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Abstract—Modern distribution systems with high penetration
of distributed energy resources face multiple sources of un-
certainty. This transforms the traditional Optimal Power Flow
problem into a problem of sequential decision-making under
uncertainty. In this framework, the solution concept takes the
form of a policy, i.e., a method of making dispatch decisions
when presented with a real-time system state. Reasoning over
the future uncertainty realization and the optimal online dispatch
decisions is especially challenging when the number of resources
increases and only a small dataset is available for the system’s
random variables. In this paper, we present a data-driven
distributed policy for making dispatch decisions online and under
uncertainty. The policy is assisted by a Graph Neural Network
but is constructed in such a way that the resulting dispatch
is guaranteed to satisfy the system’s constraints. The proposed
policy is experimentally shown to achieve a performance close
to the optimal-in-hindsight solution, significantly outperforming
state-of-the-art policies based on stochastic programming and
plain machine-learning approaches.

Index Terms—Optimal power Flow, Uncertainty, Optimal Con-
trol, Data-driven Optimization, Sequential Decisions

NOMENCLATURE

A. Sets:

N Set of energy resources.
T Set of operating timeslots.
B Set of distribution network nodes/buses.
Cb Set of descendant (children) nodes of node b.
T Index and set of operating timeslots.
En Set of EV’s (random) characteristics.
U Set of decision/control variables.
Wt Set of random variables for timeslot t.
St Set of state variables for timeslot t.
Ft Set of belief-state parameters for timeslot t.
K Set of scenarios for the stochastic program.
I Set of neural network inputs.
O Set of neural network outputs.

This work was partly funded by the Horizon 2020 research and innovation
programme under the ARV project (grant agreement no. 101036723).

B. Parameters:

Pn,Pn Resource’s upper/lower bounds on energy gen-
eration or consumption.

RUn,RDn Generator’s ramp up/down.
gn Generator’s per-unit fuel cost.
En,En Battery’s upper/lower bound on energy contain-

ment.
V,V Upper/lower bound on voltages.
Iζbb Upper bound on line’s current.
λb,t Lagrange multiplier of the active power balance

constraint.
µb,t Lagrange multiplier of the reactive power bal-

ance constraint.
ρ Tuning parameter of the ADMM algorithm.

C. Decision Variables:

xn,t Resource’s dispatch control variable.
Qn,t Resource’s reactive power injection at t.
yn Energy not delivered to an EV.
Pij,t Active power flow between nodes i and j at t.
Qij,t Reactive power flow between nodes i and j at

t.
Isqrbc,t Squared magnitude of current flowing between

nodes b and c at t.
V sqr
b,t Squared magnitude of node voltage at t.

C. Random Variables:

G̃n,t RES generation at t.
t̃arrn EV’s arrival time.
t̃depn EV’s departure time.
Ẽarr
n EV’s initial state of charge.

C̃n EV’s battery capacity.
Ẽdes
n EV’s desired state of charge at departure.

p̃t Wholesale electricity price at t.
D̃n,t Consumer demand at t.
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I. INTRODUCTION

A. Motivation

The growing penetration of distributed energy resources
(DERs) constitutes a cornerstone development of modern
power systems towards supporting higher levels of renewable
energy and system flexibility. This development creates, how-
ever, significant challenges for Distribution System Operators
(DSOs) - the entities responsible for maintaining the system’s
operation within safe technical limits in an economically effi-
cient way. This predominantly refers to solving the renowned
Optimal Power Flow (OPF) problem.

An important challenge refers to the increasingly high levels
of uncertainty which motivates solving the OPF problem in a
stochastic and adaptive fashion. This brings the standard OPF
problem into the realm of sequential decision-making under
uncertainty. At the same time, the diversity of DERs impedes
solutions based on comprehensive modeling approaches, while
their multitude and their distributed nature makes it difficult to
manage them centrally. These challenges motivate data-driven
and distributed decision-making approaches, as elaborated in
[1] and [2], respectively.

B. Related Work

The previous subsection motivated the consideration of
a data-driven, distributed, sequential, and uncertainty-aware
solution to the OPF problem. In this subsection, we discuss
the related literature with respect to these requirements.

Considering the constraint-aware economic dispatch of
DERs for a look-ahead horizon, the simplest approach is
to model uncertain parameters using point-forecast estima-
tions of their future values and solve a deterministic OPF
problem for the horizon. Such an optimization problem can
be readily extended to a distributed optimization counter-
part [2], using decomposition (e.g. [3]) approaches. The
distributed optimization approach for the second-order cone
(SOCP) formulation in particular, is analyzed in [4]. Such
deterministic-optimization-based approaches can readily form
the component of an adaptive (rolling-horizon) algorithm,
where the deterministic look-ahead optimization is re-solved
at each decision stage using updated estimations for uncertain
parameters, as in [5].

