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Abstract—This work investigates and improves methodology
for approximating hydropower systems by feasibility spaces,
which can be embedded in the stochastic dual dynamic pro-
gramming algorithm and applied in the context long-term
hydrothermal scheduling. The feasibility spaces are derived
from optimization of the detailed hydropower system and are
expressed in few dimensions to facilitate efficient computations.
Test results from a case study for the Norwegian power system
demonstrate how feasibility spaces serve to realistically constrain
the hydropower system.

Index Terms—Power generation scheduling, hydroelcetric
power generation, optimization methods, stochastic processes.

I. INTRODUCTION

Long-term scheduling (LTS) of hydropower storages is an
important task in hydro-dominated power systems which is
typically accommodated in a single computer model with a
planning horizon of multiple years. LTS models are important
in toolchains for operational planning [1], and are frequently
used for planning tasks, such as system analyses [2], expansion
planning [3], and maintenance planning [4]. As LTS models
are normally not used for detailed system dispatch, the need
for technical details in such models constitutes a trade-off
between accuracy of results and computation time. On the
one hand, explicit treatment of physical reservoirs, plants, and
waterways in hydro-dominated systems may lead to excessive
computation times. On the other, system simplifications in LTS
models could lead to time-inconsistent policies [5], revealing a
need for embedding more details from the short-term schedul-
ing into LTS models [6].

A variety of methodologies have been proposed for solving
the LTS problem, and the use of methods based on opti-
mization has matured over the last decades [7]. In particular
the stochastic dual dynamic programming (SDDP) algorithm
introduced in [8] has been widely applied in operative schedul-
ing models [9], [10], and is subject to improvements and
extensions by the research community [11]–[13].

Equivalent representations (ER) of the reservoirs and plants
in a system or an area is a commonly used technique to reduce
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dimensionality and computation time in hydrothermal schedul-
ing models [9], [10], [14]–[18]. The use of ERs, where the
sum of potential energy in the reservoirs is represented rather
than the water in each reservoir, was introduced in [19], and is
often found to be a reasonable approximation for systems with
large regulation capability and hydrologically homogenous
basins [20]. In general terms, ER parameters are fitted so
that the simulated results of the equivalent system are similar
to those obtained from the detailed system. As discussed
in [21], and later demonstrated in [22], local constraints on
reservoirs, flows and generations seen in the detailed system
are difficult to account for in aggregated models, possibly
leading to suboptimal use of hydropower resources. Moreover,
ER parameters are typically estimated prior to running the LTS
optimization models, and the parameter state-dependencies
cannot be easily accounted for.

A different technique was presented in [23], constraining
decisions related to the aggregated hydropower system by
feasibility spaces defined by linear inequalities (or cuts). These
linear inequalities can be directly derived from optimization of
the detailed hydropower system. The feasibility spaces were
embedded in the SDDP algorithm in [23], where aggregated
reservoir volumes and inflows constitute the state variables.
The state-dependency was accounted for, allowing feasibility
spaces to be shared between different states within a given
decision stage in the SDDP algorithm. A similar methodol-
ogy is presented in [24], where low-dimensional hydropower
surfaces are computed for complex power plants based on a
optimization of the detailed hydropower system. Differently
from [24], the feasibility spaces in [23] represent cascaded
systems and are demonstrated in a context of a stochastic
scheduling model.

Being a direct derivation from optimization of the detailed
system, and with a well-defined state-dependency that can be
accounted for in LTS algorithms such as SDDP, the feasibility
spaces are worthwhile further exploration. In this work the
SDDP algorithm is applied to an aggregated representation of
the Norwegian hydropower system which is constrained by
feasibility spaces. The work in [23] is extended in two ways.
First, the dimensionality of the feasibility space is significantly
reduced to improve computational performance. Second, the
method is demonstrated on a representation of the Norwegian
power system. Consequently, this work contributes to further
develop and verify the application of feasibility spaces within
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the SDDP algorithm for the purpose of striking a better balance
between hydropower system representation and computation
time in LTS models.

The paper is outlined as follows. First, the overall problem
is described followed by a detailed mathematical formulation
of the decomposed stage-wise decision problem in Section II.
Subsequently, the process of creating feasibility spaces is
elaborated in Section III. Computational experiments with
the presented model are presented in Section IV, before
concluding in Section V.

