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Abstract—We propose a new heuristic approach for
solving the challenge of determining optimal placements for
geomagnetically induced current blocking devices on electrical
grids. Traditionally, these determinations are approached
by formulating the problem as mixed-integer nonlinear
programming models and solving them using optimization
solvers based on the spatial branch-and-bound algorithm.
However, computing an optimal solution using the solvers often
demands substantial computational time due to their inability to
leverage the inherent problem structure. Therefore, in this work
we propose a new heuristic approach based on a three-block
alternating direction method of multipliers algorithm, and we
compare it with an existing stochastic learning algorithm. Both
heuristics exploit the structure of the problem of interest. We
test these heuristic approaches through extensive numerical
experiments conducted on the EPRI-21 and UIUC-150 test
systems. The outcomes showcase the superior performance
of our methodologies in terms of both solution quality and
computational speed when compared with conventional solvers.

Index Terms—geomagnetic disturbance, geomagnetically in-
duced current mitigation, blocking devices, heuristic approaches,
mixed-integer nonlinear programs.

I. INTRODUCTION

This paper considers a geomagnetically induced current
(GIC) blocking device placement problem, referred to herein
as the GIC-BDP problem, for determining optimal locations
for installing a limited number of devices to mitigate the
adverse effect of GIC on transmission networks. The blocking
device consists of standard distribution capacitors intended to
block the flow of GIC by disconnecting a neutral ground-
ing impedance [1]. As these devices are expensive, it is
imperative to adopt a selective approach to their placement.
It is worth mentioning that the placement itself presents a
challenge due to the potential for installing a blocking device
at one location to exacerbate GIC levels at others across the
power grid [2]. Consequently, simplistic strategies like greedy
methods are likely inadequate in this scenario. This motivates
the optimization-driven placement methodologies to inform
decisions regarding the placement of blocking devices.

GICs are low-frequency currents that can flow through
transmission lines and transformers, which typically emerge

because of a substantial electric field present on the Earth’s
surface, often referred to as the E-field. The increase in E-field
strength often stems from naturally occurring geomagnetic
disturbances (GMDs) induced by severe space weather events
or from intentional electromagnetic pulse (EMP) attacks, vi-
sualized in Fig. 1.

Fig. 1: Visualization of GMD (left) and EMP (right) by the
U.S. Department of Homeland Security [3].

The presence of GIC can give rise to various adverse
effects, including the emergence of current harmonics, trans-
former saturation, and increased reactive power losses. Each of
these has the potential to cause damage to critical equipment
and even trigger cascading failures [4]–[6]. Considering the
severity of these consequences, mitigating the flows of GIC
holds significant importance in ensuring the resilience and
reliability of bulk energy systems. A handful of potential
strategies for GIC mitigation have been put forth in the
literature [2], [7]: installation of blocking devices [1], [8]–[14]
and employing transmission line switching [15]–[17]. The op-
timization of these mitigation approaches is often formulated
as a mixed-integer nonlinear programming (MINLP) model.
Optimal solutions to these models can be computed by using
techniques such as the spatial branch-and-bound algorithm,
as demonstrated in [10]. This process can be time-consuming,
however, mainly due to the presence of (i) binary variables that
determine the placement of blocking devices or the selection
of switched-on transmission lines, (ii) absolute-value equations
used for computing the effective GIC, and (iii) nonlinear,
nonconvex equations containing trilinear terms that involve
trigonometric functions for computing AC optimal power flow
(OPF) on transmission networks.

In this paper we reformulate the MINLP model for the GIC-
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BDP problem and propose a heuristic approach that provides
good-quality solutions within reasonable computation time.
Our contributions are summarized as follows:

1) We reformulate the absolute-value equations as comple-
mentarity constraints [18]–[20] in the MINLP model to
avoid potential convergence failure in MINLP solvers.

