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Abstract—Virtual Power Plant (VPP) is an emerging concept
that can effectively manage a large number of distributed energy
resources (DERs). However, the inherent uncertainty of load and
renewable generation poses a challenge to reliable VPP power
scheduling. This manuscript proposes a novel method for day-
ahead VPP scheduling with a joint probabilistic guarantee on
its power availability without violating the DER constraints and
network constraints. A surrogate polytope is first used to find the
inner approximation of the VPP power, implicitly including the
low-level DER power, DER constraints, and network constraints.
Then, a multivariate Gaussian distribution is used to fit the
random parameters of the surrogate polytope, after which the
iterative supporting hyperplane algorithm is used to solve the
VPP scheduling problem. Extensive case studies based on real-
world renewable generation scenarios demonstrate the superior
performance of the proposed method in out-of-sample cost and
reliability, with a manageable computing complexity.

Index Terms—Distributed Energy Resources (DERs), Joint
Probabilistic Constraints, Network Constraints, Virtual Power
Plant (VPP).

I. INTRODUCTION

The proliferation of distributed energy resources (DERs),
including photovoltaic units (PV), wind turbines (WT), and
energy storage (ES), is transforming the traditionally passive
distribution network into an active one [1]. The Virtual Power
Plant (VPP) is a concept that aggregates and utilizes a col-
lection of DERs for tasks such as energy cost minimization,
frequency regulation, and reserve provision [1]. Pilot projects
for VPP deployment are implementing in several countries
[2]. Based on the objective of aggregation, existing literature
divides VPPs into two categories: commercial VPPs (CVPPs)
and technical VPPs (TVPPs). CVPPs primarily focus on
financial activities, and the managed DERs are not restricted
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to a single distribution grid [3]. TVPPs additionally consider
the distribution network constraints and the managed DERs
are typically within a single distribution grid [3]. TVPPs can
also be referred to Active Distribution Networks (ADNs) [4].
This paper focuses on the scheduling of a TVPP, and all the
“VPP” terms in the later content refer to “TVPP” in existing
literature for simplicity.

In a standard market engagement process [5], a VPP
determines its schedule of the aggregated power for the
next day; in real-time operation, this VPP needs to fulfil
the scheduled aggregated power by adjusting its managed
DERs. Nevertheless, the inherent uncertainty in DERs like
PV and WT introduces challenges to reliably scheduling the
aggregated power. Ensuring reliable power availability when
scheduling a VPP becomes crucial, especially for safety-
critical applications and when DERs constitute a larger portion
of the overall system in the future. To tackle the uncertainty,
robust optimization (RO) was widely applied due to its so-
lution robustness and mathematical tractability [6]. Ref. [7]
applied adaptive robust optimization (ARO), a variant of RO
considering the multi-stage decision making process, to derive
the real-reactive feasible region of the aggregated power of a
VPP that facilitates the hour-ahead or day-ahead scheduling.
Ref. [8] also applied ARO for this objective and additionally
modelled the time-coupling DER constraints. However, as
RO fights against the worst-case scenario, a drawback is its
resulting over-conservativeness [9].

Another alternative is the chance constraint (CC) approach,
which explicitly models the probability of constraint satisfac-
tion and reduces conservativeness [10]. The CC-based day-
ahead (DA) power scheduling was studied in [11], using a
Gaussian mixture model (GMM) to model the wind forecast
error. Ref. [12] also applied GMM and CC to derive the fea-
sible region of the VPP aggregated power, which can be used
for day-ahead scheduling purposes as [7]. However, the fitted
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distribution for random variables can be inaccurate, thereby
limiting the out-of-sample performance [13]. Distributionally
robust chance constraints (DRCC) consider the potential error
in the estimated distribution. This property leads to higher
robustness than CC and less conservativeness than RO, making
DRCC attractive in power system scheduling [14].

The aforementioned CC and DRCC studies [12], [14], [15]
used individual CC (ICC), controlling the violation probability
for individual constraints. In power system applications, a
joint probability guarantee is desired to ensure that all system
constraints can be met simultaneously [16], [17], calling for
a joint chance constraint (JCC) modelling. By assuming that
the random variables are normally distributed, [17] used an
iterative supporting hyperplane method to exactly solve the
JCC. The exact reformulation of distributionally robust joint
chance constraint (DRJCC) was studied in [5]. However, the
tractability of the exact solution methods in [17] and [5]
depends on the size of the JCC, i.e., the number of constraints
included in the JCC. When numerous uncertain DERs and
multiple network constraints require a joint probability satis-
faction guarantee, tractability becomes a concern. Bonferroni
approximation is a commonly used tractable approach for
tackling the JCC [16]. It achieves a safe approximation to the
JCC by using an ICC model with a low violation probability.
Ref. [18] applied Bonferroni approximation to the intractable
JCC in the VPP scheduling. However, this approximation
introduces over-conservativeness once again.