II. PROBLEM DESCRIPTION

A. Problem Formulation and Decomposition

The LTS optimization problem can be defined as in (1),
where xt are the state variables yt the stage variables for each
decision stage t. One seeks an operating strategy minimiz-
ing the expected cost of supplying electricity in (1a), while
accounting for the end-of-horizon valuation of stored water
in Ψ(xT ), and respecting constraints in (1b)-(1d). A planning
horizon of multiple years is assumed, with weekly decision
stages, and with a finer time discretization, referred to as
time steps, within the week. The stage variables represent the
operational decisions to be made in each stage and time step,
while state variables transfer information about the system
state between stages.

min
(x1,y1),...,(xT ,yT )

E

{
T∑

t=1

ft(xt, yt) + Ψ(xT )

}
(1a)

s.t. Wxt +Hxt−1 +Gyt = h(ξt) (1b)
Byt = 0 (1c)
(xt, yt) ∈ Xt (1d)
∀t ∈ {1, 2, . . . , T}

The constraints are indicated in (1b)-(1d), where the initial
state vector x0 is given, Xt is the feasible set for the de-
cision variables of decision stage t, and W, H, G, and B,
are matrices of suitable dimensions. The expectation in (1a)
is taken over the stochastic inflow. Inflow to the EERs is
represented by a vector autoregressive model of first order
according to the procedure described in [25]. The right-hand-
side parameter vector h(ξt) in (1b) is dependent on the random
vector of inflow ”white noise” ξt whose distribution is known,
and where ξt are the realizations. Although the focus is on
uncertainty in inflow in this work, other uncertainties such
as wind power and electricity demand can in principle be
included in the autoregressive model and treated within the
SDDP algorithm. Examples of joint treatment of inflow and
wind power uncertainty within SDDP can be found in [26].

The problem in (1) can be classified as a multi-stage
stochastic optimization problem, which may be efficiently
solved by decomposition techniques [27]. This work applies
the SDDP algorithm, which is a sampling-based variant of
multi-stage Benders decomposition. The problem in (1) can be

decomposed into stage-wise nested linear programming (LP)
problems of type:

Qt(xt−1) = min
xt,yt

ft(xt, yt) + αt(xt) (2a)

s.t. (xt, yt) ∈ Xt(xt−1, ξt) (2b)

In short, the SDDP algorithm consists of forward and
backward iterations, repeatedly solving stage-wise decision
problems of type (2). The variable αt expresses the future
expected cost seen from the end of stage t. This variable
will gradually be constrained by Benders cuts constructed in
the SDDP backward iterations. The SDDP forward iterations
provide simulated state space trajectories corresponding to a
set of sampled inflow scenarios.

In Section II-B we elaborate on the stage-wise decision
problem in (2), while the creation of feasibility spaces is
described in Section III.

B. Stage-wise Decision Problem

The decision problem for a decision stage t with time steps
k ∈ K is defined as an LP problem in (3), detailing the general
formulation in (2). The system is grouped into price areas
a ∈ A which are simply referred to as areas in the following.
It is assumed that decisions related to hydropower describe an
aggregated response per area, with no grid bottlenecks within
the area. In the formulation below hourly time steps are as-
sumed without explicit conversion between energy and power,
to ease presentation. Note that some technical constraints, such
as ramping constraints, may need a finer time resolution to
meet their intended purpose. Variable units are either in e (α),
MWh (pH , pG, pD, pR, qS , r, v, I, f ), or MW (c).

Qt(v
∗
t−1, zt−1) = min

∑
k∈K

∑
a∈A

[ ∑
g∈Ga

CG
gtp

G
gtk

−
∑
d∈Da

CD
dtp

D
dtk + CRpRatk

]
+ αt (3a)

vt−1 = v∗
t−1 : πv (3b)

zt = Φzt−1 + ϵt : πz (3c)
Iat = σatzat + µat ∀a (3d)

vat +
∑
k∈K

pHatk + qSat − va,t−1 − Iat = 0 ∀a (3e)

pHatk +
∑
g∈Ga

pGgtk −
∑
d∈Da

pDdtk + pRatk

+
∑
ℓ∈L+

a

fℓtk −
∑
ℓ∈L−

a

fℓtk ≥ Datk −Watk ∀a, k (3f)