2) We propose a three-block alternating direction method of
multipliers (ADMM) algorithm for solving the MINLP
model, where the first-block subproblem is an integer
program that admits a closed-form solution and the
second- and third-block subproblems are NLPs.

3) For comparison, we adapt a stochastic learning (SL)
algorithm for solving the MINLP model, which sam-
ples binary variables from a joint multivariate Bernoulli
distribution whose parameters are optimized iteratively.

The remainder of this paper is organized as follows. In Section
II we present our MINLP model for the GIC-BDP problem.
In Section III we present two heuristic approaches that exploit
the structure of the problem. In Section IV we show that our
heuristic approaches outperform the state-of-the-art MINLP
solvers with respect to solution quality and computation speed.

II. AC-OPF AND GIC BLOCKER MODEL

Here we present a MINLP model for the GIC-BDP problem
that determines optimal locations for installing a limited quan-
tity of devices to effectively mitigate the detrimental effects of
GIC on transmission networks. In contrast to preceding studies
[15], [17], which relied on the polar representation of power
flow, the rectangular form of power flow equation is embedded
in our model to avoid potential numerical instability of MINLP
solvers, primarily attributed to the presence of trilinear terms
that involve trigonometric functions within the polar form.

In what follows, we briefly describe each set of constraints
in our MINLP model.

1) Operational constraints:

f p
k ∈ [f p

k
, f

p
k], f q

k ∈ [f q
k
, f

q
k], ∀k ∈ G, (1a)

vR
i ∈ [vR

i, v
R
i], vI

i ∈ [vI
i, v

I
i] ∀i ∈ N , (1b)

p2ei + q2ei ≤ (se)
2, p2ej + q2ej ≤ (se)

2, ∀eij ∈ E , (1c)

where G, N , E represent sets of generators, buses and lines
within an AC network, respectively. In Eq. (1a), f p

k and f q
k are

variables representing the real and reactive power generated
by a generator k ∈ G, respectively. These variables are
constrained to lie within the intervals [f p
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respectively. In Eq. (1b), vR
i and vI

i are variables representing
the real and imaginary parts of the complex voltage at bus
i ∈ N , respectively. These variables are bounded within
the intervals [f p
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, f

p
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k], respectively. In Eq. (1c),

(pei, pej) and (qei, qej) are variables representing the real and
reactive power flow on line eij ∈ E , respectively. The apparent
power flow on each line e ∈ E should satisfy its limit se.

2) Power flow equations: For every line eij ∈ E , we have
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where ge, be, and bc
e are conductance, susceptance, and line-

charging susceptance of line e ∈ E , respectively, and
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which ensure that power flow is governed by Ohm’s law. Note
that θij and θij are lower and upper bounds on the phase angle
difference at eij ∈ E .

3) Balance equations with reactive power losses by GIC:
For every bus i ∈ N , we are given sets (Gi, Ei) of generators
and lines connected to the bus i, power demand (dp

i , d
p
i ),

and shunt conductance and susceptatnce (gs
i, b

s
i). The balance

equations can be written as follows:∑
e∈Ei
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where (lp+
i , lq+

i ) are real and reactive power load shedding, and
(lp–
i , lq–

i ) are real and reactive power overconsumed. Note that
dqloss
i represents reactive power losses by GIC, computed by

dqloss
i =

∑
e∈Eτ

i

Ke
√
wiI

eff
e , ∀i ∈ N , (4a)

Ieff
e ∈ [0, Ie], ∀e ∈ Eτ , (4b)

where Eτ is a set of transformers, Eτi is a set of transformers
connected to bus i ∈ N , Ke is a loss factor, Ie is an
upper limit of the effective GIC, Ieff

e is the amounts of
effective GIC at a transformer e ∈ Eτ , which are computed
utilizing a representative DC network (N d, Ed) derived from
modifications made to the original AC network (N , E), as
shown in Fig. 2.
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Fig. 2: AC (left) and DC (right) power network [17].

