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Abstract—In this paper, we present the mathematical formu-
lation of an OpenStreetMaps (OSM) based tool that compares
the costs and emissions of long-haul medium and heavy-duty
(M&HD) electric and diesel freight trucks, and determines the
spatial distribution of added energy demand due to M&HD EVs.
The optimization utilizes a combination of information on routes
from OSM, utility rate design data across the United States,
and freight volume data, to determine these values. In order
to deal with the computational complexity of this problem, we
formulate the problem as a convex optimization problem that is
scalable to a large geographic area. In our analysis, we further
evaluate various scenarios of utility rate design (energy charges)
and EV penetration rate across different geographic regions and
their impact on the operating cost and emissions of the freight
trucks. Our approach determines the net emissions reduction
benefits of freight electrification by considering the primary
energy source in different regions. Such analysis will provide
insights to policy makers in designing utility rates for electric
vehicle supply equipment (EVSE) operators depending upon the
specific geographic region and to electric utilities in deciding
infrastructure upgrades based on the spatial distribution of the
added energy demand of M&HD EVs. To showcase the results,
a case study for the U.S. state of Texas is conducted.

Index Terms—freight electrification, utility rate design, battery
electric vehicles, OpenStreetMaps, decarbonization

NOMENCLATURE

Indices and Graph
A all possible undirected arcs connecting origin and

destination of G
G full set of locations in the graph
k index for vertices/locations in the graph
t index for time period, t = 1, · · · , T
Model Parameters
η+ battery charging efficiency
η− battery discharging efficiency
ηw2e average tractive energy power at wheels by battery

and motor (kW/miles)
λk utility energy rate price at location k ($/MWh)

The authors acknowledge support from the Laboratory Directed Research
Development (LDRD) program at PNNL.

E maximum battery capacity (kWh) of vehicle available
to charge

P maximum charging power for vehicle (kW)
E minimum battery capacity (kWh) of vehicle available

for discharging
P minimum charging power for vehicle (kW)
dk travel distance on arc (k, k + 1),∀k ∈ G
e0 initial SOC of the vehicle battery at the beginning of

the day/time horizon
eK+1 terminal SOC of the vehicle battery at the end of the

day/time horizon
Qm maximum capacity (tons) of vehicle
tk travel time on arc (k, k + 1),∀k ∈ G
vk travel speed on arc (k, k + 1),∀k ∈ G
Decision Variables
e+k energy charged at location k
e−(k,k+1) energy consumption on arc (k, k + 1)

lk vehicle load (tons) on arc (k, k + 1)
p+k battery charging power at location k
p−k battery discharging power on arc (k, k + 1)
r the potential route between given origin and destina-

tion pair (O-D pair)
xk binary variable representing charging decision at lo-

cation k, ∀k ∈ G, if vehicle charge at location
k, xk = 1, otherwise xk = 0

I. INTRODUCTION

In recent years, the electrification of vehicle fleets has
emerged as a promising solution to mitigate environmental
concerns and reduce reliance on fossil fuels in transportation,
a sector which accounts for nearly 30% [1] of all GHG emis-
sions. As societies worldwide strive to transition to sustainable
and greener modes of transportation, fleet electrification, par-
ticularly for long-haul freight trucks, has gained significant
attention from both industry and academia. This shift towards
electric vehicles (EVs) in fleet operations offers numerous
potential benefits, including reduced carbon emissions, lower
operational costs, and enhanced energy efficiency. However,
the electrification of long-haul freight trucks, despite its po-
tential benefits, presents unique challenges. These vehicles
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are integral to the global logistics and supply chain network,
often covering extensive distances and requiring high power
demands. Consequently, electrifying this specific type of fleet
is confronted with issues related to battery capacity, charging
infrastructure, and the need for cost-effective solutions to
ensure long-haul capabilities while minimizing environmental
impact. A critical aspect in evaluating the economic viability
of fleet electrification lies in understanding the impacts of
utility rate design on EV charging patterns and figuring out the
spatial distribution of the resulting charging energy demand.
Stakeholders ranging from utility companies, which can plan
infrastructure upgrades based on this distribution, to policy
makers who can design effective regulations, stand to benefit
significantly from this insightful analysis. Efficient location
based charging is pivotal for fleet operations as it directly
influences transportation costs, energy consumption, and over-
all fleet performance. Therefore, conducting an economic
assessment of fleet electrification through vehicle charging
optimization becomes imperative to accurately evaluate the
financial feasibility, emissions reduction, spatial distribution
of energy demand and potential advantages associated with
transitioning to EVs.