∑
a∈A

cHat ≥ R (3g)

pHatk − cHat ≥ PH
at ∀a, k (3h)

pHatk + cHat ≤ P
H

at ∀a, k (3i)

pHatk − pHat,k−1 − rat ≤ 0 ∀a, k (3j)
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pHat,k−1 − pHat,k − rat ≤ 0 ∀a, k (3k)

αt +
∑
a∈A

πv
actvat +

∑
a∈A

πz
actzat ≥ βB

ct ∀c (3l)

γvvat + γeeHat + γrrat + γccHat

+ κvva,t−1 + κiIt ≤ βF
act ∀a, c (3m)

eHat −
∑
k∈K

pHatk = 0 ∀a (3n)

0 ≤ pGgtk ≤ P
G

gt ∀g, k (3o)

0 ≤ pDdtk ≤ P
D

dt ∀d, k (3p)

V at ≤ vat ≤ V at ∀a (3q)

− F ℓt ≤ fℓtk ≤ F ℓt ∀ℓ, k (3r)

The vectors of energy volumes (v∗
t−1 =

[
v∗a,t−1,∀a

]
) and

normalized inflows (zt−1 =
[
z∗a,t−1,∀a

]
) from the previous

stage are considered state variables, so that xt =
[
v∗
t−1, zt−1

]
.

The objective in (3a) seeks to minimize the costs associated
with operation of the system in the current decision stage and
the expected cost of operating system in the future. The current
cost comes from thermal generation (pG) at marginal cost CG

and curtailment of price-inelastic demand (pR) at marginal
cost CR, while the coverage of price-elastic demand (pD) is
seen as a revenue with marginal value CD. The sets Ga and
Da comprise the thermal generators and price-elastic demands
in area a, respectively. The future expected cost is represented
by αt which is constrained by Benders cuts in (3l).

In (3b) a copy of the reservoir volume state variables
are taken, for the ease of finding their dual values πv . The
weekly normalized inflow (zt = [zat,∀a]) to each area
is described in (3c), as a vector autoregressive model of
first order. The correlation matrix (Φ) and residuals (ϵt) are
fitted to observations, where residuals are adapted to a three-
parameter lognormal distribution according to [25], and where
the normalized inflow is converted to energy inflow (Iat) by
using the standard deviation (σat) and mean (µat) in (3d).

Hydro energy storage balances per area are provided in (3e),
where the energy storage (vat) is balanced against hydropower
generation (pH ), spillage (qS), initial storage, and inflow. An
energy balance for each price area and time step is defined
in (3f), allowing exchange of energy (fℓ) between connected
areas to L+

a and from L−
a area a. Price-inelastic demand (D)

and wind power (W ) are treated as parameters in the energy
balances.

A reserve capacity requirement (R) for the system is
included in (3g), where reserved capacity per area (cHat) is
accounted for in generation limits of the area in (3h) and (3i).
As a simplification, it is assumed that i) the hydropower system
should cover the reserve requirement R alone, ii) that the
area contributions are constant over the week and symmetric
with respect to up- and down-regulation capacity, and that
iii) reserves can be exchanged across the system without grid
bottlenecks.

In (3j) and (3k) a maximum allowed ramping rate (rat)
limits the ability to change hydropower generation upwards

and downwards between time steps, respectively. Note that the
ramping rate is a decision variable that enters the feasibility
cuts, as described in Section III.

Benders cuts in (3l) are constructed in the backward itera-
tion of the SDDP algorithm and comprise elements from cut
coefficient vectors πv , πz , and βB , where πv and πz are
extracted as dual values from (3b) and (3c), respectively.

Feasibility cuts in (3m) constrain decisions related to the
hydropower system for a specific area, and are expressed in
the dimensions of end volume (vt), sum energy production
(eH ), maximum allowed ramping rate (r), reserve capacity
(cH ), initial storage (vt−1), and inflow (I), and where γ, κ,
and βF denote the feasibility cut coefficients. The derivation
of feasibility cuts is further described in Section III. Note that
(3n) defined the auxiliary variable eH to ease the formulation
in (3m). Variable boundaries are presented in (3o)-(3r).