4) GIC Model: The DC network is constructed by adding
a set of substations (e.g., G1, G2, and G3 in Fig. 2) to the
underlying AC network. For each line of the DC network, the
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GIC-induced voltage source is given by ξℓ, which is zero for
all transformers (e.g., line numbers 16, 17, 32, 33, and 37 in
Fig. 2) and has nonzero values for all transmission lines. With
this information, the GIC can be computed as

Id
ℓ = γℓ(v

d
m − vd

n + ξℓ), ∀ℓmn ∈ Ed, (5)

where vd is the GIC-induced voltage magnitude, Id
ℓ is the GIC

flowing on the line ℓ ∈ Ed, γℓ is the line conductance, and ξℓ
is the GIC-induced voltage source.

Installing a blocking device disconnects the transformer
neutral from a substation and changes the conductance matrix.
To model this, the GIC balance equations are introduced:∑

ℓ∈Ed−
m

Id
ℓ −

∑
ℓ∈Ed+

m

Id
ℓ = amvd

m(1− zm), ∀m ∈ N d, (6)

where Ed−m and Ed+m are sets of incoming and outgoing lines
connected to m ∈ N d, am is the inverse of ground resistance,
and zm is the binary variable representing the installation of
the blocking device, namely zm = 1 if a device is installed at
m ∈ N d. Eq. (6) deduct the effect of am if a device is installed
at m. For notation brevity, we set am = 0 for m ∈ N d \ N s

to ensure that the binary variables zm are defined only for
m ∈ N s where N s is a set of substations. To limit the number
of blocking devices, we introduce a bound:∑

m∈N s

zm ≤ V, (7a)

zm ∈ {0, 1}, ∀m ∈ N s. (7b)

where V is the budget for the installation.
5) Effective GIC computation: The GIC in Eq. (5) is used

to calculate the effective GIC in Eq. (4a) through the following
absolute-value equations for different types of transformers:

Ieff
e = |Θe|, ∀e ∈ Eτ , (8)

where
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d
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d
l
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d
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)
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Θe = Id
h, if e is GWye-Delta-GSU, (9c)

where Nh, Nl, Ns, and Nc are the number of turns in the high-
side, low-side, series, and common windings, respectively.

The absolute value in Eq. (8) is nonsmooth, which can
cause convergence failure in MINLP solvers. To avoid this
situation, we apply the equivalent smooth complementarity
reformulation [18]–[21]:

s+e − s−e = Θe, ∀e ∈ Eτ , (10a)

Ieff
e = s+e + s−e , ∀e ∈ Eτ , (10b)
s−e ≥ 0, s+e ≥ 0, s+e s

−
e ≤ 0, ∀e ∈ Eτ , (10c)

where s+e and s−e are slack variables.

6) MINLP models: Now we can define our MINLP model:

(AC-rect)

min
∑
k∈G

(cF1
k f p

k + cF2
k (f p

k)
2) +

∑
i∈N
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i + lq+
i + lq–

i )

s.t. Eq. (1)− Eq. (7), Eq. (9), Eq. (10),

where (cF1
k , cF2

k ) represent cost coefficients associated with
generating power at k ∈ G, and κ represents the unit penalty
cost for power imbalance.

III. HEURISTIC ALGORITHMS

In this section we propose a new heuristic approach for
the MINLP model described in Section II, which we call
a three-block ADMM algorithm with a binary subproblem,
which we will refer to as 3ADMM-B. We also show how a
stochastic learning approach can be applied to our problem
for comparison purposes.

A. Three-Block Alternating Direction Method of Multipliers
ADMM [22], [23] is typically applied to convex, con-

tinuous optimization problems that can be decomposed into
two blocks. The method is related to augmented Lagrangian
methods and consists of solving a sequence of alternating
optimization problems followed by a first-order multiplier up-
date. In contrast, we apply ADMM to a discrete optimization
problem. The proposed 3ADMM-B is derived by exploiting
the structure of the problem; thus it is a problem-specific
algorithm.

