we mean min(UB) and max(LB) found until a
given iteration in the x axis.

In the following section, we will compare the proposed
methodology with the following:

• Single Step MILP Optimization as shown in (1) (SSO)
• Conventional Benders Decomposed problem solved by

CPUs only (C-BD-C)
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• Accelerated Benders with optimization method I Decom-
posed problem solved by CPUs only (BD-C-I)

• Accelerated Benders with optimization method I Decom-
posed problem solved by CPU and QPU (BD-QC-I)

• Accelerated Benders with optimization method II De-
composed problem solved by CPU and QPU running the
(Dual-SP), R times per Benders Iteration (BD-QC-II-R).
We provide numerical results for R=2,3,5,10

We note that the Quantum Annealing solutions used in this
section and Quantum Approximate Optimization Solutions
benchmarked in the next section, are heuristic solutions.
Therefore the results of the Branch and Bound Algorithm of
Gurobi for the solution of (SSO) are used as a ground truth,
to assess the quality of the benchmarked solutions.

A. Benders Benchmarks

Initially, we assess the efficacy of the enhancements in-
troduced in comparison to the conventional Benders decom-
position method. Therefore, we benchmark the conventional
Benders decomposition (C-BD-C) against the proposed ac-
celerated versions (BD-C-I). Figures2a and 2b, illustrate the
disparity in convergence between the accelerated (BD-C-
I) and the conventional (C-BD-C) approaches for the NN
verification problem and the OTS problem, respectively. The
results demonstrate the substantial positive influence of the
algorithmic modifications on both performance and conver-
gence speed. Specifically, for NN verification, the proposed
enhancements accelerated the algorithm by 61%, and in the
case of OTS, the acceleration was 38%. Furthermore, it is
noteworthy that the trailing effect was significantly mitigated
in the BD-C-I approach.

Moreover, comparing the iterations needed for (BD-QC-II-
R) with (BD-QC-I) we can view that for both NN verification
and OTS there was a reduction in the number of iterations
needed to converge. This happens because in every iteration
we produce more cuts. However, as Tables I,II and III show, in
the case of NN verification (BD-QC-II-R) methodology does
worse than (BD-QC-I) in all cases, as every iteration of the
former needs more time than every iteration in the latter.

B. OTS Benchmarks

1) IEEE 6 Bus Benchmark: Initially, we conducted experi-
ments using the IEEE 6-Bus system [33], which consists of 11
lines, to assess the effectiveness of two methodologies, (BD-
QC-I) and (BD-QC-II-2), in comparison to the established
benchmarks of (C-BD-C) and (SSO). For this evaluation, we
executed each benchmark five times while setting the param-
eter E in (13g) to 5. Furthermore, the parameters acc, e

1
cc, e

2
cc

were set to 10. The average solution times for these instances
are presented in Table I.

Notably, it is evident that (BD-QC-II-2) outperforms the
other methodologies, indicating a clear quantum advantage in
this context. Additionally, (BD-QC-I) appears to be superior
to the conventional approach represented by (C-BD-C), but
inferior of (SSO).
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(e) (BD-QC-I) solving OTS for
IEEE 14 Bus
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Fig. 2

2) IEEE 14 Bus Benchmark: Assessing the scalability
of the hybrid classical-quantum algorithms, we expand our
numerical results, by solving larger instances of OTS, on the
IEEE 14 Bus system. This evaluation involved optimizing 20
binary variables, with the parameter E set to 17. Moreover,
the parameters acc, e

1
cc, e

2
cc were set to 18. Table II presents

the results for the OTS solutions on the 14-bus system. It is
essential to highlight that all methods successfully achieved
the optimal value. What is particularly striking is that some
methods relying on harnessing QCs gave close results to those
relying solely on conventional CPUs. In this regard, (SSO)
emerges as a standout solution. Intriguingly, (BD-QC-II-5)
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TABLE I: Benchmarks comparison for the Optimal Transmis-
sion Switching problem for the IEEE 6-Bus system

6-Bus OTS Results
Method Mean Iteration

Time (s)
Iterations Objective

Value (MW)
SSO 0.281 0 280.32
C-BD-C 0.043 8 280.32
BD-QC-I 0.050 7 280.32
BD-QC-II-2 0.056 3 280.32

outperforms the other benchmarks except (SSO), which has
a comparable solution time. It is worth noting that, (BD-C-
II-5) outperforms its counterparts, because the others either
result in unnecessary cuts or result in too many QPU calls.
Therefore, parameter R became a tunable hyperparameter.

As shown in Fig.2c and Fig.2e (BD-QC-I) takes one itera-
tion more than (BD-C-I), which can be possibly attributed to
the inherent noise associated with NISQ. Finally, in Fig.2g,
the behavior of the methods (BD-QC-II) is depicted.

