
Logic-Based Explanations of Imbalance Price
Forecasts using Boosted Trees

J. Bottieau1, G. Audemard2, S. Bellart2, J-M. Lagniez2, P. Marquis2,3, N. Szczepanski4, and J.-F. Toubeau1
1Power Systems & Markets Research Group, Electrical Power Engineering Unit, University of Mons, Belgium.

2CRIL, University of Artois & CNRS, France.
3Institut Universitaire de France, France.

4IRT SystemX, Saclay, France.

Abstract—Explainability is one of the keys to foster the
acceptance of Machine Learning (ML) models in safety-critical
fields such as power systems. Given an input instance x and a
complex ML model f , the driving features of the corresponding
output are commonly derived using model-agnostic approaches
such as SHAP. Although being generic, such approaches offer
limited guarantees about the quality of the explanations they
provide. In this paper, we opt for a logic-based approach to derive
post-hoc explanations. Our approach provides formal guarantees
about the explanations t that are generated for input instances
x given an interval I containing f(x) and representing the
admissible imprecision about f(x). Thus, our approach ensures
that the prediction f(x′) on every instance x′ covered by t
belongs to I as well. In our work, f is a boosted tree, which is
accurate and associated with an equivalent logical representation.
The forecasted variable is the imbalance price, which is an
important market signal for trading strategies of energy traders.
The outcomes –using data from the Belgian power system– shed
light on the input patterns that drive a high or low imbalance
price prediction, while investigating whether such input patterns
are intelligible for a human explainee.

Index Terms—Automated reasoning, Electricity price forecast-
ing, Explainable AI, Real-time price.

I. INTRODUCTION

Due to the necessity to continuously keep a balance between
generation and consumption, the real-time trade and pricing
of electricity is central in liberalized power systems [1]. In
this way, market participants, such as producers and suppliers,
trade quantities of energy in forward markets based on their
expectation of (future) real-time electricity prices. For each
delivery period, if they produce or consume quantities that
differ from what they have contracted, imbalance volumes
are settled at a real-time price, called the imbalance price in
Europe. Depending on the system conditions, imbalance pay-
ments may be extremely high, which can lead to bankruptcy
for energy traders if they are not appropriately hedged. On the
other hand, such high prices may also offer valuable temporal
arbitraging opportunities for fast-ramping units.

The electricity price forecasting literature has shown ev-
idence that imbalance prices might be very hard to predict
at the day-ahead stage [2]. Indeed, before the closure of
the day-ahead market, imbalance volumes of market actors,
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i.e., metered deviations from forward market transactions, are
inherently random at this stage. Yet, as we get closer to the
delivery period, imbalance volumes and prices can be more
accurately predicted [3]. In particular, authors in [4] found
that balancing prices in Great Britain are predictable one hour-
ahead and that a Markov non-linear approach outperforms
a linear model. The use of a regime-switching model was
motivated by the imbalance price formation, whose prices can
be low or high according to whether the net imbalance volumes
are positive or negative. Still on a British case study, non-linear
models based on Machine Learning (ML) techniques have
been compared in [5], where XGBoost exhibits a higher per-
formance than other methods. This observation was confirmed
in [6], which also showed the superior forecasting accuracy of
deep learning compared to econometrics models.

However, for facilitating the adoption of ML techniques in
power systems, ML models should not only be very accurate
but also trustworthy, i.e., robust and explainable [7], [8]. In
this direction, probabilistic forecasters have been developed
for imbalance price prediction in [9], [10], where ML models,
from tree-based ensemble methods to advanced neural network
architectures, demonstrate impressive, but not guaranteed, ac-
curacy of quantile forecasts. While very accurate predictions
can be achieved in practice, it must be kept in mind that
100% correct predictions cannot be ensured in general. To
improve confidence in the predictions, an efficient solution is
to derive explanations about outcomes, i.e., providing pieces
of evidence that allow the practitioner to possibly reject a
prediction when the corresponding explanations do not comply
with expectations.