To address the issue of the scalability challenge in exact
JCC solutions and the over-conservativeness in the Bonferroni
JCC approximation, this paper introduces a novel surrogate
polytope method for solving the VPP scheduling problems
with JCC. The proposed method leverages the insight that the
result of interest for a VPP in a DA scheduling phase is its
aggregated power. The availability of the VPP power depends
on its low-level power elements (DERs) while adhering to
internal constraints. A surrogate polytope is employed as an
inner approximation of the VPP’s power availability. This
allows for avoiding the explicit modelling of the extensive
number of DER power variables, DER constraints, and net-
work constraints. The JCC is applied to the surrogate polytope,
and the problem is addressed using the supporting hyperplane
method [19]. Since our approach is built upon the surrogate
polytope for VPP power alone, the JCC becomes tractable,
and the overall computational complexity remains manageable.
Note that [20] used conditional value-at-risk approximations
to convert the energy dispatch problem with DRJCC into a
tractable convex problem. However, their method needs an
iterative approach for hyperparameter tuning, which is not
required here. In summary, this paper makes the following
contributions:

1) We propose a novel surrogate polytope method for VPP
DA scheduling with a joint probabilistic guarantee on the
VPP power availability. The method is less conservative
than the Bonferroni approximation and is still reliable.

2) The proposed method has a manageable computing com-
plexity. For varying DER numbers up to 120, the worst-

case scheduling time without parallelization is around 12
minutes.

3) The proposed method is verified by extensive case studies
on real-world non-Gaussian DER generation scenarios
and comparisons with benchmarks.

The manuscript is organised as follows: Section II out-
lines the basic formulation of VPP scheduling. The proposed
method is detailed in Section III. Section IV presents the case
studies, and Section V concludes the manuscript.

II. VPP SCHEDULING PROBLEM

We consider a distribution network that takes the form
of a VPP, wherein a single distribution substation functions
as the point of interface with the upper-level system. For
mathematical notation, a lowercase letter a denotes a scalar,
a lowercase bold letter a signifies a vector, and an uppercase
bold letter A denotes a matrix.

A. Model of Distributed Energy Resources

For a scheduling horizon [T ] := {1, · · · , T}, we consider
the following DERs:

1) Renewable Generator: The renewable generator (RG)
including PV and WT can be modelled as:

∀t ∈ [T ],∀iRG ∈ [NRG],

0 ≤ pRG, ψ
t,iRG

≤ pRG,ψ
t,iRG

(1)

(pRG,ψ
t,iRG

, qRG,ψ
t,iRG

) ∈ PQRG,ψ
t,iRG

(2)

where pRG,ψ
t,iRG

denotes the maximum active power capability
of the RG connected to the iRG

th bus at time-step t, which
depends on the weather and the generator capacity limit. Here,
ψ ∈ Ψ represents the phase index, where Ψ comprises a, b, c
for Wye connections or ab, bc, ca for Delta connections. The
set [NRG] consists of buses with RG connections. Eq. (1)
means that the RG generation pRG,ψ

t,iRG
can be curtailed to zero.

As modelled in (2), an RG can also provide reactive power
supports within their active-reactive power capability PQRG,ψ

t,iRG
.

Fig. 1(a) and (b) illustrate the PQ-charts for PV and WT based
on [21], which consist of the capacity limit (green curves),
active power limits (red curves), and reactive power limits
(blue curves).

2) Energy Storage: The power capability of the energy
storage (ES) can be modelled as

∀t ∈ [T ],∀iES ∈ [NES]

pES,ψ
t,iES

= p̂ES,ψ
t,iES

+ qpES,ψ
t,iES

(3)

pES,ψ
iES
≤ qpES,ψ

t,iES
≤ 0 (4)

0 ≤ p̂ES,ψ
t,iES
≤ pES,ψ

iES
(5)

et,iES = et−1,iES +
∑
ψ

(p̂ES,ψ
t,iES

η̂ + qpES,ψ
t,iES

/qη) ·∆t (6)

eiES
≤ et,iES ≤ eiES (7)

(pES,ψ
t,iES

, qES,ψ
t,iES

) ∈ PQES,ψ
t,iES

(8)

Similarly, [NES] is the set of buses with ES connections.
The charging and discharging power variables p̂ES,ψ

t,iES
, qpES,ψ

t,iES
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Figure 1. The PQ capability chart for (a) PV, (b) WT, and (c) ES.

are modelled separately to account for different charging
(discharging) efficiencies η̂ (qη). Eq. (4)-(5) model the charging
and discharging power limits. Eq. (6) describes the relationship
between the power of the ES and its energy level et,iES , which
needs to be within the energy limits in (7). Here, ∆t is the
length of one time-step. ES can also provide reactive power
as (8), and its PQ chart is visualised in Fig. 1(c).

Following [21], the PQ-charts of RG and ES are linearized
as the grey areas in Fig. 1 to avoid non-linearity.