First, we observe that the AC and DC network formulations
are connected through the effective GIC variables {Ieff

e }e∈Eτ

in Eq. (4) and Eq. (10b). By introducing auxiliary variables
Iac and Idc, we separate constraints for the AC network from
those for the DC network:

gac(x, Iac) ≤ 0, (11a)

gdc(y, z, Idc) ≤ 0, (11b)

Idc
e = Iac

e ∈ [0, Ie], ∀e ∈ Eτ , (11c)

where Eq. (11a) and Eq. (11b) represent constraints for AC and
DC networks, respectively, and Eq. (11c) represents consensus
constraints. Note that x and y are continuous local variables
while z is a binary vector that should satisfy Eq. (7).

Second, we introduce auxiliary variables zb to remove the
binary restriction from the DC network:

zb
i = zi, ∀i ∈ [S], (12a)

zb
i ∈ {0, 1}, zi ∈ [0, 1], ∀i ∈ [S], (12b)
S∑

i=1

zb
i ≤ V, (12c)

where S := |N s|. We note that the consensus constraints
Eq. (12a) ensure that the continuous copy agrees with the
binary choices. The MINLP model is written in the following
form:

min f(x)

s.t. Eq. (11a)− Eq. (11c), Eq. (12a)− Eq. (12c),
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where f corresponds to the objective function of (AC-rect).
By introducing dual variables λ and µ associated with

Eq. (12a) and Eq. (11c), respectively, the augmented La-
grangian is given by

max
λ,µ

min
z,zb,I

f(x) + ⟨λ, zb − z⟩+ ⟨µ, Idc − Iac⟩ (13)

+
ρ

2

{
∥zb − z∥2 + ∥Idc − Iac∥2

}
s.t. Eq. (11a), Eq. (11b), Eq. (12b), Eq. (12c),

and we now consider an approach that solves (13) instead of
(AC-rect). In the tth iteration of the proposed 3ADMM-B,
the first-block subproblem is given by

min
zb∈{0,1}S

⟨λ(t), zb⟩+ ρ

2
∥zb − z(t)∥2 (14)

s.t. Eq. (12c),

the second-block subproblem is given by

min
z∈[0,1]S ,Idc∈[0,I]

− ⟨λ(t), z⟩+ ⟨µ(t), Idc⟩ (15)

+
ρ

2

{
∥zb(t+1) − z∥2 + ∥Idc − Iac(t)∥2

}
s.t. Eq. (11b),

the third-block subproblem is given by

min
Iac∈[0,I]

f(x)− ⟨µ(t), Iac⟩+ ρ

2
∥Idc(t+1) − Iac∥2 (16)

s.t. Eq. (11a),

and the dual update is given by

λ(t+1) = λ(t) + ρ(zb(t+1) − z(t+1)), (17a)

µ(t+1) = µ(t) + ρ(Idc(t+1) − Iac(t+1)). (17b)

We note that Eq. (15) and Eq. (16) are NLP models with
convex quadratic objective functions that are easy to solve,
while Eq. (14) is a convex quadratic program with binary
variables that is easy to solve, as pointed out in the next
remark.

Remark 1. Since z is binary, we have ∥z∥2 = ⟨1, z⟩, where
1 is a vector with all components being 1. Therefore, Eq. (14)
can be rewritten as follow:

min
z∈{0,1}S

n∑
i=1

(ρ
2
+ λ

(t)
i − ρz

(t)
i

)
zi

s.t. Eq. (12c),

which is a binary knapsack problem whose constraint coef-
ficients are all one. Therefore, an optimal solution can be
obtained greedily, as described in lines 9–17 of Alg. 1. Specif-
ically, we first sort the objective coefficient in an increasing
order, namely, ĉi1 ≤ . . . ≤ ĉiS , and sequentially set zj = 1 if
ĉij < 0 for j ∈ {i1, . . . , iS} until the budget V is consumed.