Numerous studies have focused on the economic assessment
of fleet electrification [2], [3], [4], specifically incorporating
vehicle routing optimization techniques [5], [6], [7], [8].
These studies, spanning a range of scales from urban area
to statewide, have explored the integration of optimization
models and algorithms with fleet electrification considerations
to facilitate decision-making processes and provide valuable
insights for fleet operators and policymakers.

One common approach in the literature involves developing
mathematical models that incorporate various factors related
to fleet electrification and vehicle routing. These models often
consider parameters such as vehicle range, battery capac-
ity, charging infrastructure availability [9], energy consump-
tion [10], and charging time [5]. By combining these elements
into optimization frameworks, the existing works aim to de-
termine the optimal allocation of EVs across delivery routes,
charging strategies, and scheduling decisions to minimize costs
and maximize efficiency.

Moreover, researchers have also investigated the impact of
fleet electrification on total cost of ownership (TCO) [11],
taking into account factors such as vehicle acquisition costs,
maintenance expenses, energy costs, and potential incentives
or subsidies [12]. These TCO models, combined with vehi-
cle routing optimization in [13], enable a comprehensive
assessment of the economic viability of fleet electrification,
providing insights into the potential cost savings and payback
periods associated with the transition to EVs.

Furthermore, advancements in data analytics and real-time
data collection in [14] have allowed for the integration of dy-
namic factors into fleet electrification economic assessments.
By incorporating real-time traffic data, weather conditions,
and demand fluctuations, [15] aims to develop more accurate
and adaptive optimization models that account for real-world
uncertainties and dynamic operational environments.

However, it’s noteworthy that certain critical aspects have
been underexplored in the literature. Notably, very few studies
addressing long-haul medium and heavy-duty freight truck
fleets, where electrification potential intersects with significant
logistical and energy demand complexities. Additionally, com-
prehensive emissions reduction calculations are often lacking,
along with an understanding of the spatial distribution of
the resulting charging energy demand, accounting for utility
rate design. Moreover, the need for scalable solutions that
can be applied to larger geographic regions has not received
adequate attention. The electrification of such fleets demands
formulating a highly complex, large-scale optimization prob-
lem that may not be computationally tractable to solve, given
the complexity of interconnected variables and constraints. To
bridge these gaps, we present our solution, which extends the
existing body of research by addressing these challenges in
a holistic manner, providing valuable insights and scalable
optimization techniques to support the electrification of long-
haul medium and heavy-duty freight truck fleets.

In this paper, we aim to provide valuable insights and
an applicable tools for fleet operators, policymakers, and
stakeholders in understanding the financial implications, ben-
efits, and challenges associated with transitioning to electric
vehicles for long-haul medium and heavy duty freight trucks.
What sets our research apart is our comprehensive approach to
addressing the complexities of electrifying these critical freight
fleets. We combine utility rate design, freight volume data, and
route data from OpenStreetMaps (OSM) into a comprehensive
optimization framework. Unlike previous studies, we formu-
late this optimization problem in a scalable manner, allowing
for practical application over extensive geographic regions,
from state wide to nationwide. This scalability enables us to
address challenges presented by the electrification of long-haul
freight truck fleets, where multiple variables and constraints
interact within a vast operational landscape.

The structure of this paper will be as follows, in section II,
we describe the problem in the mathematical formulation,
provide detailed constraints and assumptions and then propose
a numerical algorithm framework to process the user input and
integrate the mathematical formulation into the optimization
engine, hence solve a large scale vehicle routing problem
iteratively. In section III, the data flow management and
preprocessing will be shown along with the user interface.
In section IV, we explore the scalability of the algorithm by
solving state-wide transportation system in Texas, compare the
environmental and economic metrics and access the efficiency
of our framework. Finally the conclusion are laid out in Sec. V
.

II. PROBLEM FORMULATION

In this section, we outline the research methodology. Fol-
lowing the problem description, we describe the primary
objective of our problem. Subsequently, we will remark and
detail our assumptions on the key elements of our optimization
framework, including the incorporation of utility rate design,
freight volume data, and route data from OSM.
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A. System Description

Consider a transportation system represented by the graph
G, comprised of fleet charging at designated locations, de-
noted by k = 1, 2, . . . ,K ∈ G, the set of undirected arcs
connecting the origin O ∈ G and destination D ∈ G (O-D
pair) is denoted by A. To find the optimal route, charging
location and charging power of the given vehicle fleet, the
input data for the optimization problem includes the energy
price at location k, λk, all the routes between the given O-D
pair and the energy charged at location k, e+k,r.