3) Controllable Load: The VPP manages a set of flexible
loads that can be curtailed:

∀t ∈ [T ],∀iCL ∈ [NCL],

σminp̃
CL,ψ
t,iCL
≤ pCL,ψ

t,iCL
≤ p̃CL,ψ

t,iCL
(9)

qCL,ψ
t,iCL

= α · pCL,ψ
t,iCL

(10)

where (9) means the CL can be curtailed to a σmin proportion
of its base load p̃CL,ψ

t,iCL
. We assume that CL has a fixed power

factor α as (10). Lastly, non-controllable loads (NL) exist
within the VPP, characterized by σmin = 1.

B. Network Model

The VPP has internal network constraints. A linearised
unbalanced distribution network model proposed in [22] is
adopted, with a global performance better than the well-known
first-order Taylor’s approximation. Let xt collect the active and
reactive power of all the DERs plus NLs at time-step t as

xt := [pd, ψt,id , q
d, ψ
t,id

, p̃NL,ψ
t,iNL

, αp̃NL,ψ
t,iNL

] (11)

id ∈ [Nd], d ∈ {RG,ES,CL}, iNL ∈ [NNL], ψ ∈ Ψ

Let the vector vt gather the magnitudes of three-phase nodal
voltages for all buses, and let it encompass all the line currents
at time-step t. The network constraints can be expressed as:

∀t ∈ [T ], it = J txt + j0t (12)

vt = Ktxt + k0
t (13)

pVPP
t = g⊤

t xt + g0t (14)
imin ≤ it ≤ imax (15)
vmin ≤ vt ≤ vmax (16)

where J t, j0t , Kt, k0
t , gt, g

0
t are coefficients that characterize

the approximated linear relationship encompassing the DER
power xt, VPP power pVPP

t at time-step t, nodal voltage vt,
and line current it. These coefficients are derived from a given
operational point and a no-load point, as detailed in [22]. Eq.
(15) and (16) describe the nodal voltage limits and the line
current limits (thermal limits).

C. VPP Scheduling

During the DA phase, a VPP needs to determine its
(aggregated) power pVPP := [pVPP

t=0, · · · , pVPP
t=T ] through the

participation in the DA market. Its objective is to maximize its
profits in the market considering DERs’ running cost. When
the next day comes, the VPP dispatches its managed DERs so
that their aggregated power meets the DA schedule [5], [23],
while minimizing the DER operation cost. Note that we do not
focus on generators whose on/off status needs to be determined
at the DA stage as well. The VPP scheduling problem in the
DA stage with no uncertainty can be formulated as:

min − J (pVPP) + C(x) (17a)

s.t. (1)− (16) (17b)

The constraints are the DER operational constraints and the
network constraints (1)-(16). The objective consists of

1) The revenue of the VPP in engaging in the market
J (pVPP). For the DA energy market participation as a
price taker, we have

J (pVPP) = −∆t
∑
t

πDA
t pVPP

t (18)

where πDA is the DA market price.
2) The DER operational cost C(x). Here we only consider

the cost for CL and ES, and assume that RG has zero
marginal costs. We follow [5] and [16] and model the
DER operational cost as:

C(x) =ωES∆t
∑
t,ψ,iCL

(p̂ES,ψ
t,iES
− qpES,ψ

t,iES
)

+ ωCL∆t
∑
t,ψ,iCL

(p̃CL,ψ
t,iCL
− pCL,ψ

t,iCL
)

(19)

where ωES is the coefficient for ES degradation penalty cost,
and ωCL accounts for the load shedding cost.

III. METHODOLOGY

In the DA scheduling stage, the power capability of RG,
CL, and NL is uncertain. Therefore, a VPP operator wants to
ensure that the scheduled VPP power pVPP is available in real-
time operation without violating DER operational constraints
and network constraints with a high probability. This objective
can be expressed in the following symbolic way:

min − J (pVPP) + C(x) (20a)

s.t. P(pVPP is implementable) ≥ 1− ϵ (20b)

Note that the uncertain parameters can also affect the objec-
tive function, motivating the minimization of expectation or
worst-case cost considering multi-stage recourse actions [23].
However, the key focus of this study is the power availability
of the scheduled VPP power, so the multi-stage setting is not
considered here.
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A. Standard Route

The standard route to ensure the power availability, like [5],
[14], [16], would formulate all the low-level constraints con-
taining random variables into a large JCC. Here, the random
variables include the maximum active power capability of RG
pRG
t,iRG

, the base load of CL p̃CL,ψ
t,iCL

and NL p̃NL,ψ
t,iNL

, and thus a
part of x. The VPP scheduling problem becomes:

min − J (pVPP) + C(x) (21a)

s.t. P((1), (9), (15), (16)) ≥ 1− ϵ, (21b)
(2), (3)− (8), (10) (21c)

where 1−ϵ is the joint constraint satisfaction probability. Eqs.
(12) and (13) can be merged into their thermal limit (15) and
voltage limit (16) by changing variables and are thus omitted.
The relationship between VPP power pVPP and DER power x
in (14) can be integrated into the objective function (18) as
well. Due to the large number of constraints in the JCC (21b),
the Bonferroni-based method becomes overly conservative and
exact reformulation becomes intractable.

