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Abstract—In power systems, ensuring transient stability is
paramount to prevent unforeseen blackouts and power failures.
Transient stability assessment is crucial for the early detection
and mitigation of instabilities, providing a rapid response to
severe fault situations. The concept of the maximum Lyapunov
exponent facilitates fast predictions for transient stability assess-
ment after severe disturbances. This paper introduces an efficient
maximum Lyapunov exponent algorithm for online transient
stability assessment, representing the primary contribution of
this work. This approach uses the time series data from the
rotor angles of generators or the phase angles of generator
terminal buses. Case studies are conducted on the Nordic Power
System, with simulations performed in DigSilent PowerFactory.
This study contributes by offering insights into the performance
and adaptability of the proposed algorithm.

Index Terms—Maximal Lyapunov Exponent, Nordic Power
System, Time Domain Simulation, Transient Stability Assess-
ment, Phasor Measurement Unit, Nearest Neighbor Algorithm

NOMENCLATURE

δi Rotor angle of ith generator.
ωi Speed of ith generator.
θi Phase angle of ith generator terminal bus.
∆t Simulation time step.
tc Fault clearing time.
tid Time of identification for critical and non-critical

generators.
tassess Transient stability assessment time based on MLE.

δre Relative rotor angle of selected generators.
θre Relative phase angle of selected generator terminal

buses.
X(t) Phase space reconstructed vector.
x(t) Time series data.
αmp The mean period of the time series data.
ρr Average divergence rate.

Ni(ϵ) ϵ-neighborhoods for each point in the X(t).
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I. INTRODUCTION

HISTORICALLY, Transient Stability Assessment (TSA) has
garnered considerable research interest. Over time, a

variety of methodologies emerged to address its complexities,
each with its distinct benefits and constraints. Time Domain
Simulation (TDS) has been a predominant tool for TSA,
providing an exhaustive view of power system dynamics.
However, due to its significant computational requirements,
TDS is less suited for real-time TSA applications. This limi-
tation prompted the advent of alternative approaches, such as
the Transient Energy Function (TEF) [1] and SIngle Machine
Equivalent (SIME) [2]. While these approaches offer faster
assessment, they may face challenges in precisely modeling
the intricacies of expansive, complex power systems [3]. PMU
data has gained traction among the scientific community,
particularly for TSA applications. For instance, the work in
[4] explores the employment of self-adaptive decision trees
for dynamic security assessment, enabling online detection of
critical system parameters. The study in [5] leverages PMU
data to draw comparative analyses anchored on stored trajec-
tory patterns, subsequently applying these findings to TSA.
Meanwhile, [6] presents an approach anchored on Artificial
Neural Networks (ANNs). The proponents of this method
underscore its computational efficiency and heightened pre-
cision, though it might face challenges when confronted with
uncertainties, evolving network configurations, or infrequent
system occurrences. Also, [7] presents a machine learning-
based method for transient stability assessment, utilizing Long
and Short-Term Memory (LSTM) classifiers for time-adaptive
analysis and a trust score for reliability.

As discussed earlier, the methodologies for TSA proposed
may face challenges. A primary challenge is achieving rapid
detection of transient instability without depending on offline
simulations or power system models, especially when no
training data is available and computational resources are
limited. Ensuring model accuracy and swiftly determining
transient stability assessment remains a formidable challenge.

Within the power systems domain, the exploration of the
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Maximal Lyapunov Exponent (MLE) for online TSA is gain-
ing traction. MLE can be calculated through two methods,
model-based and model-free. The model-based approach relies
on a comprehensive understanding of the system’s dynamical
model [8], and applying this method to large-scale power sys-
tems presents challenges for online TSA due to its complexity
[9] - [11]. However, based on model-based approach, MLE
can be calculated using time series data from selected system
variables. Thus, this approach offers a simpler solution for
real-time applications. The model-free approach is the main
focus of this paper.