In Alg. 1 we describe the proposed 3ADMM-B algorithm,
composed of the three subproblems and dual updates as in
lines 3, 4, 5, and 6, respectively. We set the termination

criterion based on the normalized primal and dual residuals,
as described in [24]. That is, the algorithm is terminated at
iteration t if the following holds:

max(p(t), d(t)) < ϵ, (18)

where ϵ is the tolerance of our algorithm and p(t) and d(t)

are normalized primal and dual residuals computed at the tth
iteration, respectively, given as

p(t) :=
∥v(t) − u(t)∥

max(∥u(t)∥, ∥v(t)∥)
, d(t) :=

ρ∥u(t) − u(t−1)∥
∥w(t)∥

v(t) :=

[
zb(t)

Idc(t)

]
, u(t) :=

[
z(t)

Iac(t)

]
, w(t) :=

[
λ(t)

µ(t)

]
.

Algorithm 1 Three-block ADMM with bianry (3ADMM-B)

1: Initialization: t← 0, λ(t), µ(t), z(t), Iac(t)

2: while not converged do
3: Compute zb(t+1) ← closed(ρ, λ(t), z(t))
4: Compute z(t+1) and Idc(t+1) by solving Eq. (15)
5: Compute Iac(t+1) by solving Eq. (16)
6: Update duals by Eq. (17)
7: end while
8: Return zb(T+1)

closed(ρ, λ, zc):
9: Initialization: zi = 0 for all i ∈ [S] and budget B ← V

10: Define ĉi :=
ρ
2 + λi − ρzc

i for all i ∈ [S]
11: Sort elements of ĉ such that ĉi1 ≤ . . . ≤ ĉiS
12: for j ∈ {i1, . . . , iS} do
13: if ĉj < 0 and B > 0 then
14: zj ← 1 and B ← B − 1
15: end if
16: end for
17: Return z

B. Stochastic learning approach

We also apply stochastic learning for binary optimization
[25] to our problem. This heuristic finds binary solutions
by sampling from a joint multivariate Bernoulli distribution
whose probabilities are updated iteratively. It has the advantage
that we can easily sample from the final distribution to
explore possible alternative solutions, whereas 3ADMM-B is
deterministic and produces only a single solution.

To describe the SL approach, we write (AC-rect) as

min
z∈Z

F (z), (19a)

where

Z :=
{
z ∈ {0, 1}S :

S∑
i=1

zi ≤ V
}

(19b)

and F (z) is the optimal value of an NLP model resulting from
fixing binary variables in (AC-rect) to some value z ∈ Z .
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The existing SL approach [25] has been developed for solv-
ing minz∈{0,1}S F (z) (e.g., Eq. (19) without the constraint):

p∗ = arg min
p∈[0,1]S

Φ(p) := Ez∼P(z|p)[F (z)]

=

2S∑
k=1

P (ẑk|p)F (ẑk), (20)

where P(z|p) represents a joint multivariate Bernoulli dis-
tribution with the probability mass function, P (z|p) :=∏S

i=1 p
zi
i (1 − pi)

1−zi . Equation (20) is different from the
original problem in that it aims to optimize probabilities
{p1, . . . , pS} associated with binaries {z1, . . . , zS}, leading
to heuristic solutions. Also, Eq. (20) can be considered as
a machine learning model with 2S number of data points.
Thus, one can utilize stochastic gradient descent (SGD) types
of algorithms for solving Eq. (20). For more details on the
existing SL approach, we refer the reader to [25].

In this application, however, the existing approach cannot
be immediately utilized because z sampled from the distri-
bution may not satisfy the budget constraint

∑S
i=1 zi ≤ V .