B. Surrogate Polytope

For a VPP, the decision to be made at the DA stage is
the VPP power pVPP, while the specific DER power can be
dispatched in the real-world operation process with the gradual
realisation of uncertain DERs’ outputs. This motivates us to
isolate the VPP power pVPP from the low-level DER power
x. Notice that the VPP’s power availability constraints under
a deterministic case can be inner-approximated by specific
surrogate polytope constraints with a pre-selected shape A
[12]. In other words, define the set of feasible VPP power pVPP

governed by the DER constraints and network constraints as
Ω = {pVPP|(1)− (16) (i.e., pVPP is implementable)}, we have

∃ΩP ⊆ Ω, ΩP = {pVPP|ApVPP ≤ b} (22)

where the vector b needs to be inferred. As we can observe,
ΩP in (22) is defined for the low-dimension vector pVPP only
without considering the DER power x, but the relationship
ΩP ⊆ Ω ensures that all the VPP power pVPP in ΩP will also be
within the set Ω, which means the numerous DER constraints
and network constraints (1)-(16) are implicitly satisfied.

A common and intuitive polytope is the virtual battery (VB),
whose constraint form is like a battery with energy and power
constraints. The VB polytope can be written as:

ΩVB = {pVPP|AVBpVPP ≤ bVB} (23)

AVB = [I,−I,Λ,−Λ]⊤ (24)

bVB = [pVB
t=1, · · · , p

VB,
t=T ,−p

VB,
t=1

, · · · ,−pVB,
t=T

,

eVB
t=1, · · · , eVB

t=T ,−eVB
t=1, · · · ,−eVB

t=T ]
(25)

where I ∈ RT×T is the identity matrix and Λ ∈ RT×T

is a lower-triangle matrix with ones. bVB encompasses the
VB parameters including the maximum power pVB

t , minimum
power pVB

t
, maximum energy eVB

t , and minimum energy eVB
t

at each time-step t ∈ [T ].

Eq. (22) or its special case (23) is only imposed on the
VPP power pVPP for the scheduling horizon [T ] and implicitly
includes DER operational constraints and network constraints.
For a pre-selected shape A, the number of linear constraints
in (22) only depends on Dim(pVPP)=T .

C. Proposed Solution to Joint Chance Constraint

Due to the uncertain DERs, the VPP power availability set
Ω is also uncertain and so is the surrogate polytope ΩP. As
the shape A is pre-selected, the random part in (26) is b; the
surrogate polytope with a joint probabilistic guarantee can be
expressed using the following JCC:

P(ApVPP ≤ b) ≥ 1− ϵ⇔ F−b(−ApVPP) ≥ 1− ϵ (26)

where F (·) is the cumulative distribution function (CDF) for
the random variable −b. Due to the inner approximation of
the surrogate polytope, for any solution p̂VPP feasible to (26),
we have the following implication:

F−b(−Ap̂VPP) ≥ 1− ϵ⇔P(Ap̂VPP ≤ b) ≥ 1− ϵ (27)

⇔P(p̂VPP ∈ ΩP) ≥ 1− ϵ (28)

⇒P(p̂VPP ∈ Ω) ≥ 1− ϵ (29)

which means any solution satisfying our surrogate-polytope
JCC (26) also satisfies the original JCC (20b).

We fit b by a multivariate Gaussian distribution; then
based on Theorem 10.2.1 in [19], the CDF F−b is a log-
concave function (and also quasiconcave) and subsequently
the surrogate JCC (26) is convex based on the definition of
quasiconcave function in Chapter 3.4.1 of [24]. The optimiza-
tion problem with this JCC can then be solved by an iterative
supporting hyperplane algorithm [19]. The core idea is to
replace the surrogate polytope JCC in an abstract form (26)
with a set of iteratively tightened linear constraints denoted by
Kj , with j denoting the index of the iteration. The iteration
process ends when the scheduling problem based on Kj leads
to a solution pVPP* satisfying F−b(−ApVPP*) ≥ 1− ϵ.

At the start of the algorithm, K0 needs to be initialized to be
large enough to cover the convex region defined by the JCC
(26). One option is defining a set of ICCs of the polytope
constraints ApVPP ≤ b with the same probability level as the
JCC:

K0 ={P(a⊤
i p

VPP ≤ bi) ≥ 1− ϵ, ∀i ∈ [Dim(b)]} (30)