In this line of research, both [9], [10] try to enrich their
models with notions of explainability, based on the scores
obtained from attention layers of neural forecasters. While
providing insights into the model’s inner logic, such attention
scores still fail to generate explanations from which one could
reason, which limits their usefulness for users [11]. Moreover,
such attention scores are model-specific. Alternatively, additive
feature attribution methods score each feature relative to its
importance for a particular outcome. Such approaches are
often model-agnostic and thus widely applicable. In partic-
ular, the SHAP method was proposed as a unified measure
of feature importance based on Shapley values [12]. Such
values are derived from cooperative game theory, deciphering
the marginal contribution of each feature to a specific ML
outcome. Nevertheless, ignoring the underlying ML model,
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and proposing an explanation given the training data, and
an estimated distribution of the input still has some severe
limitations. In this way, Shapley values do not offer any formal
guarantee, i.e., no conclusion about predictions from the ML
model can be deductively drawn. Recent works [13] have even
demonstrated that Shapley values for explainability may pro-
vide misleading information about feature importance. Finally,
common explainable approaches have been developed for
computer vision applications. Though naively applying such
methods to regression can occasionally yield useful results,
several works show the importance of tailoring explanation
techniques to the specificities of the regression problem [14].

Formal explainable methods (also called logic-based meth-
ods) can tackle these two limitations for regression problems.
They provide the underlying conditions leading to a particular
outcome, which is achieved by leveraging the logical structure
of the model. Among useful explanations are the abductive
ones. Such explanations are subsets t of the characteristics of
the input instance x intended to reflect why x has been mapped
to its corresponding values f(x) by the regression function f .

In our work, f is a boosted tree derived using the XGBoost
algorithm. Practically, given an input instance x and a user-
defined interval range I such that f(x) ∈ I , an abductive
explanation aims at answering, in the most concise fashion,
why the forecaster makes a prediction within the predefined
interval I . Interval I enables the explainee to specify how
he/she cares about the exact value of f(x), by representing
the imprecision on f(x) the explainee is ready to tolerate.
Pointing out t may allow the human explainee to decide
whether or not the prediction f(x) can be trusted. Note that
works in [15], [16] show the possibility of extending abductive
explanations to neural networks, but empirical findings suggest
that scalability remains a significant challenge for neural
networks with more a few dozen neurons.

In the following, we show the usefulness of generating
abductive explanations for predicting imbalance prices, taking
advantage of recent developments in formal explainable AI
using boosted regression trees [17]. Formally explaining these
forecasts can provide valuable insights into the factors that
drive the imbalance price regime, while increasing the user’s
trust on the prediction. This complements the current explain-
able methods, wherein the importance of the driving factors
are revealed from either linear regression parameters or SHAP
values, see e.g., [18] and [19]. Overall, the contributions of
this paper can be summarized as follows:

• We present a logic-based method for explaining imbal-
ance price forecasts. The method ensures a level of rigor
as explanations are directly extracted from the logical
representation of the prediction model, and tailors the
explanations according to the use-case of the explainee.

• Through an academic case study, we identify how logic-
based explanations can help understanding and debugging
a faulty model, compared to SHAP values. Although both
types of explanations are local, derived from specific
instances under examination, logic-based explanations
offer a distinct advantage: they can be generalized across

TABLE I: Imbalance price mechanism.
P = Production
C = Consumption
SI = System Imbalance

Transmission System Operator (TSO)
control area

Excess (P>C)
Positive SI

Shortage (P<C)
Negative SI

Excess MDP (low price)
TSO pays BRP

MIP (high price)
TSO pays BRPBRP

area Shortage MDP (low price)
BRP pays TSO

MIP (high price)
BRP pays TSO

different instances exhibiting the same pattern. This gen-
eralizability enables the making of robust deductions
about the functioning of the model.

• Finally, the applicability of logic-based explanations is
analysed on a real-life case study. Besides the size of
explanations and computational aspects, we investigate
the driving factors that conduct the prediction model to
infer a high or low imbalance price regime.

The rest of the paper is organized as follows. Section II
presents key concepts involved in the determination of im-
balance electricity price in Europe. Section III focuses on the
methodology used to compute explanations for the predictions.
Section IV provides a simple example. Section V presents
a case study. Section VI concludes the paper, and gives
perspectives for further research.

II. IMBALANCE PRICE MECHANISM

In Europe, imbalance prices are intended to reflect the real-
time value of energy. Following neoclassical economics, the
real-time value of energy is currently defined as the cost of
providing the marginal amount of energy needed to balance
the system. This is exemplified in Table I, which shows the
single price imbalance mechanism. We can observe that the
imbalance price is formed according to two price regimes:
i) the marginal incremental price (MIP), which amounts, for
a given period, to the price of the most expensive upward
balancing service activated, and ii), the marginal decremental
price (MDP), which amounts, for a given period, to the price of
the least remunerative downward balancing service. When the
control area is lacking generation, i.e., the system imbalance
(SI) is SI < 0, the Transmission System Operator (TSO)
mainly activates upward balancing services, which drives the
imbalance price towards a high price regime (typically above
the day-ahead market price). On the other hand, when the
system has a production surplus (SI > 0), downward balancing
services are activated, driving the imbalance price towards
a low price regime (typically below the day-ahead market
price). Hence, when a market agent (named Balance Re-
sponsible Party, abbreviated BRP thereafter) is in imbalance,
it is charged at an imbalance price. Depending on whether
its imbalance position helps or worsens the global system
imbalance, the BRP receives economic gain opportunities
(green boxes of Table I) or financial penalties (red boxes of
Table I).