III. FEASIBILITY SPACES

Ideally, the detailed hydropower system should be consid-
ered explicitly in the problem formulation in Section II-B. For
large-scale hydropower systems this typically involves several
hundreds of storages with separate time series for inflow,
substantially increasing the state space to be considered in the
SDDP algorithm. Instead, a spatial decomposition technique
is applied where the system problem in (3) is viewed as the
master problem providing the aggregate hydropower schedule
per area, and where a set of detailed hydropower problems per
area of type (4) are the subproblems in which the feasibility
of aggregated schedules is tested. The subproblems are formu-
lated as LP problems under the assumption that hydropower
operational costs can be neglected. In this setup, details in the
hydropower system are coordinated between the master and
subproblems through feasibility cuts which, under conditions
elaborated in [23], may provide an exact approximation of the
detailed hydropower system.

The feasibility cuts in (3m) coordinate aggregate hy-
dropower decisions (xt, yt) provided the initial state xt−1 with
a detailed system description, as illustrated in Fig. 1 and de-
scribed below. In (3), the operation of the hydropower system
for each area a is represented by four variables: stored energy
at the end of the decision period (vat), energy production (eHat),
maximum allowed ramping (rat), and reserved capacity (cHat).
State variable decisions are classified as xt = {vat}, stage
variable decisions as yt = {eHat, rat, cHat}, and initial states as
xt−1 = {va,t−1, It}.

The detailed hydropower problem per area a and decision
stage t is formulated as in (4), where A, M, Cx, Cy , and E
are matrices of suitable dimensions.

min
(xd

at,uat)

∑
uat (4a)

s.t. Axd
at +Mx∗

a,t−1 = 0 : κ (4b)

A′xd
at +Cxx

∗
at +Cyy

∗
at +Euat = 0 : γ (4c)

The objective is to minimize constraint violations in (4c)
expressed by a vector of slack variables uat. The matrix A
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Fig. 1: Illustration of the process for creating feasibility cuts.

and decision variables xd
at represent the basic constraints of

the detailed system. The creation of feasibility cuts follows
three steps:
1) Disaggregate decisions. The initial state x∗

a,t−1 is dis-
tributed to the corresponding detailed hydropower problem
defined in (4). This involves mapping the initial energy storage
and sum energy inflow to the detailed reservoirs. The matrix
M in (4b) provides this mapping. Note that to preserve
convexity of the SDDP algorithm, the mapping cannot be
state-dependent. In this work a time dependent mapping was
used, distributing energy inflow and initial energy storage to
the individual reservoirs according to their relative shares of
average inflow and energy storage capability, respectively.

2) Define requirements. The hydropower stage (y∗at) and
state (x∗

at) decisions obtained from the solution of (3) define
requirements in (4c), formulated as linear inequalities with
slack variables uat. Trial schedules of stored energy (v∗at),
energy production (eH∗

at ), maximum allowed ramping (r∗at),
and reserved capacity (cH∗

at ) provide the requirements in (4c).
3) Check for feasibility. If the requirements defined in (4c)

are all met, the trial decisions are feasible. If not, at least one
of the dual values (γ) of constraints (4c) is nonzero, and a
feasibility cut of type (3m) is created.

Step 2) above differs from [23] in that the sum energy for the
whole decision period (eH∗

at ) rather than the energy produced
per time step (pH∗

at ) is formulated as a requirement. Thus, the
number of constraints in (4c) and, consequently, the dimen-
sionality of the feasibility cut is reduced. For studies with
many time steps within each decision stage, a large number
of feasibility cuts were needed with the approach in [23] to
adequately approximate the high-dimensional feasibility space.
This became a bottleneck for large-scale systems. With the
formulation in (3m), the dimensionality of the feasibility cut
does not depend on the number of time steps, and thus the
computational burden is significantly reduced when solving
(3) with many time steps. The maximum allowed ramping rate
supplements the sum-energy requirement, testing the ramping
capability of the detailed hydropower system. Assumptions
regarding the frequency of this requirement in (4c) are needed

Fig. 2: Feasibility space for area 4 in week 1 for case presented
in Section IV.

since decisions per time step are not communicated to (4).
In this study the detailed hydropower system was required to
ramp up and down to meet r∗at once per day.

As elaborated in [23], feasibility cuts can be created either
prior to running SDDP or as an integral part of the SDDP
algorithm. In this work, feasibility cuts were computed be-
forehand for each area. Each of the stage and state variables
were discretized in 5 values according to their extremal values,
and (4) was solved for each possible combination to obtain
feasibility cuts, according to the three steps described above.
Redundant and numerically similar cuts were removed.