={a⊤
i p

VPP ≤ F−1
bi

(ϵ), ∀i ∈ [Dim(b)]} (31)

where ai (bi) is the ith row of A (b respectively). F−1
bi

(ϵ)
is the inverse CDF (percentile function) of a one-dimension
random variable bi that can be trivially evaluated. In addition,
the initialization involves finding a feasible solution p̃VPP to
the JCC (26), which can be obtained by solving the following
feasibility problem constrained by the conservative Bonferroni
approximation to the surrogate JCC (26):

min
pVPP

0 (32a)

s.t. a⊤
i p

VPP ≤ F−1
bi

(ϵ/Dim(b)), ∀i ∈ [Dim(b)] (32b)
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An iterative process starts after initialization. Over the jth

iteration with j ≥ 0, the following optimization problem is
solved:

min
pVPP

− J (pVPP) + C′(pVPP) (33a)

s.t. Kj (33b)

where C′ is the transformed DER cost function and will be
introduced in Section III-E. Denote the optimal solution to (33)
as pVPP∗,j , we then evaluate constraint (26) by calculating the
CDF F−b(−ApVPP∗,j). If constraint (26) is satisfied, then the
problem is solved; otherwise, the algorithm finds a new bound-
ary solution pVPP,B,j between the optimal solution pVPP∗,j over
the jth iteration and the initialized feasible solution p̃VPP:

pVPP,B,j = λpVPP∗,j + (1− λ)p̃VPP (34)

such that F−b(−ApVPP,B,j) = 1 − ϵ. The value of λ ∈ [0, 1]
can be obtained by bisection [19]. Note that the boundary
point pVPP,B,j is a feasible solution to the JCC (26) but not
necessarily an optimal solution. Based on this boundary point,
a new linear constraint representing the hyperplane tangent to
the JCC boundary at pVPP,B,j is constructed and added to Kj .
The new constraint is:

∇pVPPF−b(−ApVPP,B,j)⊤(pVPP − pVPP,B,j) ≥ 0 (35)

where the gradient of the multivariate Gaussian CDF can be
calculated based on the Lemma 2.7.5 in [25].

The above procedures have a convergence guarantee [19],
which means there will finally be one iteration such that
the solution pVPP∗,j satisfies the surrogate JCC constraint
(26). Suppose this is the M th iteration, and the final VPP
scheduling problem with our surrogate polytope JCC (26) can
be expressed as the following problem with a set of linear
constraints:

min
pVPP

− J (pVPP) + C′(pVPP) (36a)

s.t. KM (36b)

with

KM =


a⊤
i p

VPP ≤ F−1
bi

(ϵ), ∀i ∈ [Dim(b)],

∇pAggF−b(−ApVPP,Bj)⊤(pVPP − pVPP,Bj) ≥ 0,

∀j ∈ [M ]


(37)

The optimal solution pVPP* (pVPP∗,j with j = M ) to (36) is
the DA VPP scheduled power with a 1− ϵ joint probabilistic
guarantee. The whole process of the supporting hyperplane
algorithm is summarized in Algorithm 1.

Our method differs from existing work with exact JCC
solutions like [5] and [17] in that we reformulate the surrogate
polytope JCC for the VPP’s aggregated power, rather than
the JCC for the low-level DERs and network constraints.
For a pre-selected polytope shape A, the number of random
variables in (26), i.e., len(b), only depends on Dim(pVPP)=T ,
leading to a manageable complexity to exactly solve the JCC
as will be demonstrated in Section IV-H.

Algorithm 1 Supporting hyperplane algorithm
1: Initialize Kj ← K0 as (31);
2: Initialize the feasible solution p̃VPP by solving (32);
3: Initialize j ← 0;
4: while True do
5: Get the jth optimal solution pVPP∗,j by solving (33);
6: if F−b(−ApVPP∗,j) ≥ 1− ϵ then
7: Stop; output pVPP∗ ← pVPP∗,j ;
8: end if
9: Find the boundary solution pVPP,B,j (34) by bisection;

10: Append the new linear constraint (supporting hyper-
plane) (35) to Kj ;

11: j ← j + 1;
12: end while

Remark 1: Based on Theorem 10.2.1 in [19], the convexity
of our proposed surrogate JCC (26) holds for all probabil-
ity distributions with log-concave density, including skewed
distributions like Weibull, multivariate Gamma, and Dirichlet
(the multivariate generalisation of the Beta) distributions with
shape parameters greater than or equal to 1, and the heavily
tailed hyperbolic secant distribution. These distributions are
applicable for modelling a wide range of uncertain vari-
ables. However, only a subset of log-concave functions, like
multivariate Gaussian, Gamma, and Dirichlet, have efficient
gradient calculation when applying our supporting hyperplane
algorithm [25]. Other solution algorithms, such as [26], which
avoids the gradient evaluation of the CDF, may be investigated.
Gaussian mixtures under certain conditions may also be ap-
plied, as they can preserve log-concavity and their CDF is the
weighted summation of Gaussian CDFs; thus the gradient can
be obtained. Note that although we fit b with a multivariate
Gaussian distribution, the low-level random variables, i.e.,
DER power capability, do not necessarily need to follow a
Gaussian distribution. Our case studies will verify this by using
non-Gaussian real-world wind and solar scenarios.

Remark 2: The convexity of (26) and the gradient cal-
culation in the supporting hyperplane algorithm require the
distribution of b to be non-degenerate. Non-degeneracy can
be guaranteed by adding σI to the covariance matrix, where
σ is a small positive number and I is the identity matrix.
Since all covariance matrices are positive semi-definite, σ can
be set arbitrarily small to minimize the disturbance on the
distribution while maintaining the positive definite property of
the covariance, so as the non-degeneracy of the distribution.