We focus on the Belgian case study, whose imbalance
volumes are settled every 15 minutes using a single imbalance
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Fig. 1: Day-ahead (λDA) and imbalance (λRT) prices on
January 8, 2022 between 8 a.m. and 1 p.m.. The black arrow
is the imbalance premium (λreg.) between both market floors.

price mechanism based on marginal pricing (as in Table 1).
The only difference is that the Belgian TSO may use adders
on the imbalance price for increasing the incentive to BRPs
in helping the system in case of structural imbalances. In our
models, the imbalance premium is hence considered instead of
the imbalance price. The imbalance premium is defined as the
difference between the imbalance and the day-ahead market
prices. Fig. 1 showcases these three prices for the day of
January 8 2022 between 8 am and 1 pm. The imbalance price
(λRT) and the corresponding day-ahead market price (λDA)
are respectively plotted in red and black, while the imbalance
premium (denoted λreg.) is showed by a black arrow. We can
observe the regime switching behavior of the imbalance price,
where a high imbalance price regime corresponds to a positive
imbalance premium, while a low imbalance price regime is
characterized by a negative imbalance premium.

III. A LOGIC-BASED APPROACH TO EXPLANATIONS

This section presents how logic-based explanations can be
derived from an already trained boosted tree f . The flowchart
of the logic-based explainer is described in Fig. 2, where ex-
planations are extracted ex-post based on i) the input instance
xe, ii) the logical representation of f , and iii) the interval
I about f(xe) admissible by the explainee. In a nutshell,
given an instance xe and an interval I , such that f(xe) ∈ I ,
the logic-based explainer aims at extracting a minimal subset
of conditions that are sufficient to explain why f(xe) ∈ I .
Section III-A provides a formal definition of the abductive
explanations being sought, while Section III-B presents briefly
the generation process of such explanations.

A. Formal definition of an abductive explanation

Practically, a boosted tree f can be seen as a a linear
combination of n binary trees (Ti, for i ∈ [n]), whose internal
nodes are labeled by Boolean conditions related to m attributes
and their leaves are labeled by real numbers. For a given
instance xe, the weight Ti(xe) ∈ R of a tree Ti is given
by the label of the leaf reached from the root as follows: at
each node go to the left or right child depending on whether
or not the condition labeling the node is satisfied by xe. The
prediction f of an instance xe is given by the sum of the
weights of all trees for this instance.

Instance
xe

BT MODEL

. . .

33 209 −178−40

Regression
λ̂reg. = f(xe)

EXPLAINER EXPLANATION

MIP < 336
SI ≥ 0

?
?
? Why λ̂reg. ∈ I ?

Fig. 2: Flowchart of the logic-based explainable method
.

Given this logical representation, the boosted tree f : Rm →
R can be alternatively viewed as a mapping from {0, 1}p
to R, where p denotes the cardinality of the set of Boolean
conditions (over attributes) B used in the model. We denote
txe a conjunctively-interpreted set of p Boolean literals (one
per condition) such that the literal associated with a condition
is positive (resp. negative) whenever xe satisfies (resp. does
not satisfy) the condition.

For the regression task, an abductive explanation for an
instance xe is intended to explain why the regression value
f(xe) belongs to I [17].

More formally, a subset-minimal abductive explanation for
an instance xe given f and an interval I is a subset of txe

(the Boolean conditions B) such that any instance x′
e sharing

the same conditions satisfies f(x′
e) ∈ I , and no proper subset

of this explanation satisfies this last property. The interval I
allows a human explainee to tailor his/her question for the
regression task at hand. Hence, an interval equals to the model
prediction outcome, i.e., I = f(xe), explains exactly why we
obtained this prediction value, but at the cost of generating a
lengthy explanation (the term txe in the worst-case scenario).
On the other hand, a very large interval containing the lower
and upper bounds of the prediction model necessitates none
explanation. Note that all these formal notions are illustrated
in Section IV-A for a boosted model with 3 trees.
B. Generation process of an abductive explanation

The general approach for generating abductive explanations
consists of a greedy algorithm which tries to eliminate itera-
tively the Boolean characteristics from txe , while satisfying a
coverage test (here induced by I). In logic, this covering test is
coNP-complete implying that it is computational hard task in
general. For tackling this task timely, the greedy algorithm is
first run with approximate, yet efficient, coverage tests, before
using exact, but expensive, ones on the remaining Boolean
characteristics.