Finally, a set of feasibility cuts of type (3m) was obtained
for each area. These cut sets can be seen as state-dependent
feasibility spaces for each area. For visualization of such
spaces, one can discretize cut variables and find the binding
cut for each combination of discrete variables. This was done
for area 4 in the case study presented in Section IV, as
illustrated in Fig. 2. As documented in Table I, area 4 has 63
reservoirs with at least 10 Mm3 storage capacity and 53 power
stations with at least 10 MW installed capacity. Fig. 2 spans
the dimensions volume (v), sum energy (eH ), and ramping
(r). The initial reservoir level, inflow, and reserve capacity
requirements were fixed to take average values. A feasible
combination of v, eH , r should be within the surface in Fig. 2.
As seen from Fig. 2, the maximum possible storage at the end
of the decision period decreases both with increasing energy
production and with increasing ramping rate.

IV. COMPUTATIONAL EXPERIMENTS

A. Case Description

The SDDP algorithm with aggregated hydropower descrip-
tion and with feasibility cuts was implemented in Julia,
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Fig. 3: Area topology for the Norwegian power system.

using the JuMP package [28], solving LP problems with
CPLEX version 20.1. The computational tests reported were
conducted on an Intel Core i7-9850H processor with maximum
frequency of 4.60 GHz and 64 GB RAM, allowing 7 parallel
worker processes in both the forward and backward iterations.

Computational tests were carried out on a description of
the Norwegian power system. The system description includes
possible future expansions towards 2030, but excludes existing
connections to the surrounding European power system, treat-
ing Norway as an isolated system. The system comprises 9
areas, connected together as shown in Fig. 3. Characteristics of
the detailed hydropower systems within each area are provided
in Table I, listing the number of reservoirs (Nr) and power
plants (Np) exceeding defined limits. Many of the physical
reservoirs and power stations are part of complex hydropower
cascades, and each area comprise multiple cascades. The
hydropower system accounts for more than 35 GW installed
capacity and 92 TWh storage capacity and has an average
annual inflow of 152 TWh. Hydropower is supplemented by
approximately 9.5 GW thermal generation capacity and 7.0
GW of installed wind power capacity to serve the demand.
The computational experiments are conducted on a realistic
representation of the Norwegian hydropower system balanced
with fictitious demand and supply from other technologies.
The reduced system size allowed demonstration of the pro-
posed methodology on a large-scale hydropower system while
keeping computation times at a reasonable level. Note that
a wider system boundary, e.g, including Northern Europe, is
possible without modifications of the proposed methodology.

A scheduling horizon of 3 years was applied with weekly
decision stages and with 42 4-hour time steps within each
week. The statistical model for energy inflow was derived
based on data from 126 inflow time series considering a period
of 30 years (1961-1990) with weekly inflow measurements.
The SDDP model was run with 70 inflow scenarios in each
forward SDDP iteration, and 7 discrete inflow white noise
terms were sampled at each stage in the backward SDDP

TABLE I: Hydropower per area.
Area Nr ≥ 10 Mm3 Np ≥ 10 MW V [TWh] pH [GW]

1 30 36 3.85 2.94
2 50 52 9.87 3.24
3 26 25 8.91 2.31
4 63 53 13.16 5.02
5 34 31 13.98 4.18
6 69 53 13.20 7.17
7 108 92 10.30 5.00
8 34 24 11.54 2.80
9 47 31 7.79 2.40

Sum 461 397 92.60 35.06

iterations. Consequently, a total of 70×156 = 10920 decision
problems of type (3) were solved in the forward iteration
and 70 × 7 × 156 = 76440 in the backward iteration. A
maximum number of 80 SDDP iterations was applied in the
experiments. Feasibility cuts were created prior to the SDDP
run, as described in Section III, providing between 50-130
feasibility cuts per area and decision stage. Advanced cut
management for treatment of Benders and feasibility cuts was
not considered.

The SDDP model was run for two cases: A Base case with
no feasibility cuts, and a Feasibility case where feasibility
cuts of type (3m) were included. This resulted in different
strategies in terms of Benders cuts of type (3l) for each case.
These strategies were used in two different simulations: An
Aggregate simulation using sampled energy inflow scenarios
according to (3c) together with the model formulation in (3),
and a Detailed simulation using detailed historical inflow
observations and a detailed description of the hydropower
system, as applied in (4), embedded in (3).