Remark 3: This paper applies the surrogate-polytope JCC in
(26) to substitute the original JCC in (20b). Another popular
alternative in power system applications is DRJCC, known for
its improved robustness and better tractability. However, since
the use of the inner approximation polytope in (22) already
makes our surrogate-polytope JCC an inner approximation to
the original JCC, further enhanced robustness by (potentially
more tractable) DRJCC may introduce unnecessary conserva-
tiveness. Future work can explore this trade-off.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



D. Fitting the Gaussian

We collect a set of possible scenarios bk of b to fit the multi-
variate Gaussian distribution of b. To collect the scenarios, we
first decompose b into a deterministic part bfore plus a random
part berror. This decomposition captures the dependency of b
by a specific scheduling day by bfore, and is commonly used
in stochastic power system scheduling formulations [16].

The deterministic part bfore needs to be evaluated in the
scheduling stage based on the forecasted DERs’ power capa-
bility. The scenarios for the random part berror can be obtained
in the following offline manner: for each historical scheduling
day k, once that historical day k is passed (uncertainty
revealed), 1) calculate the historical deterministic part bk,fore,h

for day k using the forecasted DER power capability; the
superscript h means the value is for historical days; 2) calculate
the vector bk,h for the day k using real values; 3) store their
difference as the scenario bk,error = bk,h − bk,fore,h for our
random part berror. The bound shrinking algorithm proposed in
[12] can infer the values of b given certain values of DERs’
power capability, and is used to calculate the aforementioned
bfore, bk,fore,h, and bk,h.

After adding each of the collected scenarios bk,error for the
random part berror to the derived deterministic part bfore in the
scheduling phase, we obtain a set of scenarios for bk, which
are used to fit a multivariate Gaussian distribution for b.

Note that an accurate probabilistic fitting of the random part
berror needs to model the dependency on bfore, namely a con-
ditional probability function, which may need more advanced
forecasting techniques and more historical data. The applied
method here may be less accurate, but has the advantages of
requiring less data and being easier to implement.

E. Cost Function

The use of surrogate polytope for the VPP power pVPP

makes DER power hidden, so the DER cost function C(x) in
the objective can not be straightforwardly calculated. However,
we can find the aggregated DER cost function C′(pVPP) by
establishing a cost mapping from x to pVPP, via the piece-wise
linear fitting in [21]. The intuition is to find the piecewise-
linear function that fits the minimum achievable DER cost
for each VPP power pVPP. For each t ∈ [T ], we first
find the minimum and maximum active output power of the
VPP, denoted as pVPP

t
and pVPP

t . Then, P points in total
{pVPP
t,0 , · · · , pVPP

t,p , · · · , pVPP
t,P } are sampled equally in interval

[pVPP
t

, pVPP
t ]. For each of the sampled pVPP

t,p , we solve the
following problem to find the corresponding minimum total
DER operational cost C ′

t,p:

C ′
t,p = min

x,pVPP
t

C(x) (38a)

s.t. (1)− (16), (38b)

pVPP
t = pVPP

t,p (38c)

The pair (pVPP
t,p , C

′
t,p) establishes the one-to-one mapping from

the sampled VPP power pVPP
t,p to the achievable minimum DER

cost C ′
t,p. Repeat solving (38) for all the P sample points

After each historical scheduling 
day, calculate bk,fore,h using 

forecasts and bk,h using real values

store the scenatio for bk,error

Fit multivaritae Gaussian 
distribution of b

Apply supporting hyperplane 
method (Algorithm 1) 

Reliable VPP power schedule pVPP*

StartOffline Scenario Collection

Find aggregate 
DER cost 

(Section III-E)

calculate bfore using 
forecasts for the 

scheduling period

Online VPP DA 
Scheduling Process

Figure 2. Flowchart of the proposed VPP DA scheduling with joint probability
guarantee on VPP power availability.

leads to P pairs of (pVPP
t,p , C

′
t,p), based on which a convex

piece-wise linear function can be fitted to approximate the
aggregated DER cost function C′(pVPP) with P −1 partitions.
The above process is repeated for each time step t ∈ [T ]. The
fitted convex piece-wise linear function can be expressed as:

C′(pVPP) = min
pVPP

∑
t∈[T ]

ct (39a)

s.t. at,pp
VPP
t + bt,p ≤ ct, p ∈ [P − 1] (39b)

where at,p and bt,p are parameters of the fitted peice-wise
linear function derived via the method in [21]. This expres-
sion (39) can be easily incorperated into other optimization
problems. For example, in our VPP scheduling (36), we only
need to replace C′(pVPP) in the objective with the linear term∑
t∈[T ] ct, define continuous variables ct, and add the linear

constraints (39b) into the constraints in (36), after which our
VPP scheduling (36) is still a tractable.

Figure 2 summarized the flowchart of our proposed method,
covering the content from Section III-C to III-E.