More particularly, approximate coverage tests are verified
by summing the minimal (resp. maximal) leaf values of
each tree Ti that could be reached based on the tested term
t. This approximation acts as worst-case scenarios for the
coverage test, and can be run in polynomial-time. The output
is an abductive explanation, but without any guarantees about
subset-minimality, i.e., some Boolean characteristics can be
kept even if their removal does not necessarily violate the
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SI
≥
0

T1

MIP
≥
107

33 209

MDP
≥

−102

−178 −40

MIP
≥
336

T2

MIP
≥
21

−16 7

MIP
≥

1298

298 1903

SI
≥

−432

T3

MIP
≥
543

84 400

MDP
≥

−238

−94 0

Fig. 3: The boosted model with three trees T1, T2, and T3.

exact coverage test. That is why, based on this first explana-
tion, the greedy algorithm is run a second time with exact
coverage tests, ensuring the subset-minimality property. The
exact coverage test is achieved by solving a set of MILP
constraints encoding the boosted model, the tested term t,
and the coverage condition I . This two-step strategy leads
to substantial computational improvements, which renders the
generation of abductive explanations for boosted trees scalable
in practice [17], [20]. Note that a python library dedicated to
formal explanations can be found in [21].

IV. AN ACADEMIC EXAMPLE

This section illustrates the value of computing abductive
explanations via an academic example. The academic example
is a simplified version of the imbalance premium prediction
task λ̂reg.

t0+1
= E(λregime

t0+1
|x), where perfect knowledge of the

real-time market operations is assumed, i.e., the imbalance of
the system (SIt0+1

), the marginal incremental price (MIPt0+1
),

and the marginal decremental price (MDPt0+1 ) are known1.
Recalling Table I, we observe that all the required information
are available for modelling the imbalance price mechanism, at
the exception of the imbalance price adders.

The data spans from January 5, 2020 to January 10, 2022,
with a 15-minute time granularity. Each day is thus composed
of 96 instances, resulting in 70,656 instances for the whole
dataset. The first two years are used to train and validate
the prediction models (69,792 instances), while the last 10
days are used for out-of-sample analysis (864 instances). The
boosted model is selected because such models are quite
accurate and formal explanations can be derived efficiently
from them, as explained in the previous section. For the
sake of clarity, the boosted model owns 3 regression trees,
which are limited to a depth of 2, with a learning rate of 1.
Section IV-A first illustrates the formal notions of an abductive
explanation on the boosted model presented in Section III-A,
while Section IV-B compares our abductive explanations with
mathematical guarantees to those obtained with SHAP.

A. Formal description of the boosted model

Fig. 3 exhibits the already trained boosted model with
3 trees. The instance xe is thus defined by 3 attributes
(SI,MIP,MDP). The set of Boolean conditions associated
with the boosted model contains p = 9 conditions, i.e.,
{(SI ≥ −432), (SI ≥ 0), (MIP ≥ 21), (MIP ≥ 107), (MIP ≥

1Note that the MIP and MDP have also been differentiated w.r.t. the day-
ahead market price (λDA).

336), (MIP ≥ 543), (MIP ≥ 1298), (MDP ≥ −238), (MDP ≥
−102)}. Hence, for an instance xe = (324.5, 103.5,−140),
txe = (1, 1, 1, 1, 0, 0, 0, 1, 0). Indeed, (SI ≥ −432), (SI ≥ 0),
(MIP ≥ 21) and so on. The prediction for this instance is
f(xe) = −178+7+0 = −171 (see the blue leaves in Fig. 3).

We can observe that tree T1 is aligned with Table I show-
casing the imbalance price mechanism. The root condition of
T1 relates to the sign of the system imbalance (SI ≥ 0). The
price regime is low if this condition is verified, i.e., reaching
the leaves {−178,−40} depending on a condition on the MDP
attribute, otherwise the price regime is high, i.e., reaching the
leaves {33, 209} following a condition on the MIP attribute.
However, regarding the trees T2 and T3, the relation between
Table I and their respective conditions is less obvious. For
instance, all conditions of tree T2 relate exclusively to the MIP
attribute, with a leaf value that can go up to 1903 C/MWh.
This extreme leaf value only covers 4 instances in the training
dataset, indicating a possibility of overfitting leading to a
significantly wrong model of the imbalance price mechanism.