B. Simulation Results – Aggregate

After computing Benders cuts of type (3l), a final forward
simulation was conducted for each of the Base and Feas
cases with 2000 separately sampled inflow scenarios. Since
the operation of the hydropower system is more constrained
in case Feas than in case Base, the cost of operation is higher
in the former. Fig. 4 shows that the simulated power prices,
found as the dual values of (3f), for area 1 are significantly
higher in case Feas than in case Base. The price spikes around
weeks 20 and 70 indicate a tight power balance around the
beginning of the snow melting period.

The duration curves for hydropower generation for areas
6 and 7 are shown in Fig. 5. Utilization of the maximum
generation capacity in case Feas is clearly lower than in
Base, shifting more generation at lower output. Furthermore,
time series of changes in generation are presented as duration
curves in Fig. 6, indicating the limited ramping capability in
case Feas compared to Base.

C. Simulation Results – Detailed

The detailed hydropower system was simulated using his-
torical observations from 30 historical inflow years (1961-
1990) and with the strategies from the Base and Feas cases. In
these simulations, the stage problem consisted of the problem
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Fig. 4: Simulated power prices for cases Base and Feas.
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Fig. 5: Duration curves for generation for areas 6 (left) and 7
(right).
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Fig. 6: Duration curves for changes in generation (ramping)
for areas 6 (left) and 7 (right).
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Fig. 7: Average power prices for cases Base and Feas.

defined in Section II, but with a detailed description of the
hydropower system including historical inflow time series
associated with each physical reservoir. Years were arranged
in 30 sequences to be simulated, defining 1961-1963 as the
first sequence, 1962-1964 the second, and so on.

Results from these detailed simulations are not always as
one expects, since the simulated system differs from the
aggregated system that was used when computing SDDP
strategies. While one in the simulation considers inflows to
physical reservoirs, the strategies are computed based on a
statistical model for inflow per area. Moreover, the feasibility
cuts used in case Feas were computed assuming a fixed and
balanced mapping of aggregate initial reservoir and inflow to
the detailed system (step 1 in Section III), and thus do not
capture the true variability in the detailed system. Still, detailed
simulations on historical data are important as they serve to
validate the new methodology on the problem that motivated
its creation.

The total cost for a simulated sequence was found as∑
t=1,..,T

(
Qt − αt

)
, where Qt is expressed in (3a). In

addition, the difference in stored water at the end of horizon
was accounted for according to a common reference value.
The total cost of operating the system was lower in 21 out
of 30 simulated sequences, and was on average 7.2 % lower
when following the Feas rather than the Base strategy.

The average simulated power prices for all areas and simu-
lated scenarios for the two first years are shown in Fig. 7. The
prices obtained following the Feas strategy are more stable
than for the Base strategy, with lower price spikes when the
power balance is particularly tight around weeks 18 and 70.

The simulated operation of detailed hydropower reservoirs
provide an indication of how well the aggregated strategies in
cases Base and Feas reflect the hydropower details. In Fig. 8,
simulated trajectories for the large reservoir Svartisen, located
in area 8, are shown. Although the simulated operation of
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Fig. 8: Reservoir trajectories for Svartisen for cases Base and
Feas.

the majority of individual reservoirs are more balanced in the
Feas case, similar to what we observe in Fig. 8, there are
many examples where the Feas case provides poor reservoir
handling as well.

D. Computational Performance

Running the SDDP model with the problem setup and
technical specifications defined in Section IV-A took 10.7
and 27.6 hours for cases Base and Feas, respectively. Thus,
including feasibility cuts in case Feas increases computation
time with a factor of 2.7. As a comparison, results from [23]
[Table 1, cases REF and STAT-FC] on a much smaller data
set and with a higher-dimensional feasibility cuts, indicate a
ratio of 8.7 (Case REF took 370 seconds while case STAT-FC
took 3204 seconds.).

For the Feas case, a stage LP problem of type (3) com-
prises around 10k variables and 4k constraints, out of which
approximately 25% are feasibility cuts. As a comparison, when
simulating with detailed hydropower, the stage LP problem
comprises 350k variables and 158k constraints. Such problem
sizes would lead to prohibitive computation times if solved
within the SDDP algorithm using the parameterization defined
in Section IV-A.