The series of work in the domain of MLE based model-free
approach begins with the introduction of Lyapunov Charac-
teristic Exponents (LCEs) computation by [12]. It culminates
in the robust method developed by [13] - [14], significantly
contributing to the understanding of system dynamics, despite
challenges such as sensitivity to noise and extensive data
requirements. Comprehensive discussions and demonstrations
of this model-independent methodology for computing MLE
can be found in [12] - [19]. Alongside the evolution of MLE
computation, recent studies have leveraged this approach for
online monitoring and stability assessment of power systems
[20] - [23]. For instance, a model-free MLE approach for
rotor angle stability estimation was employed in [24], uti-
lizing PMU data for online learning of system parameters.
This concept was further advanced in [25], where a model-
free approach was proposed. However, early post-fault MLE
calculations are error-prone as model-free methods require
some trajectory growth beforehand. As in [25], there are
some optimal parameters to be selected, and their selection
often depends on offline data. Thus, the selection of these
parameters may limit the adaptability of MLE’s online TSA
and may hamper its real-time applications due to the need
for continuous adjustments. Furthermore, a contribution to
online rotor angle stability assessment was made in [26]
using PMU data, refining the method with a recursive least-
squares-based MLE estimation and some critical parameters.
However, this proposed technique in [26] may cause delays in
online TSA since MLE estimation begins only after having
identified those critical parameters based on the consistent
pattern identification of the generator’s rotor speed.

The efficiency and accuracy of various previously estab-
lished techniques for real-time transient stability assessment
has been presented in [27].

The aim of this paper is to apply an MLE-based nearest
neighbor algorithm for TSA.

Previous research has not sufficiently explored the MLE-
based nearest neighbor algorithm’s capability to assess the
stability of large power systems. This gap in the literature,
combined with the critical need for rapid and accurate TSA,
underscores the importance of this research.

The main contributions of this paper are given in the
following.

• Firstly, this work overcomes the existing challanges of
previous TSA techniques, such as the model dependency,

offline simulation data and consistent pattern identifica-
tion, while also reducing the time required for transient
stability assessment. This is achieved by providing an
analytical formulation of the nearest neighbor algorithm
that is suitable for power systems. The proposed MLE
method presented in this paper—a synthesis of concepts
from [13] and [14]—enables the development of a fast
MLE algorithm that relies solely on data, making it
model-free.

• Moreover, this study demonstrates that the proposed MLE
algorithm functions effectively either with the rotor an-
gles of selected generators or the phase angles of selected
generator terminal buses. The examined scenario focuses
on the large Nordic Power System (NPS) [29], which
shows distinct nonlinear reactions subsequent to major
disturbances. The study outlines results from diverse
disturbances and simulations conducted using DigSilent
Power Factory 2022 [30].

The rest of the paper is organized as follows: Section II
introduces the MLE framework, setting the theoretical ground-
work. Section III thoroughly explores the application of the
proposed MLE to power systems, detailing its methodology
and delving into practical applications through case studies
to demonstrate the algorithm’s utility and effectiveness. The
paper concludes with a summary of findings in Section IV
and outlines future directions in Section V, encapsulating the
study’s contributions.

II. MAXIMAL LYAPUNOV EXPONENT FRAMEWORK

The dynamics of a system may be represented by a set of
differential equations as:

dx

dt
= f(x) (1)

where, x, an nx–dimensional state vector, resides in the
Euclidean space Rnx . The solution to (1) can be expressed
as:

x(t) = x(t0) +

∫ t

t0

f(x) dt (2)

where x(to) indicates the system’s initial state at time t = to.
The MLE provides insight into the dynamics of a trajectory
in proximity to x(t), illustrated in Fig. 1. With ∆x(to)
sufficiently small, the trajectory’s sensitivity based on its initial
condition is:

∆x(t) = ∆x(t0) e
λt (3)

The exponential term eλt describes the difference vector’s
temporal evolution. From (3), deduce [12]:

λ = lim
t→∞

1

t
ln

||∆x(t)||
||∆x(t0)||

(4)

The MLE, denoted by λ, is an average based on the
initial and final difference vector norms, offering insights
into trajectory dynamics. System stability is inferred from the
MLE’s sign: negative and positive values correspond to stable
and unstable systems, respectively [12].
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Fig. 1: Maximal Lyapunov Exponent Framework

A. Model-Free Approach

In the model-free method, MLE is derived from time
series data via phase space reconstruction [28]. This involves
delay coordinate embedding, translating the series into a
reconstructed domain. MLE, defined in (5), is evaluated by
assessing distances between the main and nearby trajectories,
emphasizing the logarithmic separation rate of adjacent points.