B. Abductive vs. SHAP explanations

Flaws in the understanding of the prediction model are
further analysed in Table II. Table II presents formal and
SHAP explanations for two instances of the test set. The first
instance, i.e., 1st quarter hour of January 1, 2022, corresponds
to a correct prediction of the price regime (Table IIa), while
an incorrect prediction of the price regime occurs at the
819th instance, i.e., January 9 at 12:30 pm (Table IIb). For
each instance, the left column (denoted by AX) gives us a
minimum-size abductive explanation for the instance, while
the right column provides the SHAP values of the features
for this instance. More specifically, the abductive explanation
in Table IIa provides a set of conditions explaining why the
predictor infers a low price regime, i.e., why the imbalance
premium prediction is negative (I = ] − ∞, 0]), while the
abductive explanation in Table IIb explains why the predictor
indicates a high price regime, i.e., why the imbalance premium
prediction is positive (I = [0,+∞[). Note that open intervals
are denoted by non-closed brackets, whereas closed intervals
are indicated by closed brackets.

For the first instance, the inputs are SIt0+1 of 324.5 MW, a
MIPt0+1 of 103.5 C/MWh, and a MDPt0+1 of -140 C/MWh,
and the target value λreg.

t0+1 is -143 C/MWh. The system
imbalance being positive, the imbalance price is driven by
the MDP with a negative adder of C3/MWh applied by
the Belgian TSO. The boosted model with 3 trees infers a
prediction λ̂reg. of -171 C/MWh, obtained by summing the
leaves labeled by -178, 7 and 0. The abductive explanation
(AX) pinpoints two Boolean conditions for explaining why
λ̂reg. ∈

]
−∞, 0

]
: SIt0+1 ≥ 0 and MIPt0+1 < 336. Based

on this explanation, a user with some expertise may already
question the inner working of the model on this instance, as
the prediction of a low price regime is conditioned by the
value of the MIP attribute. Indeed, Table I shows us that a low
imbalance price regime only depends of the sign of the system
imbalance. Such a reasoning is not possible with SHAP values,
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TABLE II: Formal explanations and SHAP values for the prediction made on January 1, 2022 at 12:00 am (Table IIa) and
January 9 at 12:30 pm (Table IIb).
(a) 1st instance: λreg.

t0+1 = -143 and λ̂reg.
t0+1 = -171 [C/MWh].

Inputs AX SHAP [C/MWh]
SIt0+1 = 324.5 MW SI ≥ 0 -86
MIPt0+1 = 103.5 C/MWh MIP < 336 3
MDPt0+1 = -140 C/MWh - -87

(b) 819th instance: λreg.
t0+1 = -204 and λ̂reg.

t0+1 = 120 [C/MWh].

Inputs AX SHAP [C/MWh]
SIt0+1 = 58 MW - -133
MIPt0+1 = 484 C/MWh MIP ≥ 336 340
MDPt0+1 = -204 C/MWh - -87

−500 0
MDPt0+1

−200

−100

0

λ̂
re

g.
t 0

+
1

(a)

0 2000
MIPt0+1

0

1000

(b)

Fig. 4: Model’s response to variations in MDP (see Fig. 4a)
and MIP (see Fig. 4b), highlighting the current value of the
prediction with a red point

TABLE III: Error metrics of a linear and boosted models for
the academic case study.

RMSE [C/MWh] MAE [C/MWh]
Linear model 71 54
Regression tree 86 73
Boosted model with 3 trees 50 40
Boosted model with 100 trees 16 11

which mainly highlight the SI and MDP attributes as important
drivers. This explanation blinds the user about the importance
of the MIP value even when inferring a low imbalance price
regime. Indeed, if we fix only the values of SI and MDP, the
possible prediction outcomes can still range from -194 to 1725
C/MWh. By not providing mathematical guarantees about a
prediction interval, SHAP values cannot be used here to detect
a faulty model. This is visually demonstrated in Fig. 4, which
depicts the model’s response to variations in MDP or MIP.