Note that the computation time for case Feas depends on the
discretization when creating feasibility cuts. Some experiments
with different discretizations were conducted, revealing that
finer discretization did not improve result quality significantly,
and that coarser discretization tends to compromise result
quality.

V. CONCLUSION

This work presents a computationally efficient approxima-
tion of hydropower systems by feasibility spaces which can
be embedded within the SDDP algorithm and applied to the

long-term hydrothermal scheduling problem. The feasibility
spaces can be derived based on optimization of the detailed
hydropower system prior to running SDDP, and their state-
dependency can be accounted for.

Simulation results based on SDDP strategies with and
without feasibility spaces were compared, demonstrating how
these spaces constrain hydropower operation. A simulation
explicitly including the detailed hydropower system indicated
better resource utilization when following SDDP strategies
based on feasibility spaces.
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Hernando, “Transmission expansion planning in Northern Europe in
2030 - Methodology and analyses,” Energy Policy, vol. 61, pp. 125–
139, 2013.

[4] R. M. Chabar, S. Granville, M. V. F. Pereira, and N. A. Iliadis, Op-
timization of Fuel Contract Management and Maintenance Scheduling
for Thermal Plants in Hydro-based Power Systems, ser. Energy, Natural
Resources and Environmental Economics. Springer, Berlin, Heidelberg,
2010, ch. 13, pp. 201–219.

[5] A. W. Rosemberg, A. Street, J. D. Garcia, D. Valladão, T. Silva, and
O. Dowson, “Assessing the cost of network simplifications in long-
term hydrothermal dispatch planning models,” IEEE Transactions on
Sustainable Energy, vol. 13, no. 1, pp. 196–206, 2021.

[6] L. Bernardinelli and L. S. A. Martins, “Equilibrium approach to the
single solution of longer- and shorter-term hydro-thermal scheduling
problems,” in 6th International Conference on Clean Electrical Power,
Santa Margherita Ligure, Italy, 2017.

[7] A. R. de Queiroz, “Stochastic hydro-thermal scheduling optimization:
An overview,” Renewable and Sustainable Energy Reviews, vol. 62, pp.
382–395, 2016.

[8] M. V. F. Pereira and L. M. V. G. Pinto, “Multi-stage stochastic
optimization applied to energy planning,” Mathematical Programming,
vol. 52, pp. 359–375, 1991.

[9] A. Gjelsvik, B. Mo, and A. Haugstad, Handbook of Power Systems
I. Springer, 2010, ch. Long- and medium-term operations planning
and stochastic modelling in hydro-dominated power systems based on
stochastic dual dynamic programming, pp. 33–55.

[10] M. Maceira, D. Penna, A. Diniz, R. Pinto, A. Melo, C. Vasconcellos,
and C. Cruz, “Twenty Years of Application of Stochastic Dual Dynamic
Programming in Official and Agent Studies in Brazil – Main Features
and Improvements on the NEWAVE Model,” in Proc. 20th Power System
Computation Conference, 2018.

[11] A. Papavasiliou, Y. Mou, L. Cambier, and D. Scieur, “Application of
Stochastic Dual Dynamic Programming to the Real-Time Dispatch of
Storage Under Renewable Supply Uncertainty,” IEEE Transactions on
Sustainable Energy, vol. 9, no. 2, pp. 547–558, 2018.

[12] M. N. Hjelmeland, J. Zou, A. Helseth, and S. Ahmed, “Nonconvex
medium-term hydropower scheduling by stochastic dual dynamic integer
programming,” IEEE Transactions on Sustainable Energy, vol. 10, no. 1,
pp. 481–490, 2018.

[13] A. L. Diniz, M. E. P. Maceira, C. L. V. Vasconcellos, and D. D. J. Penna,
“A combined SDDP/Benders decomposition approach witha risk-averse
surface concept for reservoir operation in long-term power generation
planning,” Annals of Operations Research, vol. 292, pp. 649–681, 2020.

[14] O. J. Botnen, A. Johannesen, A. Haugstad, S. Kroken, and O. Frøystein,
“Modelling of hydropower scheduling in a national/international con-
text,” in Hydropower 92, E. Brock and D. Lysne, Eds., Lillehammer,
1992.
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