Fig. 2: Main and Nearby Trajectories in Model-Free Approach

As depicted in Fig. 2, both x0 and xn(0) are the initial points
on the original and neighboring trajectories, respectively. The
term ’m’ acts as an index, denoting the starting point for
the MLE calculation within the time-series data. Additionally,
xm+k is the kth point after xm on the original trajectory, and
xn(m)+k is the kth point after xn(m) on the neighboring tra-
jectory. Let |xn(m) − xm| be the Euclidean distance between
the MLE estimation initial points, and |xn(m)+k − xm+k|
be the Euclidean distance between the kth points after the
MLE estimation initial point. As expressed in (5), MLE is
then obtained as the average logarithmic rate of separation of
nearest neighbor [15].

λ =
1

tN

N∑
k=1

ln

( |xn(m)+k − xm+k|
|xn(m) − xm|

)
(5)

where tN=N∆t , with ∆t as the time step, and N as the total
number of time steps.

B. Formulation of Proposed MLE Approach

This approach aims to estimate the MLE by incorporating
the ϵ-neighborhood and scaling region concepts. The algorithm

fundamentally relies on the ’nearest neighbor’ concept. This
critical step of identifying the nearest neighbor ensures en-
hanced precision and robustness in the MLE estimation.

The discussions in this subsection largely follows those
presented in [13] - [14].

The first step involves reconstructing the phase space attrac-
tor of the time series using the method of delays. The attractor
is represented by a set of phase space vectors X(t), which are
constructed from the time series data as follows:

X(t) = [x(t), x(t+ J), x(t+ 2J), ..., x(t+ (m− 1)J)] (6)

where, x(t) denotes the time series data, J represents the time
delay, which is selected based on the methodology described
in [14]. The parameter m stands for the embedding dimension.
The next step is to define the ϵ-neighborhoods for each point
in the reconstructed phase space:

Ni(ϵ) = j : ||X(i)−X(j)|| < ϵ, i ̸= j, |i− j| > αmp (7)

For each pair of points within the ϵ-neighborhoods, the initial
and future distances are computed. These neighborhoods are
sets of indices j where the Euclidean distance between points
X(i) and X(j) is less than ϵ. A constraint |i−j| > αmp from
[13] is imposed to ensure that points within the same period
are not considered, where αmp represents the mean period of
the time series data. The initial distances between the points
are computed as,

dij(0) = ||X(i)−X(j)|| (8)

The future distances, after a time period t, are given by,

dij(t) = ||X(i+ t)−X(j + t)|| (9)

Figure 3 illustrates the process of identification of the closest
neighbor to a given reference point.

Fig. 3: Identifying Nearest Neighbor (NN) of Reference Point (R) in
Trajectory via Minimum Distance (d)

The change in these distances over time helps to identify
and understand the evolution and divergence of points in the
phase space.

Next, the average divergence rate denoted by ρr is calcu-
lated at which the points within a neighborhood diverge from
each other. It is computed as follows:

ρr =
1

|Ni(ϵ)|
·

∑
j∈Ni(ϵ)

ln
dij(t)

dij(0)
(10)

Where ϵ defines the threshold for determining ’neighbors’
of a reference point i. The set Ni(ϵ) contains points within
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a distance ϵ from i. Once the average divergence rate is
computed, the scaling region, denoted by S is identified. The
scaling region S is the range of ϵ values where there is a
linear relationship between the logarithm of the initial and
future distances. This can be achieved as follows:

1. For each ϵ value, compute the logarithm of initial
distances dij(0) and future distances dij(t).

2. For each ϵ value, fit a linear regression model of the form:

y(ϵ) = a(ϵ) · log dij(0) + b(ϵ) (11)

3. Calculate the coefficient of determination R for each ϵ
value:

R(ϵ) = 1−
∑

(y(ϵ)− log dij(t))
2∑

(log dij(t)− µdij(t))
2

(12)

In (12), the term µdij(t) denotes the arithmetic mean of
the logarithmic future distances log dij(t). These logarithmic
future distances and their mean, µdij(t), are instrumental in
determining S. Specifically, S is defined as the range of ϵ
values satisfying the condition,

R(ϵ) = max
ϵ′

R(ϵ′) (13)

where R measures the linear correlation between the loga-
rithm of initial and future distances. A high R value signifies
a strong linear relationship, essential for the validity of this
analysis. Therefore, S represents the optimal region in the
phase space for this investigation. Once the scaling region
S is identified, the process proceeds to estimate the largest
Lyapunov exponent, denoted as λ. This is accomplished by
averaging the divergence rates across all the neighborhoods
within the scaling region as:

λ =
1

M
·

M∑
i=1

ρri (14)

where M represents the total number of neighborhoods
within the scaling region. The largest Lyapunov exponent λ is
an indicator of the average exponential rate of divergence or
convergence of nearby orbits in phase space.

Fig. 4: Block Diagram of Proposed MLE Approach

If the MLE (i.e. λ) is negative, the system is considered
stable. Conversely, a positive MLE indicates an unstable
system. This proposed method aims to provide accurate and
robust estimates of the MLE. As a comprehensive overview,
Fig. 4 provides a simplified representation of the proposed
algorithm. It demonstrates the sequential process, starting from
time series data acquisition, proceeding through phase space
reconstruction and the nearest neighbor algorithm, and culmi-
nating with the computation of MLE via minimal distance.
Each element in the diagram is clearly delineated: ’x’ refer to
(2), ’X’ to (6) ,’dij to (9)’, and ’λ’ to (14).

III. MLE APPLICATION TO POWER SYSTEMS

A. Selection of Time Series Data and MLE Calculation

The proposed MLE technique is implemented by collecting
post-fault time series data of the rotor angles (δ) of the
generator (or the phase angles (θ) of the generator terminal
buses).

Consider now a system with n generators, and let xi(t) be
the time series data of the ith generator (or terminal bus). Then
for i = 1...n, xi(t) is defined as:

xi(t) = ∆δi(t) = δi(t)− δi(t0), or
xi(t) = ∆θi(t) = θi(t)− θi(t0)

(15)

where, δi(t0) (or θi(t0)) is the pre-fault value of the angle.
Next, let tc denote the fault clearing time, and tid = tc+ tϵ be
the time at which the highest and lowest x(tid) are identified,
respectively, as follows

xk(tid) = max(x1(tid), x2(tid), ..., xn(tid)),

xl(tid) = min(x1(tid), x2(tid), ..., xn(tid)).
(16)

Having identified that the generator (or terminal bus) k has
the highest x(tid), and the generator (or terminal bus) l has
the lowest x(tid) at t = tid, then xre(t), is obtained by

xre(t) = xk(t)− xl(t) for t ≥ tid (17)

where, xre exemplifies the system metric equivalent to x in
(5) and in this context, xre(tid) corresponds to xm in (5).

Let xre(t) be either δre(t) or θre(t), ẋre(t) = ωre(t) and
ẍre(t) = ω̇re(t) as illustrated in Fig 5. Let also tassess be the
time at which xre(t) in the time interval t = [tid ... tassess]
(as x in Fig. 4) is used to assess the transient stability of a
disturbance based on the sign of λ calculated in (14). The time
tassess is obtained based on the following steps.

• For t ≥ tid, compute xre(t), ωre(t), S1 = sin(xre)ωre

and S2 = ω̇re(t) as illustrated in Fig 5.
• Once the sign of one of the two signals S1 and S2 is

firstly changed at time t = t1, check the sign of ωre(t),
– if ωre(t1) > 0, set tassess = t1 to calculate λ for TSA.