B. Objective

In the proposed EV Scheduling Problem, given pairs of
origin and destination and the graph involving all possible arcs
connecting them, we are minimizing the charging cost of the
EV fleet while satisfying the daily duty. The optimal decision
includes the charging location (where to charge), charging
power (how fast to charge) and the optimal objective value
will determine the optimal route (which route to select).

minimize
R∑

r=1

K∑
k=1

λke
+
k,r (1)

The process is repeated to obtain aggregate values over a span
of one year. The rationale behind choosing a yearly timeframe
is multifold. Firstly, the Bureau of Transportation Statistics
(BTS) datasets [16] is released on an annual basis, providing a
comprehensive view of transportation metrics over a 12-month
period. This allows for consistent and reliable comparisons,
using a standardized dataset. Additionally, considering an
entire year ensures that variances across different months and
seasons are captured. Seasonal differences can significantly
affect transportation patterns due to factors like weather con-
ditions, holidays, and industrial demands. By encompassing all
these variances, a yearly analysis offers a more holistic and
representative insight into transportation trends and impacts.

C. Constraints

1) Battery capacity constraints:

E ≤ e0 +

K∑
k=1

e+k η
+ −

K∑
k=1

e−(k,k+1)

η−
≤ E, (2)

xk

[
E +max (

e−k−1

η−
,
e−k
η−

)

]
≤ e+k η

+ ≤ xkE, (3)

where ∀k, k − 1 ∈ G, the eq. (2) ensures that energy
consumption on battery for the entire trip between origin and
destination(undirected) is bounded by energy capacity limits.
For the charging energy between location k and k + 1, the
eq. (3) enforces the battery charging energy to be safe in
the worst cases, i.e., charging energy to be able to arrive at
nearest location. xk is the binary variable to decide whether
or not to charge at the location k.

2) Load constraints:

e−(k,k+1) = p−k tk ∀k ∈ G (4)

p−k = ηw2evk
lk
Qm

,∀k ∈ G (5)

The eq. (4) ensures that EV on the arc (k, k + 1) discharged
enough energy to meet the load and travel demand. The
eq. (5) utilize the tractive energy efficiency from the wheels
to the battery to model the discharge power during the trip as
function of load level and speed.

3) Other constraints:

dk = vktk, ∀k ∈ G (6)
xk ∈ {0, 1}, ∀k ∈ G (7)

The eq. (6) shows the relationship between travel distance,
travel time and speed. Eq. (7) defines the binary decision
variable xk.
Hence the overall optimization problem is formulated as,

minimize
R∑

r=1

K∑
k=1

λke
+
k,r (8)

subject to eq.(2) − (7) (9)

Note that by introducing the binary variable for the battery
charging and discharging state, the optimization problem be-
comes a mixed-integer linear programming (MILP) problem.
Tackling large-scale MILP problems, however, is known to be
computationally challenging due to their inherent complexity,
especially as the problem size grows [17]. Our proposed
approach aims not only to model the problem but also to
present a algorithm framework that is scalable, addressing the
computational challenges typically associated with large-scale
MILP problems.

To facilitate the integration process of the proposed frame-
work with our input data, we also made assumptions on the
EV fleet charging and discharging to relax some restrictions
for the optimization problem.

Remark 1: In our approach, we adopt a 24-hour look-
ahead window to optimize the charging locations consecutively
throughout the entire year and for the entire fleet. This ap-
proach allows for dynamic, day-to-day adaptability, capturing
the fluctuating demands of fleet electrification. Instead of
tackling the computational challenge of optimizing the whole
year in one iteration, this daily sequential method divides
the yearly problem into smaller sub-problems. This not only
enhances computational efficiency but also provides a granular
perspective that aligns with real-world dynamics.

Remark 2: Consider a single pair of origin and destination
points at a time. This method greatly simplifies our optimiza-
tion task. Our fleet’s characteristics – long distances, fixed
start and end points, set loads, daily routines, specific charging
parameters, and SOC transitions – allow us to view potential
routes as undirected. This aligns with the BTS freight volume
data, which details origin-destination pairs, enabling parallel
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optimization for each pair. Iterating over these routes ensures
scalability thorough our analysis, optimizing our algorithm’s
performance within the BTS data framework.

To further ensure the convexity of our optimization problem
formulation, we supplement with the following assumptions:

• Travel speed on each arc/edge is constant but may vary
across arcs.