To address this issue, we first sort the probabilities in a
decreasing order, namely, pi1 ≥ . . . ≥ piS , and sample zj
for all j ∈ {i1, . . . , iS} until the budget V is consumed. The
proposed sampling is described in lines 3 and 9–18 of Alg. 2.
We set the termination criterion based on the norm of gradient,
namely, g(t) < ϵ, where ϵ is a tolerance level; and we set
the diminishing step size η(t) = a/t, where a > 0 is some
constant.

IV. NUMERICAL EXPERIMENTS

In this section we numerically demonstrate that the proposed
heuristic approaches provide good-quality solutions within rea-
sonable computation time, much faster than existing MINLP
solvers (e.g., SCIP [26] and Juniper [27]). To achieve this,
we employ our proposed approach and established solvers to
compute solutions for (AC-rect) within a maximum time
limit of 1 hour. We then assess solution quality by solving
an NLP model that arises from fixing binary variables in
the MINLP model to the obtained solutions. Based on the
EPRI-21 and UIUC-150 test systems, as described in [17],
we designed case studies by varying the magnitude of E-field
E ∈ {5, 10, 15, 20} V/km while keeping the E-field direction
fixed at 45 degrees. For the EPRI-21 and UIUC-150 system,
which have 8 and 98 substations, respectively, each of these
substations is a potential location for installing a blocking
device. For illustration of the methodology, we set the budget
as V = 3 for EPRI-21 and V = 30 for UIUC-150, with the
choice of V proportional to the size of the network.

We used Julia 1.8.1. for writing (AC-rect) via JuMP
[28] and implementing the heuristic approaches. For all ex-
periments, we used Bebop, a 1024-node computing cluster
(each computing node has 36 cores with Intel Xeon E5-
2695v4 processors and 128 GB DDR4 of memory) at Ar-
gonne National Laboratory. With this computing resource, we
solved (AC-rect) using our heuristic approach and well-
established solvers, each of which is executed sequentially.

Algorithm 2 Stochastic learning approach

1: Initialization: probability p(1), step size η(1), sample size
N , and set t← 1

2: while not converged do
3: Sample N scenarios of ẑ ← sample(p(t))
4: Compute a gradient:

g(t) ← 1

N

N∑
k=1

F (ẑk)
{ S∑

i=1

( ẑki

p
(t)
i

− 1− ẑki

1− p
(t)
i

)
e⃗i

}
(21)

5: Update

p(t+1) ← Proj[0,1]S (p
(t) − η(t)g(t)) (22)

t← t+ 1

6: end while
7: Sample N scenarios of ẑ ← sample(p(t+1))

Sample(p):
8: Initialization: zi = 0 for all i ∈ [S] and budget B ← V .
9: Sort elements of p such that pi1 ≥ . . . ≥ piS

10: for j ∈ {i1, . . . , iS} do
11: Sample zj from the Bernoulli distribution P(z|pj)
12: if zj = 1 then
13: B ← B − 1
14: end if
15: Break if B = 0
16: end for
17: Return z

A. Motivating examples

To motivate the development of heuristic approaches, we
demonstrate that the optimal placement of blocking devices
allows the power system to operate during severe GMDs with
a smaller number of blockers, significantly reducing placement
cost. We also show that this problem is computationally chal-
lenging mainly because of the presence of binary variables.

First, we employ the open-source MINLP solver SCIP to
solve (AC-rect) using instances constructed by varying the
E-field magnitude E within the EPRI-21 system. The results,
consisting of the selected substations for installing blocking
devices, are reported in Table I. By solving NLP models
derived from fixing the binary variables in (AC-rect) to
the obtained solutions, we compute the load-shedding penalty
and power generation cost in Fig. 3 (labeled as “Sol”).
This is compared with scenarios where no blocking device
is present (“None”), as well as when all substations have
blocking devices (“All”). For each E value, installing devices
on substations indicated in Table I mitigates the load-shedding
penalty while preserving the power generation cost. This
signifies that the solutions produced by SCIP within the 1-
hour time limit can effectively alleviate the adverse effects of
GIC on the power grid, despite not being optimal. We note
that although installing blocking devices for all substations
eliminates load shedding, the associated installation expenses
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can be significant. This situation highlights the necessity of
identifying optimal sites for placing these devices.