A positive λ indicates a first swing instability.
– if ωre(t1) < 0, continue to compute xre(t), ωre(t), and

the signal whose sign was firstly changed (i.e. S1 or
S2) for t ≥ t1. Once the sign of that signal is changed
again at time t = t2, set tassess = t2 to calculate λ for
TSA.

These steps are illustrated in Fig. 6. As shown in the upper
panel of the figure, at the time the signal S1 passes the zero
line (indicated by a red circle), ωre is positive (indicated by a
black circle) and that time will be selected as tassess. However
in the bottom panel, once S1 for the first time passes the zero
line, ωre is negative. Therefore, the time at which the signal
S1 for the second time passes the zero line will be selected
as tassess.
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Fig. 5: Block Diagram of Stability Criterion. In this diagram, there
are two signals: S1 = sin(xre)ωre and S2 = ω̇re(t), respectively.

Fig. 6: Illustration of the discussed steps to obtain tassess.
Stable case in the upper panel and unstable case in the bottom
panel.

B. Test System

The proposed method is applied to the Northern European
AC/DC power system, detailing the Nordic Power System
(NPS) as described in [29]. In the test system (NPS), there are
16 generators in Norway (NO), 9 generators in Sweden (SE),
5 generators in Finland (FI), 29 generators in eastern Den-
mark (DK2), and 17 generators in western Denmark (DK1),
respectively. DK1 synchronizes with Continental Europe (CE).
The North Sea Wind Power Hub (NSWPH), Greater Britain
(GB), and Continental Europe (CE) are represented using their
Thévenin equivalent models.

All components within the system are represented by
generic models, with the model being publicly available at
[29], suitable for DigSilent PowerFactory 2022 or later ver-
sions. The single-line diagram of the NPS is depicted in a
simplified form in Fig. 8, with the diagram predominantly
featuring representations of Finland, Sweden, and Norway,

Fig. 7: Model of Northern Europe with North Sea Wind Power Hub,
HVDC interconnectors (shown in blue), and the Nordic Power System
(NPS) (in dark blue).

aligning with the study’s focus on the NPS. A legend included
in this figure elucidates the essential elements used in the dia-
gram. In this depiction, entities like the North Sea Wind Power
Hub (NSWPH), Eastern Denmark (DK2), Western Denmark
(DK1), Greater Britain (GB), and Continental Europe (CE) are
represented using their block models.

The principal portion of power originates from plants lo-
cated along the Norwegian Coast and in Northern Sweden
(NO3, NO4, NO5, SE1, and SE2 zones in Fig. 7). This energy
is subsequently routed along a North-South axis to accommo-
date high demand in densely populated regions (NO1, NO2,
SE3, SE4, and FI zones in Fig. 7).

C. Case Studies

For application of MLE based TSA, 60 three-phase fault
cases are implemented in the Nordic Power System as depicted
in Fig. 8. These cases include both when only a fault is cleared
and also when a fault is cleared by disconnecting a faulty line.
Figure 9 shows the variations of the rotor angles deviations for
an unstable case and a stable case, respectively.

In the application of the proposed MLE method, as detailed
in Section III-A, at time tid = tc + tϵ, the critical and
non-critical generators are identified to establish δre (or θre)
as expressed in (17). In all cases, tϵ corresponds to three
simulation time steps which is about tϵ = 0.04 s. Then,
the MLE based assessment is performed in the time interval
t = [tid ... tassess], where tassess is obtained based on the
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Fig. 8: Single line diagram of the Nordic Power System (NPS)

steps illustrated in Fig. 6. Thus, the total time duration for this
assessment after the clearing time is ∆tassess = (tassess−tc).

Comprehensive analysis of the proposed MLE behavior,
indicative of stability and instability in the NPS system,
is depicted in Fig. 10 , featuring 60 MLE assessments of
xre(t) = δre(t) following various fault cases.