TABLE II: Benchmarks comparison for the Optimal Trans-
mission Switching problem for the IEEE 14-Bus system

14-Bus OTS Results
Method Mean Iteration

Time (s)
Iterations Objective

Value (MW)
SSO 0.38 0 280.32
BD-C-I 0.04 15 280.32
BD-QC-I 0.05 16 280.32
BD-QC-II-3 0.07 6 280.32
BD-QC-II-5 0.08 5 280.32
BD-QC-II-10 0.28 3 280.32

C. NN Verification Benchmarks

Neural Network verification was more challenging to solve,
as we can see from the increased number of iterations needed
to converge. The tested neural networks contained 3 input
neurons, and 3 output neurons alongside 2 hidden layers with
20 neurons each. The NN was trained to determine the DC-
OPF result applied on the IEEE 9-bus system. Parameters
acc, e

1
cc, e

2
cc were set to 20. Moreover, In Fig.2f we can observe

that the algorithm converges in 79 iterations, in contrast with
(BD-C-I) method which only needed 70 iterations to converge.
Similar to the previous test case in section IV-B, (SSO) was
the best benchmark. In this instance, we can observe that
(BD-QC-I) outperforms all (BD-QC-II) methods, in solution
time. It becomes, thus, obvious that different decomposition
techniques are most suitable for delivering the best results
in different problems. Finally, parameter R is crucial for the
performance enhancement of the method (BD-QC-II).

TABLE III: Benchmarks comparison for the NN Verification
problem

NN Results
Method Mean Iteration

Time (s)
Iterations Objective

Value (MW)
SSO 0.19 0 0.74
BD-C-I 0.05 69 0.74
BD-QC-I 0.06 79 0.74
BD-QC-II-3 0.09 65 0.74
BD-QC-II-5 0.12 63 0.74
BD-QC-II-10 0.16 60 0.74

V. DISCUSSION

Besides our experiments with Quantum Annealers (such
as D-Wave LEAP), which we presented in the previous
Section, we also explored implementing the aforementioned
simulations using circuit-based QCs by leveraging the Quan-
tum Approximate Optimization Algorithm (QAOA). These
experimental runs were conducted on IBM’s latest available
Eagle r3 Processor, with capacity of 127 qubits. Circuit-based
QCs are considered general purpose QCs, and are expected to
become one of the main quantum computing technologies in
the future. In contrast, Quantum Annealers have been tailored
to solve specifically optimization problems. Still, circuit-based
QCs are less mature compared to the Quantum Annealers,
when it comes to optimization problems, and suffer from
increased average error per gate. Beyond a certain circuit
depth, which is between 60-100 gates at the moment (Oc-
tober 2023), real circuit-based QCs become too noisy. The
circuit depth required for our QAOA implementation to solve
(MP-QUBO) was 500 gates, which hampered our efforts to
obtain a solution. Hence, it appears that Quantum Annealing
might be a more suitable alternative for solving unconstrained
binary optimization problems at this stage. This claim is
supported by the recent work [34], which empirically proves
that Quantum Annealing technologies will constantly perform
better than circuit based QAOA for combinatorial optimization
problems solution. Therefore, in this work, we showed that
quantum annealing can already deliver faster solutions for
smaller power system sizes, and has the potential to scale
to larger problems in the near future. At the same time, as
a research community we must also concentrate our efforts
in formulating optimization procedures with reduced circuit
depth for circuit-based QCs. Considering the major efforts
taking place in the quantum computing community, in the near
future improved error mitigation strategies will appear which
will address several of the current scalability challenges of
quantum computing. The power systems community shall be
ready with the suitable formulations for quantum optimization
tools in order to directly exploit the potential for faster
computing times.

As far as the methods we presented in this paper are
concerned, besides circuit depth, one additional key factor to
consider when we design a quantum optimization method is
how our chosen method affects the qubit requirements. As
we use Benders decomposition method, the need for qubits
increases linearly with the number of constraints in (MP-Opt).
This happens because we introduce integer variables such as
at1 and ak2 in each constraint, which in turn affects the number
of qubits required, as explained in (10) to (12). Developing
approaches that could arrive at similar results with a reduced
number of qubits will lead both to scalable solutions and faster
computing times. To facilitate these efforts, we have placed
the Python code for all the presented approaches online, in
the form of a tutorial, so that the research community may
use this as a starting point for future improvements.

VI. CONCLUSION

This paper introduces a framework for transforming Mixed
Integer Linear Programs (MILPs) for power system problems
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to a ”quantum-classical solvable form” in order to exploit the
benefits of quantum optimization solvers. MILPs play a pivotal
role in power system operation and planning, including e.g.
unit commitment and optimal transmission switching, while
they have recently emerged as a tool for trustworthy machine
learning, e.g. for solving neural network verification problems
for power systems. We introduce a general framework employ-
ing a hybrid “quantum-classical” approach and specifically
utilizing an accelerated version of Benders decomposition. We
apply this framework to two use cases: Optimal Transmission
Switching and Neural Network verification for DC-OPF. We
show that for small problem sizes, Quantum Annealers already
achieve faster computation times than classical computing.
Our experiments with larger problems in Quantum Annealers
and real circuit-based QCs showed that future work needs to
explore how to exploit the advantages of quantum optimization
through scalable methods that require reduced circuit sizes.
Therefore, to facilitate future efforts in the power systems
research community, one of the contributions of this paper
is that all our code, in the form of a tutorial in Python, is
online available in [18].
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