The 819th instance confirms that the prediction model has
a flaw in its modeling. The observed price regime is -204
C/MWh, and the prediction is 120 C/MWh (obtained with
the leave values -178, 298 and 0). This prediction is driven
by the inputs SIt0+1 = 58 MW, MIPt0+1 = 484 C/MWh, and
MDPt0+1 = −204 C/MWh. The abductive explanation that
has been computed about this erroneous price regime is given
by the Boolean condition MIP ≥ 336, which is complementary
to the abductive explanations derived for instance 1. From this
observation, we can deduce that, each time the MIP input is
greater than 336 C/MWh, the predictor infers a high price
regime, regardless of the system imbalance value. For this
instance, SHAP correctly pinpoints the MIP input as the main
driver of the prediction, but it is unable to derive the associated
threshold value that triggers the imbalance price regime.

This wrong understanding of the boosted model with three
trees is also corroborated by Table III, showing the root mean

square error (RMSE) and the mean absolute error (MAE) over
the test set, i.e., from January 1 to 10, 2022. Such results
are compared with a linear model, and a boosted model with
100 trees. First, we may observe the benefits of adding a
large number of trees for refining the prediction, where the
boosted model with 100 trees has a reduction of 58% and
72.5% of RMSE and MAE compared to the boosted model
with 3 trees, respectively. Furthermore, we may also observe
that the boosted model with 3 trees still exhibits a decrease
in the RMSE and MAE metrics of 30% and 26% compared
to the linear model, respectively. This shows the difficulty of
linear models in capturing the regime switching behavior of
imbalance prices, even with perfect knowledge of the real-
time market conditions. Note that an error signal still exists
even with a boosted model with 100 trees due to the adders
applied on imbalance prices in Belgium, whose information is
not provided in the input data.

V. A CASE STUDY

This section shows results for the prediction task on real-
life operating conditions. A practical case study is presented,
and the benefits offered by abductive explanations in this
practical case are highlighted. As in Section IV, the conditional
expectation of the imbalance premium is computed, but with
other inputs. The set of input features is composed of i) intra
quarter hour dynamics of the system imbalance, characterized
by averaged values over the last previous minutes (SI1′ , SI5′ ,
SI15′ , where minutes are denoted in subscript), ii) past dynam-
ics of the imbalance premium (λreg.

t0 , λreg.
t0−1, λreg.

t0−2, λreg.
t0−3), and

iii) calendar indicators (the hour and quarter hour, denoted H
and Qh respectively). Fulfilling its role of market facilitator,
the Belgian TSO provides each minute updates about the real-
time market operations via its website platform, hence no
initial lag needs to be introduced. The training, validation,
test set and intervals (i.e., I = ] − ∞, 0] or I = [0,+∞[)
used are the same as in Section IV. Section V-A shows that
the boosted tree model used achieves top accuracy compared
to other well-established forecasting techniques. Section V-B
presents a global overview of the abductive explanations, while
Section V-C focuses specifically on some instances.

A. Performance of the boosted tree model

We first compare the performance of our boosted model
with well-established forecasting techniques. Our empirical
protocol was as follows. Five different forecasters were ini-
tially compared: i) a linear model, ii) a regression tree, iii)
a random forest, iv) a feed-forward neural network and v) a
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Fig. 5: Accuracy in predicting the imbalance price regime and histogram of the predicted imbalance premium (Fig. 5a) and
size of the explanations per different bins of predicted imbalance premium (Fig. 5b).

TABLE IV: Error metrics of different predictors for the
practical case.

RMSE [C/MWh] MAE [C/MWh]
Linear model 98 70
Regression tree 109 80
Random forest 93 69
Neural network 93 69
Boosted tree 93 68

boosted tree. We conducted a hyperparameter optimization to
identify the most suited model complexity of each forecaster
on the 10% validation set. This was achieved through a grid
search, where the same number of iterations is used across
all benchmarks. The regression tree has a depth of 12. The
random forest has a depth of 12 with 100 trees. XGBoost has
100 estimators, a learning rate of 0.1, and a max depth of
4. The neural network has two hidden layers with 20 and 12
neurons. The neural network has been optimized via the Adam
algorithm.

In Table IV, we report the error metrics RMSE and MAE for
the different prediction models. We can observe that XGBoost,
random forest and neural network have obtained the same
error metrics. We can note that the ML models have a RMSE
reduced by 5% compared to a linear model. We can observe
also the benefits of using ensemble methods based on trees
as demonstrated by the reduction of 15% in terms of RMSE
compared to the single regression tree.