F. DER Power Dispatch

After determining the scheduled VPP power pVPP* in the
DA phase, we need to retrieve the DER power x in real-
time operation. An optimization problem with a similar form
to (17) can be set up, with the only difference being that the
decision variable pVPP in (17) is now replaced with the optimal
solution pVPP* to (36). Note that, in the real-world VPP dis-
patch process, the uncertainty still exists (although gradually
revealed). Here, we do not address the disaggregation process
under uncertainty, which can be explored in future work.

IV. CASE STUDIES

A. Settings of the Network and the Proposed Method

The case studies are carried out on the IEEE-123 distribu-
tion feeder [27] modelled in OPEN [28]. Codes are written
in Python, and we use the approxcdf package [29] and the
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Figure 3. DER locations on IEEE-123 distribution network: red for phase a
or ab, green for phase b or bc, and blue for the remaining phases.

stats.mvn.mvnun function in SciPy package to evaluate
the CDF of multivariate Gaussian distributions. There are 20
PVs, 20 WTs, 10 ESs, 30 CLs, and 65 NLs. The DER location
and phase connections are plotted in Fig. 3. We assume that
CL can be curtailed by 40%, which is the upper bound of the
forecasted demand curtailment potential in the UK by 2050
[30]. The voltage limits are set to be 1±0.05 p.u. Line current
limits are not considered as the voltage limits can be the main
issue for certain distribution networks [31]. The peak of the
base demand in the whole network is around 3500 kW. To
fully validate the proposed framework, we consider three case
studies: 1) ‘LowRG’: PV and WT capacities are both around
800 kW in total; 2) ‘HighWT’: the total WT capacity is set
to 3500 kW; and 3) ‘HighPV’: the total PV capacity is set to
3500 kW. In the latter two cases, the distribution network is
self-sufficient with local RG. The total ES capacity remains
3600 kWh across all case studies.

For the proposed surrogate-polytope method, we set the
shape of the polytope to be the VB in (23), whose parameter
b is inferred by the bound-shrinking method in [12].

B. Benchmarks

Two benchmarks are set up for our case studies. They are
both based on the standard route as (21). The first one (B1)
uses safe Bonferroni approximation to approximate the JCC
in (21b), i.e., replacing the JCC with ICCs of reliability 1 −
ϵ/(number of ICCs). The second one (B2) is a standard ICC
with risk levels identical to those in the JCC, which can be
less reliable. Exact JCC reformulations like [5] and [17] are
not applied due to the excessive complexity under the large
number of DERs and the large network size.

C. DER Data

The data for RG and network load (CL and NL) consists
of two parts. The first is their prediction, which is the known
information in the scheduling phase. The second is the fore-
casting error scenarios, which cannot be perfectly informed
in advance. The prediction curves for PV and WT come from
real-world measurement in [32], and the prediction for network
load comes from a US commercial building dataset [33]. The
RG forecasting error scenarios come from real-world statistics
in [34], [35], whose histogram is plotted in Fig. 4. We can see
that these RG error scenarios are not normally distributed by
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Figure 4. Histogram of the real-world (a) wind and (b) solar forecasting error.

comparing to the corresponding Gaussian fits. On the other
hand, the network load error scenarios are synthesized from
a Gaussian distribution with a standard deviation equal to 5%
of the load predictions. 200 samples are used as the training
set for our proposed method and the benchmarks.

D. Evaluation Setting

We consider a DA cost minimization problem for a VPP,
where J (pVPP) is set to (18). We consider an hourly resolution
and hence T = 24. The DER cost coefficients ωES and ωCL

are both set to 8 p/kWh as [5]. The random variables in the
objective function are replaced with their forecast mean values.
We consider two evaluations using 200 out-of-sample error
scenarios for each of the 24 time-steps:

1) Out-of-sample reliability of the optimal solution pVPP*

to (36), which is defined as the proportion of out-of-
sample scenarios where the disaggregation process out-
lined in Section III-F is feasible. We employ a nonlinear
power flow simulation using the Z-Bus method [36] to
assess violations of network constraints. To account for
the linear network model’s inaccuracies, we introduce a
penalty term for the small distance between the voltage
magnitude and its limits in the disaggregation objective in
Section III-F. The penalty coefficient is set to 0.1 for both
our proposed method and the benchmarks. The solution is
reliable as long as the out-of-sample reliability is greater
or equal to the desired level 1− ϵ.

2) Out-of-sample cost of the optimal solution pVPP* to
(36), calculated by averaging the minimized cost of the
disaggregation problem in Section III-F for all the disag-
gregatable scenarios. The lower the less conservative.

E. Out-of-sample Reliability Results

Fig. 5 shows the out-of-sample solution reliability for (a)
‘LowRG’, (b) ‘HighPV’, and (c) ‘HighWT’, where the black
diagonal lines are the desired out-of-sample reliability levels.
We see that both our proposed method and B1 can meet the
reliability requirements for all the case studies, but B2 cannot.
This result suggests that ICC (B2) can lead to unreliable
solutions, highlighting the need for JCC.