• Battery charging time is fixed and does not affect the 24
hour driving schedule.

• All the vertices including origin and destination are
available for charging.

• All the vehicles associated with given origin and destina-
tion pair have the same schedule of charging and route
selection.

• The total load demand served on a route does not exceed
the vehicle fleet capacity.

D. Algorithm framework

Here we elaborate the framework of the algorithm to solve
the EV optimal dispatch and routing problem defined above.
The input parameter of the proposed algorithm consists of the
following:

• Fleet Information: The algorithm requires input data on
the fleet size, types of vehicles (including EVs), their
charging capacities, and vehicle operating costs.

• Charging Infrastructure: The availability, locations, and
charging capacities of charging stations need to be con-
sidered to determine the feasibility of EV routing and
charging plans.

• Electricity Pricing: The algorithm requires information on
electricity pricing, including peak and off-peak rates, to
optimize the charging schedules of EVs.

Given the data input from either the fleet owner or the
utility company to optimize their infrastructures, the algorithm
framework will take use of the Julia engine as the optimizer
and go through the steps iteratively in the Fig. 1. The detailed
algorithm flow is shown in Algorithm 1.

Given the 
graph of nodes

• G(V,E) e.g. interstate 
network

Select Origin-
Destination 

pair
• e.g. Select (A,C)

Find best route 
with optimal 
economic 
benefits

• Search in all possible 
routes by solving the 
optimal scheduling 

A(orig./dest.)

C(orig./dest.)

B

problem

Fig. 1. EV routing and dispatch algorithm framework used to calculate
the optimal charging location and charging power and determine the spatial
distribution of added energy demand.

Algorithm 1: Optimal routing and charging location
algorithm for the fleet electrification
Consider the list of routes between given undirected

O-D pair, r = 1, 2, . . . , R, t = 1, 2, . . . , 365,
for route r = 1, 2, . . . , R do

for day t = 1, 2, . . . , 365 do
Solve the refined optimization problem for the
selected route and O-D pair,

minimize
K∑

k=1

λke
+
k

subject to eq.(2) − (7)

end
Calculate the optimal energy cost, CO2 emissions,
and energy demand for the entire fleet.

end
Find the route with the most cost saving and emission

reduction, return the optimal route and charging
location solution.

III. DATA MANAGEMENT AND PREPARATION

In order to ensure practical and meaningful results for end-
use stakeholders of the developed tool, the following two
real-world open data source were consolidated along a real-
world representation of possible fleet routes: flow of freight
volume along routes, and local energy pricing along routes.
The route development took place prior to any analysis, which
had two dependencies itself, namely the cities that can serve
as origins and destinations appropriate for fleet vehicle routes,
and the road network map along which they can travel. To
interface with a potential user stakeholder, a user interface
(UI), called the EFECT-UI, was developed to collect route
and fleet information, and then to execute corresponding
optimization calculations.

This section covers the details of the flow of information,
displayed in Figure 2, where data from original sources are
processed to develop routes and their corresponding meta-
data, and they are combined with user-selected routes and
parameters to provide input into the optimization algorithm.
Figure 3 displays a screenshot of the EFECT-UI representing
the developed tool, where a user can select the geographical
area bounded by a US state or other relevant region, cities in
that region to serve as origin-destination (O-D) pairs for fleet
routes, and additional parameters, such as percentage of a fleet
to be electrified.

To develop routes, we first relied on data supplied by
the Freight Analysis Framework Version 5 (FAF5) prepared
by US Department of Transportation (DOT) Federal High-
way Administration (FWHA) BTS [16]. This data captures
comprehensive freight movement between states and major
metropolitan areas by integrating data from multiple sources.
We made use of information corresponding to the ”Truck”
mode of transportation for this study. The included list of
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Freight 
Data

OSM

Energy 
Pricing

List of All
Cities/O-D Pairs

Flow between 
O-D Pairs

Simplified Road 
Network

Optimization 
Algorithm

Utility Rates

Diesel Prices

Routes between 
All O-D Pairs 

with Metadata

User Choices from GUI:
• Selected O-D Pairs
• % Fleet Electrified 

Fig. 2. Flow of information from data sources, and how they are prepared
for input into the optimization algorithm.