B. Global overview of the explanations generated

Concerning scalability concerns, the computational time
for extracting abductive explanations using the algorithm de-
scribed in III-B is on average 13s, with only 22 instances above
60s. Note that, for those 22 instances, the algorithm can be
stopped, and still outputs abductive explanations (but without
subset-minimality guarantee). This is aligned with the experi-

ments in [17], which shows that the computational time across
different datasets is manageable (not exceeding 90 seconds on
average) up to a substantial number of Boolean conditions
(up to 800). Figure 5 shows two pictures. The leftmost picture
(Fig. 5a) depicts the predicted imbalance premium categorized
in different bins. The left y-axis (in red) shows the accuracy of
predicting a low (λ̂reg.

t0+1 < 0) or high (λ̂reg.
t0+1 > 0) imbalance

price regime for the different categories. The right y-axis (in
blue) shows the proportion of each bin over the whole test
set. We can observe that the accuracy of predicting the correct
imbalance price regime is about 63% and 80% for the intervals[
−100, 0

[
and

[
0, 100

[
, respectively. Both classes represents

77% of the test set. Interestingly, the model is more efficient
for predicting a positive imbalance price regime rather than
a negative imbalance price regime. In the same vein, we can
see also that the model accuracy increases when the model
predicts extreme values of the imbalance price regime. The
corresponding rightmost picture (Fig. 5b) shows the size of
the abductive explanations per different categories. The size
of explanations is computed based on the number of Boolean
conditions they contain. We can observe that for predictions
ranging into

[
−100, 0

[
(resp.

[
0, 100

[
), explanations are quite

large: on average, they consist of 8 (resp. 7) conditions
with a maximum that could go towards 18 conditions (using
thus all 9 features) for some instances. Interestingly, we
can observe that the explanations that have been derived
contain more Boolean conditions regarding low imbalance
price regime than high imbalance price regime. Furthermore,
we can observe that for “more extreme” predictions, i.e.,
between

[
−250,−100

[
,
[
100, 250

[
and

[
250,+∞

[
, the size of

explanations are reduced. This complies with our expectations
as the corresponding predictions are further from the baseline
0 than the ones considered with the other intervals. This is even
more pronounced for the interval

[
250,+∞

[
, where only two

conditions are sufficient for predicting a high price regime.
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TABLE V: Frequency of appearance of attributes
[
%
]

in the
explanations for the different categories of predictions made.

[-250,-100[ [-100,0[ [0,100[ [100,250[ [250,+∞[
SI1′ 100 100 100 100 100
SI5′ 28 82 84 37 0
SI15′ 85 90 42 13 0

λ
reg.
t0

100 100 100 99 100

λ
reg.
t0−1 100 100 59 6 5

λ
reg.
t0−2 15 76 83 55 5

λ
reg.
t0−3 5 53 85 29 5

Qh 64 62 54 23 0
H 0 28 54 5 0

In Table V, the frequency of appearance of each attribute
within the abductive explanations is shown over the whole test
set. First, the system imbalance over the last previous minute,
and the imbalance premium over the last quarter hour are
almost always present in the abductive explanations. In relation
with Fig. 5b, we can also see that many features are present
in explanations for the prediction intervals

[
−100, 0

[
and[

0, 100
[
. More specifically, we can observe that the imbalance

prices at t0−2 and t0−3 are frequently used for predicting
the imbalance price regime. In addition, the dynamics of the
system imbalance over 5 and 15 minutes is used as well. For
low imbalance price regime, the imbalance premium at t0− 1
is used as well as the system imbalance over the last 15 min.
When the prediction lies in

[
250,+∞

[
, SI1′ and λreg.

t0 drive
the prediction of a high price regime. We can also observe
that for the interval

[
−250,−100

[
the four main features are

SI1′ , SI15′ , λ
reg.
t0 and λreg.

t0−1. Both calendar information have
an impact on the prediction of the price regime, when the
prediction is not far from 0.

C. A focus on three instances

Fig. 6 illustrates the sufficient conditions leading to a
negative imbalance premium for instance 3, predicting an
imbalance premium of -200 C/MWh for January 1 at 12:30
am, compared to the observed value of -219 C/MWh. More
particularly, as depicted in Fig. 6a, the conditions on the
past observed imbalance premium are λreg.

t0 < −196 C/MWh
and λreg.

t0−1
< −28 C/MWh, while, in Fig. 6b, past system

imbalance dynamics are required to be SI15′ ≥ 222 MW
and SI1′ ≥ 374 MW. In contrast, instance 34, on January
1 at 8:15 am, corresponds to a prediction of 246 C/MWh for
an observed imbalance premium value of 309 C/MWh. For
this instance, the two sufficient conditions for the predictor
to be in the positive interval are that λreg.

t0 ≥ 246 C/MWh
and SI1′ < −364 MW (as shown respectively in Fig. 7a and
Fig. 7b). These examples demonstrate how extreme values in
specific input attributes drive the imbalance price regime.