Unfortunately, solving these MINLP models to optimality is
computationally intractable. The solutions reported in Table I
are incumbent solutions only obtained within the imposed time
limit. The corresponding solution gaps are outlined in Fig. 4.
Notably, for the EPRI-21 system, smaller gaps are apparent
when E ≤ 15, while the gap becomes considerably larger at
E = 20. For the larger UIUC-150 system, the gap is even
more pronounced. This underscores the necessity to develop
heuristic methods capable of generating high-quality solutions
within reasonable computational time.

TABLE I: Set of substations to install blocking devices pro-
duced by solving (AC-rect) using SCIP.

E [V/km] 5 10 15 20
Substations {3, 8} {5, 6, 8} {1, 6, 8} {2, 6}

Fig. 3: Effect of installing devices on the load-shedding
penalty (left) and the power generation cost (right).

Fig. 4: Gap computed at the time limit of 1 hour.

B. Comparison of heuristic approaches

In this section we numerically show that the proposed
heuristic approaches provide superior solution quality com-
pared with existing MINLP solvers. To this end, we first solve
(AC-rect) constructed by varying E ∈ {5, 10, 15, 20} on
the UIUC-150 system by our approaches (i.e., 3ADMM-B
and SL), SCIP, and Juniper, respectively. To compare quality
of solutions (i.e., where to place devices), we solve an NLP
model derived from fixing the binary variables in (AC-rect)
using the solutions, and we then report the resulting objective
values in Table II. Additionally, we provide information on the
total time required for computation and evaluation in Table III.
The outcomes reveal that the solutions obtained through our
heuristic approaches exhibit lower objective values in compar-
ison with solutions generated by SCIP and Juniper, all within
a 1-hour time limit. Notably, the enhanced quality of solu-
tions by 3ADMM-B and SL is achieved within computation

times of approximately 1 and 18 minutes, respectively. While
the 3ADMM-B approach is generally faster than stochastic
learning, the stochastic learning approach provides benefits in
situations where it is necessary to explore the solution space
of near-optimal solutions. Further details regarding these two
approaches will be discussed in the subsequent sections.

TABLE II: Comparison of heuristic approaches with respect
to the objective value.

E [V/km] 5 10 15 20
SCIP 3029.22 1605.57 122291.70 458847.88

Juniper 3029.22 4111.43 122291.69 458817.29
SL 2232.33 3078.49 5058.66 15117.19

3ADMM-B 3178.71 3178.68 3178.64 3178.61

TABLE III: Comparison of heuristic approaches with respect
to the computation time in minutes (TimeLimit=1 hour).

E [V/km] 5 10 15 20
SCIP TimeLimit TimeLimit TimeLimit TimeLimit

Juniper TimeLimit TimeLimit TimeLimit TimeLimit
SL 16.1 17.4 17.4 17.7

3ADMM-B 1.1 0.8 0.5 0.9

C. Details on 3ADMM-B

In this section we provide details on 3ADMM-B. The
ADMM penalty parameter ρ is a hyperparameter that should
be tuned for better performance in practice. We utilize the nor-
malized residual balancing (NRB) technique [24] to adaptively
choose the value of ρ in every iteration t of the algorithm.
Specifically, for given β, τ ∈ R+ and the primal and dual
residuals p(t), d(t), we update ρ as follows:

ρ(t+1) ←

{
ρ(t)τ if p(t) > βd(t)

ρ(t)/τ if p(t) < βd(t).
(23)

To see the effect of the NRB technique on the convergence,
we solved the UIUC-150 test instance when E = 5 and report
how the primal and dual residuals behave in Fig. 5. Specifi-
cally, with a constant ρ = 102, 73 iterations are consumed to
solve the instance, while it takes only 19 iterations when NRB
with ρ(0) = 102, β = 2, and τ = 10 is used.