Dropdown 
menu to select 
state or region

Dropdown 
menus to 
select list of 
destination 
cities for each 
possible origin 
city

Button to update 
map according to 
selected region 
and O-D pairs

Slider to select 
% of fleet 
electrificationc

Button to execute 
optimization algorithm 
with selected options

Fig. 3. A screenshot of the EFECT-UI developed to identify optimal charging
locations, estimates of total energy costs, and potential reduction to emissions.
Users select a region, cities for O-D pairs, and analysis parameters before
executing the algorithm. Maps for the road network and selected routes are
displayed.

cities were used to limit O-D pairs to serve as starting and
ending points for routes. The FAF5 dataset included flow (in
tons) between each O-D pair, which we also used to model
the traffic between different city pairs. The FAF5 dataset is
represented as the red boxes in Figure 2.

To build the road network, we relied on Open Street Maps
(OSM), an open-source distribution of geographic data for the
world, including detailed road connections and location based
metadata [18]. Latitude-longitude coordinates and correspond-
ing counties of network node locations served particularly
useful for our study when associating potential charging sites
to the correct local utilities responsible for supplying the
required energy. We used a combination of the osmnx and
networkx packages in Python to first generate a localized
map of detailed streets around each metro city area, and
then combined the major highway network only throughout a
buffered bounding box defined by the group of cities included
for a given region.

Once the road network map was defined, the fastest routes
between each O-D pair was generated, and potential en-
route charging sites were identified at approximately 50 km

increments. The routes were organized into JSON files, which
each route was named using an indexed O-D pairs and were
supplemented with metadata related to distance, time duration,
human interpretable highway names, and charging site location
information. The road network development is represented
with the purple boxes in Figure 2.

The energy pricing data consists of the utility rate data and
diesel price data. For the battery electric vehicle (BEV) fleet,
we consider the utility rate data from the The Utility Rate
Database (URDB) hosted by OPENEI [19]. For the internal
combustion engine vehicle (ICEV) fleet, the diesel price data at
state level is obtained from American Automobile Association
(AAA)’s real time data for 2023 [20]. This information is
represented by the orange boxes in Figure 2

The EFECT-UI integrates the proposed algorithm frame-
work and the data management functionality into the user
interface (UI), a snapshot of EFECT-UI is shown in Fig. 3.
The interface also includes some visualization of the road
network and selected routes, which makes use of the list
of network edges for each route, was also included in the
JSON files created. Based on user selections, a subset of this
JSON file serves as the input into the algorithm described in
in section II-D. Contributions from user-chosen criteria and
values are displayed as the green box and connected lines in
Figure 2, as they are aggregated with the rest of the data before
being fed into the optimization algorithm.

IV. CASE STUDIES AND ANALYSIS

To showcase the results and applicability of our algorithm
framework, we selected the state of Texas as a representative
case study. Within Texas, key cities such as Austin, Beaumont,
Corpus Christi, Dallas, El Paso, Houston, Laredo, and San
Antonio have been considered. The detailed road network,
illustrating the routes and connections between these cities,
is presented in Figure 4.

The same techniques can be scaled up to include regions
defined by regional transmission organization (RTO) bound-
aries or at the national level. It’s worth mentioning that the
Texas state boundaries are analogous to the Electric Reliability
Council of Texas (ERCOT) RTO, and though technically El
Paso is not included within ERCOT boundaries, the potential
charging locations en-route are, and thus including El Paso
among the possible O-D pairs list is necessary for a scope
around ERCOT.

To simplify the process of solving the problem, we first
generate the list of potential fastest routes between the given
O-D pairs from the OSM data then solve the optimal charging
solution in the optimization engine for the entire year.

The case study is considering the 8 cities in Texas, and se-
lects all the possible O-D pairs among these 8 cities to approx-
imate the total energy cost (in dollar values), total emission (in
tons of CO2 equivalent) and total energy consumptions. Emis-
sion calculations for both ICEV and BEV fleets stem from
their primary energy sources : ICEVs: Emissions originate
from fuel combustion. They are calculated by multiplication
of amount of diesel consumption into diesel factor. BEVs:
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TABLE I
TOTAL OPERATIONAL COST AND EMISSION COMPARISON

BETWEEN BEV AND ICEV FLEETS FOR THE STATE OF TEXAS.

Type of Fleet Cost($) Emission(100 tons CO2 eq) Energy(MWh)2

BEV 2.3M1 202 10975
ICEV 25.6M 2141 116324

1 M: million
2 1 gallon U.S. diesel oil = 0.0407 MWh

El Paso

Dallas

Austin

San Antonio

Laredo

Corpus Christi

Houston

Beaumont

Fig. 4. Texas road network map (blue), with routes between all possible
origin-destination pairs (red) and possible charging sites (markers).