In Fig. 10, the blue dots represent the initial values of MLE
assessment at tid and the blue circles represent the final values
of MLE assessment at tassess. The assessment points have
positive values for unstable cases and negative values for stable
cases. As shown in the figure, all MLE values based on δre
are negative for those 60 stable cases, and positive for the 60
unstable cases. This collective visualization of MLE curves
underscores the method’s consistent accuracy in TSA.

The longest assessment time ∆tassess for stable cases with
δre is 1.29 s, and the average ∆tassess for these cases is 0.64 s.
Similarly, the longest assessment time ∆tassess for stable cases
with θre is 1.32 s, and the average ∆tassess for these cases
is 0.55 s. The assessment time ∆tassess for stable cases are
detailed in Table I.
For the majority of the stable cases based on δre, ∆tassess <
0.5 s. A significant number of cases fall within the range
0.5 ≤ ∆tassess < 1 s, and 12 out of 60 cases have the longest
assessment times within 1 ≤ ∆tassess < 1.3 s.
Similarly, for the majority of the stable cases based on θre,
∆tassess < 0.5 s, with a large number of cases also in the range
0.5 ≤ ∆tassess < 1 s, and 3 out of 60 cases have the longest
assessment times within 1 ≤ ∆tassess < 1.3 s. The emergence
of assessment time ∆tassess clusters around ∆tassess < 1(s)
may reflect groups of cases with similar TSA challenges.

The longest assessment time ∆tassess for unstable cases with

Fig. 9: Variations of rotor angles deviations for an unstable
case (upper panel) and a stable case (bottom panel), respec-
tively.
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Fig. 10: The collective visualization of MLE curves highlights
MLE’s consistent predictive of transient instability in the upper
figure, and transient stability in the lower figure, respectively.

TABLE I: Summary of TSA Results for Stable Cases

Range of ∆tassess No. of Cases (δre) No. of Cases (θre)

∆tassess < 0.5 s 27 24
0.5 ≤ ∆tassess < 1 s 21 41
1 ≤ ∆tassess < 1.3 s 12 3

δre is 0.36 s, and the average ∆tassess for these cases is 0.22
s. Similarly, the longest assessment time ∆tassess for unstable
cases with θre is 0.41 s, and the average ∆tassess for these
cases is 0.20 s. The assessment time ∆tassess for stable cases
are detailed in Table II.

IV. CONCLUSION

The nearest neighbor based Maximum Lyapunov Exponent
(MLE) algorithm has been adapted for power systems, demon-
strating success in transient stability assessment across all 60
stable and unstable fault cases for both δre(t) and θre(t). A
criterion based on two signals S1 and S2 has been developed
to quickly identify potential first swing instabilities. For the
stable cases, the longest assessment times ∆tassess were 1.29 s
with δre and 1.32 s with θre, and the average assessment times
∆tassess were 0.64 s with δre and 0.55 s with θre, respectively.
For the unstable cases, the longest assessment times ∆tassess
were 0.36 s with δre and 0.41 s with θre, and the average
assessment times ∆tassess were 0.22 s with δre and 0.20 s with
θre, respectively. The accuracy of these results underscores the

TABLE II: Summary of TSA Results for Unstable Cases

Range of ∆tassess No. of Cases (δre) No. of Cases (θre)

∆tassess < 0.2 s 22 26
0.2 ≤ ∆tassess < 0.3 s 32 31
0.3 ≤ ∆tassess < 0.4 s 6 3

algorithm’s effectiveness for online TSA, marking a significant
advancement in detecting transient instabilities by operating
independently of preset offline values and relying entirely on
real-time data.

Further research concluded that the phase angles of selected
generator terminal buses can effectively replace the rotor
angles of selected generators.

V. FUTURE WORK

Future research should evaluate the application of this
method using real PMU data and its integration with corrective
actions, such as the connection of braking resistors, fast
valving, and control of power electronic based devices, to
enhance transient stability. Furthermore, optimizing the near-
est neighbor MLE algorithm and also identifying additional
criteria will be necessary to improve TSA assessment, by
reducing the assessment time ∆tassess, thereby enhancing its
practicality for online applications.
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