F. Out-of-sample Cost Results

Fig. 6 presents the out-of-sample cost for the three RG case
studies. While B2 achieves the lowest cost for all cases, its
unreliability, as demonstrated in Section IV-E, compromises
its suitability. Our proposed method, being the second lowest
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Figure 5. Out-of-sample reliability evaluation for (a) ‘LowRG’, (b) ‘HighPV’,
and (c) ‘HighWT’. The black lines indicate the desired reliability levels.
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Figure 6. Out-of-sample DA cost evaluation for (a) ‘LowRG’, (b) ‘HighPV’,
and (c) ‘HighWT’.

in terms of cost, closely approaches the lowest costs achieved
by B2. When considering the reliability evaluation detailed in
Section IV-E, we conclude that our proposed method not only
offers reliable solutions but also exhibits less conservativeness.

G. Scalability

To verify the applicability of our proposed method in wide-
range problem scales, we evaluate the out-of-sample cost
and reliability under: the total DER number (excluding NL)
being 1) 50, 2) 80, and 3) 120. Figs. 7 (a), (b), (c), and
(d) display the results for the ‘HighWT’ case study. We can
see the conclusions from previous sections still hold: our
proposed method can constantly meet the desired reliability
requirements and is less conservative than B1. B2 has a lower
cost but cannot meet the reliability requirements for all cases.

H. Overall Computing Time

Based on the flowchart in Fig. 2, the online calculations
involve four steps: 1) computing bfore using the bound shrink-
ing algorithm in [12], which involves several mixed-integer
linear programmes (MILP) solvable in 100-200 seconds in
total for DER numbers from 50 to 120 with an AMD Ryzen9
5900X CPU. Throughout the case studies we have relaxed
the stopping bounds, capping the MILP solution time at 40
seconds; 2) employing the piece-wise linear approximation
method from [21] to determine the aggregated DER cost
function through T × P parallelizable linear programs (39)
taking 1.5-3.5 seconds each, leading to a total of 200-500
seconds without parallelization; 3) fitting a multivariate Gaus-
sian distribution for b with dimensions Dim(b)=96, trivial due
to the small scale of the VB polytope (T = 24); and 4)
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Figure 7. First column: out-of-sample cost under different numbers of DERs
with desired reliability levels (a) 1− ϵ = 0.95 and (c) 1− ϵ = 0.8; Second
column: out-of-sample reliability with desired reliability levels (b) 1 − ϵ =
0.95 and (d) 1−ϵ = 0.8, where the black horizontal lines indicate the desired
reliability levels.

50 80 120

30

40

50

50 80 120
20

30

40
ε=0.05
ε=0.2

Number of DERs

No. Iter. Time(s)

(a) (b)

Figure 8. (a) The number of iterations (No. Iter.) in applying the proposed
supporting hyperplane algorithm to solve the proposed surrogate JCC under
different numbers of DERs; (b) The computing time in applying the proposed
supporting hyperplane algorithm to solve the proposed surrogate JCC.

applying the supporting hyperplane method in Algorithm 1.
Fig. 8 illustrates the number of iterations and the computing
time in applying the supporting hyperplane method to solve
the JCC. We can observe that both the number of iterations
and the computing time are independent of the number of
DERs. A lower level of reliability (a greater ϵ) requires more
iterations due to the larger feasible region defined by the JCC.
The computing time is around 20 seconds for a 95% reliability
(ϵ = 0.05), and around 40 seconds for an 80% reliability.

Implementing all the calculations sequentially results in
a worst-case total computation time of approximately 12
minutes for 120 DERs in the IEEE-123 network with T = 24,
manageable for a DA scheduling problem. Note that paral-
lelization could be explored to further speed up the calculation.

V. CONCLUSION

This paper proposes a novel method for ensuring joint
probability-guaranteed VPP power availability in DA schedul-
ing. It starts from an inner surrogate polytope approximation
for the VPP’s power availability, which focuses on the VPP
power only while implicitly modelling the DER constraints
and network constraints. A multivariate Gaussian distribution
is used to fit the distribution of the parameters in the surrogate
polytope. Finally, an iterative algorithm is used to solve the
VPP scheduling problem with our surrogate polytope JCC.
Through case studies with different RG settings and varying
problem sizes, we demonstrate that the proposed method has
an overall better performance in out-of-sample reliability and
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out-of-sample cost than an ICC benchmark and a Bonferroni
benchmark. The computing complexity is acceptable, with
a worst-case total computation time of approximately 12
minutes for 120 DERs in the IEEE-123 network with T = 24.

Future work includes 1) incorporating the multi-stage power
dispatch process with a recourse cost modelled in the objec-
tive; 2) investigating a real-time strategy that dispatches the
VPP power to its internal DERs, subject to gradually revealed
uncertainty, given the VPP power that is available with (1-ϵ)
joint probability scheduled by our proposed method; 3) com-
parison and synergy with other data-driven methods. Recent
work [37] has demonstrated the promising performance of
data-driven reinforcement learning methods in VPP scheduling
but did not tackle the JCC as ours. There are potential
synergies of our approach with data-driven RL methods to
combine their improved performance in VPP scheduling with
our method’s JCCs.
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