Emissions hinge on the electricity grid’s composition. They are
calculated by multiplication of annual carbon intensity from
[21]. The primary energy sources are taken into account for
the carbon emission intensity from different locations in Texas.
The detailed cost and emission comparison between BEV and
ICEV fleet over entire state is shown in Table I. Based on the
optimal charging schedule for the entire year and the entire
fleet, given the freight volume load between the O-D pairs,
the BEV fleet’s energy cost (operational cost only) can be
reduced to about 9% of the ICEV fleet’s cost. While ICEV
fleet emits over 10 times the CO2 equivalent emissions of
BEVs, underscoring the significant environmental benefits of
electric fleets, especially in terms of greenhouse gas emissions.
The energy consumption for the ICEV fleet is approximately
10.6 times that of the BEV fleet. This substantial difference
underscores the inefficiencies inherent in ICEVs, given that a
significant portion of the energy in fuel is lost as heat rather
than being used for propulsion.

The spatial energy demand distribution comparison between
the BEV fleet and ICEV fleet, is shown in Fig. 5. The charging
demand for utility companies along x axis is shown on the
top for BEV fleet, and the fueling demand for ICEV fleet
is shown in the bottom at county level. For the top half of
Fig. 5, it illustrates the charging demand of BEVs for various
utility companies. The CenterPoint, Austin Energy and Oncor
provides the top 3 energy demand locations over the selected
routes. For the bottom half of figure, we list the amount of
diesel fuels consumed by the ICEV fleet, since we assign
the fueling location and diesel price only to the county level.
In the figure we can observe that Hays County provides the
most fueling demand followed by Travis County and Colorado
County.

Fig. 5. Energy demand from BEV fleet at utility level and Fuel demand from
ICEV fleet at county level for the state of Texas.

To have a better visualization of distribution of energy
demand and emission reduction, for the comparison between
BEV fleet and ICEV fleet, we plotted energy demand and the
emission reduction due to fleet electrification in Fig. 6. It is
seen that most of the counties the major routes passing through
have higher energy demand and emission reduction. Harris
County has the highest energy demand followed by Travis
County. In contrast, Hays County in the center of the map
is showing a lower emission reduction than the neighboring
counties, while this county has the largest diesel fuel demand.
This is because the BEV fleet also consumes higher electric
energy and leads to a higher net-carbon emission.

Further analysis of the BEV and ICEV fleet is conducted by
mixing the fleet with different types of vehicle and comparing
the energy cost and CO2 emission as we increase the pene-
tration of BEV in the fleet. As can be seen in Fig. 7, as the
penetration of BEV increase in the mixed type of fleet, both
the energy cost and CO2 emission are decreasing, however,
the decreasing rate is also slowing down. We can also observe
that CO2 emission decrease faster than energy cost when the
penetration of BEV is lower than 60%. This can indicate the
environmental value of long-haul truck electrification is higher
than the economic value when the penetration is lower than
60%. Note that the optimization problem solved for the Texas
cities includes 28 O-D pairs, hence more than 1600 variables
included. The proposed algorithm is able to solve the problem
within 360s for the entire year.

V. CONCLUSION

In this paper, we developed an optimization framework
that integrates data from OpenStreetMaps, utility rates from
OPENEI utitlity rate database, and freight volume metrics
from FAF5 database, to provide a clearer understanding of
the operational costs, spatial distribution of energy demand,
and environmental impacts associated with electric and diesel
freight trucks. Given the vast nature and intricacy of the data,
we designed our method to be both efficient and capable of
analyzing large geographic expanses.
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Fig. 6. Spatial energy demand due to freight electrification (top) and emission
reduction due to freight electrification (bottom) per county map for the state
of Texas.
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Fig. 7. Sensitivity analysis of energy cost and CO2 emission by varying from
0% to 100% of BEV in the mixed type of fleet for the case study of Texas.

This research holds relevance for stakeholders, such as
policymakers and utility companies. Policymakers can derive
insights to set effective rates for electric truck charging in-
frastructure, while utility providers can forecast the regions
that might see increased energy demand due to electric truck
operations. To validate and illustrate our methodology, we
have conducted a detailed case study focusing on Texas,
encompassing major urban centers.

Future work will also consider the up-front cost of freight
electrification (including charging infrastructure) and provide
a comprehensive comparison between BEV and ICEV fleets

through a life-cycle analysis (LCA) method.
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