One of the difficulties for the predictor is to make a change
in price regime compared to the past quarter of an hour.
This is what is happening at instance 225 corresponding to
01/03/22 at 8:00 am, which is showcased in Fig. 8. The
imbalance premium λreg.

t0+1 is -121 C/MWh, while the im-
balance premium observed over the past quarter hour (λreg.

t0 )

λreg.
t0−{3,2,1,0} λreg.

t0+1 λ̂reg.
t0+1 AX SI.
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Fig. 6: Visualization of explanations for instance 3, on
January 1 at 12:30 pm
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Fig. 7: Visualization of explanations for instance 34, on
January 1 at 8:15 am
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Fig. 8: Visualization of explanations for instance 225, on
January 3 at 08:00 am

is 61 C/MWh. The value of the prediction is -45 C/MWh,
showing a regime switching behavior of the boosted model. To
predict this regime switching, an abductive explanation must
use 10 Boolean conditions covering 8 inputs. Concerning the
dynamics of the regime prices (shown in Fig. 8a), we can
observe that the imbalance premium of the past quarter of an
hour must not be too high, i.e., λreg.

t0 ∈ [39, 70]. Concerning the
imbalance of the system (detailed in Fig. 8b), the average value
over the 15 min should not be too low, i.e., between -152 and -
350 MW. In addition, two conditions appear about the average
imbalance over the last 5 minutes and the last minute. They
indicate that the values of those features should be respectively
greater than -351 MW and -58 MW. In addition, we see that it
is important for the predictor that the price dynamics from the
past quarters 1 to 3 is lower than -76, -138, and -153 C/MWh.
Finally, the role of the calendar entry, indicating whether it is
the first quarter hour, is also important. This may be due to
the ramp phenomena which occur due to the hourly granularity
of the day-ahead market and can therefore change the price
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prediction.

VI. CONCLUSIONS AND PERSPECTIVES

Imbalance price prediction is a risky task. Though ML
models are the best approaches that have been provided so
far for this task, significantly wrong predictions may happen.
Accordingly, it is important to develop explanation methods
about the predictions made for enabling users to gain trust
in the predictions made when the predictions cohere with
what the user expects and to reject them otherwise. In this
perspective, this work focuses on formal methods for deriving
abductive explanations and understanding why the model used
predicts a high or low imbalance price regime. The prediction
is made every quarter hour and the method of generation is
computed below 13s on average.

Our approach to abductive explanations presents two key
advantages than are not shared by model-agnostic approaches
(as SHAP): the user can choose the precision of the prediction
he/she is ready to tolerate, and the explanations are provably
correct, allowing the user to reason from them for making the
final decision (believing or not in the prediction made). These
two advantages were exemplified through an academic case
study. In particular, abductive explanations clearly identifies
the input conditions for which the boosted model infers a
wrong imbalance price regime. Such tailored reasoning is not
possible from SHAP explanations, which falsely reinforce the
explainee’s beliefs about the correct behavior of the model for
instance 1. Then, the applicability and usefulness of abductive
explanations is assessed on a real-life case study. For this
case study, ML models (i.e., the boosted tree, random forest
and neural network models) achieve similar performance and
show a decrease of 5% in RMSE compared to a linear model.
As expected, the size of abductive explanations decreases on
average as the prediction value is further from the baseline 0.
Features that appear the most frequently in the explanations
are the system imbalance over the last minute, and the past
quarter hour imbalance premium. Both features are sufficient
for explaining an extremely high price regime, but need to
be complemented with other system imbalance dynamics and
imbalance premiums for prediction near 0. Finally, a deeper
investigation about one instance exemplifies the usefulness of
such explanations in understanding the input conditions that
trigger the model to predict a price regime switching from an
observed positive imbalance premium. For this instance, the
derived abductive explanation (using 8 features out 9 available)
highlights that the previously observed imbalance premium
should be not too high while others past imbalance premiums
must be negative, an increasing trend in the intra quarter hour
dynamics of the system imbalance, and a shift to the first
quarter of the next hour.

This work calls for many perspectives. The most important
one surely is to integrate in a deeper way humans in the
prediction/explanation loop so as to create interactive systems
that are usable, useful and enjoyable to use. Explanations as
viewed by AI researchers and by Human-Computer Interaction
researchers are quite different. Both communities had a long

way to go for bridging the gap. Developing a protocol of
interaction with actual BRPs would be a step toward this
goal, making the explanation process more dynamic and user-
centric.
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