Fig. 5: Effect of the NRB technique on the convergence.

D. Details on SL

In this section we present details on the SL approach. First,
we solved the EPRI-21 test instance, which has 8 substations,
namely, candidate locations for installing blocking devices,
when E = 5 V/km. In Fig. 6 we report how the the solutions,
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namely, probabilities {p(t)1 , . . . , p
(t)
8 } in Eq. (21), change over

iterations and the norm of gradients (i.e., ∥g(t)∥ in Eq. (21)).
As reported, the solutions started from the initial values of 0.5
change over iterations. For example, the probability of placing
a blocking device at substation 8 reaches 1 upon termination,
indicating that substation 8 should be chosen as an installation
site. For the remaining substations, the probabilities at the
termination (i.e., 10th iteration where the norm of the gradient
diminishes to zero) are used to determine whether or not to
proceed with installation.

The number, N , of samples can be linked to the batch size
in the mini-batch SGD, a widely used learning algorithm. As
N increases, the algorithm’s performance approaches that of a
standard gradient descent algorithm. With a larger N , however,
the computation time per iteration increases since it entails
computing the full or true gradient. In our case, where the
objective is to obtain solutions within a 1-hour time limit, we
restrict N to be small. In Fig. 7 we illustrate the impact of N
on total iterations, average time per iteration, and total time.
As anticipated, higher values of N reduce the overall number
of iterations needed for termination because of better solution
quality per iteration, but this comes at the cost of longer
computation time. The choice of N significantly influences
the algorithm’s performance, necessitating tuning based on the
specific application’s requirements.

Fig. 6: Variations of solutions (left) and the norm of gradients
(right).

Fig. 7: Effect of the number N of samples used in SL on
computation.

V. CONCLUSION AND FUTURE WORK

In this paper we derived a MINLP model that mathe-
matically represents the GIC-BDP problem, and we pro-
posed a heuristic algorithm by exploiting the structure of
the problem. As opposed to existing models that employ
nonsmooth absolute-value equations to calculate effective GIC
and intricate nonlinear, nonconvex equations involving trilinear
terms with trigonometric functions to compute the amounts

of power flow in transmission systems, we have formulated
an alternative MINLP model to circumvent potential numer-
ical instability concerns inherent in MINLP solvers. This is
achieved by employing a complementarity reformulation tech-
nique to smooth out the absolute-value equations. Instead of
solving the model using MINLP solvers, which often require
substantial time due to the problem’s inherent complexity, we
have proposed a new heuristic algorithm, 3ADMM-B, that
exploits the decomposition of the overall model into three
segments. This approach renders each subproblem consider-
ably simpler to solve. We also compared 3ADMM-B with a
stochastic learning algorithm that optimizes the probability of
GIC blocker placement. Compared with conventional solvers,
the heuristics yield solutions of superior quality in significantly
shorter timeframes. While 3ADMM-B is typically faster than
the stochastic learning approach, the latter allows us to sam-
ple from the optimal probability distribution, allowing us to
explore possible alternative solutions of similar quality.

As future work, we plan to integrate line switching deci-
sions into the GIC-BDP problem, which serve to effectively
counteract the detrimental effects of GIC on power grids by
selectively deactivating specific transmission lines. In contrast
to the installation of blocking devices, line-switching decisions
can be readily modified to enhance overall performance. To
address this, we intend to structure the problem as a two-
stage optimization process, where we determine the optimal
placement of blocking devices in the first stage and make line-
switching decisions in the second stage. Given the prompt
feasibility of line switching in practical scenarios, we intend to
leverage machine learning methodologies to pretrain a model
that will provide real-time recommendations on which lines
to activate. In consideration of this approach, the heuristic
methods proposed in this paper can be employed to generate
a collection of training datasets.
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