Naturally, the point-forecast optimization reduces all the
statistical knowledge about an uncertain parameter to a sin-
gle value (namely, the parameter’s expected value). Such
a simplistic approach can have detrimental effects to the
solution’s efficiency and recent literature has proposed more
sophisticated methods for solving the OPF problem under
uncertainty. Indicatively, [6] proposed a distributed scenario-
based stochastic programming approach for the SOCP model.
Furthermore, the authors in [7] used the Markov Decision
Process (MDP) framework to model the problem of minimiz-
ing the distribution system’s expected operational cost under
network constraints and presented an approximate dynamic
programming approach for approximating the optimal solu-
tion. The authors in [8] presented distributed solutions where

each resource solves its local MDP and the DSO receives the
responses and updates a set of Lagrange multipliers, similarly
to the above-mentioned distributed optimization techniques.

Notably, the methods reviewed so far are model-based, in
the sense that the system’s uncertain parameters are assumed to
follow known statistical models and/or their temporal dynam-
ics are assumed to follow known transition functions, while
some of the methods can also be computationally intensive
which puts their suitability for the online adaptive OPF prob-
lem into question. In contrast, data-driven approaches refrain
from making distributional assumptions about the system’s
random variables while the relevant Machine Learning (ML)
techniques are able to make fast dispatch decisions online,
once presented with the information about the system’s cur-
rent state; this is also referred to as the “learn-to-optimize”
concept (see [9] for an extensive analysis, and [10] for its
application to a AC-OPF). Recently introduced methodological
enhancements, tailored to the OPF problem, include the co-
called physics-informed neural networks [11] and sensitivity-
informed neural networks [12]. The main issue with ML-
based methods, however, is that they generally lack constraint-
satisfaction guarantees.

C. Research Gap & Contributions

The literature review reveals a number of requirements for
an operational policy that makes dispatch decisions in an active
distribution network. Namely, the decisions are to be made:

1) stochastically, i.e., in an uncertainty-aware manner;
2) adaptively, i.e. in a sequential manner, each time account-

ing for the updated information;
3) in a data-driven manner to avoid making statistical as-

sumptions about the uncertainties;
4) distributedly, for scalability and privacy preservation;
5) reliably, i.e., in a way that guarantees the satisfaction of

network constraints.
In this paper, we first formulate the relevant problem of

constructing an optimal policy, using the unified framework
for sequential decisions proposed in [13] and the SOCP-
relaxation of the OPF. After presenting two benchmark poli-
cies, one based on stochastic programming and one based on
the learning-to-optimize approach, we proceed to construct
the proposed policy by training a Graph Neural Network to
estimate the optimal dual variables of the system’s power
balance constraints for the future stages of the look-ahead
horizon. The Graph Neural Network is able to leverage the
spatial dependencies of the distribution system to optimize
its estimation for the system’s optimal duals. Using these
estimations as uncertainty-capturing signals, we employ a
distributed optimization algorithm that converges to constraint-
satisfying here-and-now dispatch decisions. Thereby, the pa-
per’s contributions can be summarized as follows:

• A data-driven, distributed policy is presented for the
stochastic sequential OPF problem, which makes sure that
the system’s constraints are respected.

• The proposed policy is shown to compare favorably
against stochastic programming and plain ML methods.
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II. SYSTEM MODEL

A. Distributed Energy Resources

We consider a set N of flexible electricity consum-
ing/producing resources. Each resource belongs to a particular
set Nθ of type θ ∈ Θ, where

Θ = {Generators,RES,Consumers,Storage,EVs}

is the set of types. It is N =
⋃
θ∈Θ Nθ. Continuous time is

divided into timeslots of equal duration for a time horizon T .
Each resource n ∈ N is characterized by upper and lower
bounds Pn,Pn over its active power injection, where Pn,Pn
can be negative for resources that only consume energy. A
resource can be dispatched at any level xn,tPn, such that

0 ≤ xn,tPn ≤ Pn, ∀n ∈ N , t ∈ T , (1)

where xn,t ∈ [0, 1] is a decision variable. For a RES facility in
particular, the (maximum) power generation at t is a random
variable G̃n,t, further constraining its dispatch to

xn,tPn ≤ G̃n,t, ∀n ∈ NRES, t ∈ T . (2)

Ramp-up and ramp-down constraints for generators read

RDn ≤ xn,tPn − xn,t−1Pn,t−1 ≤ RUn,

∀n ∈ NGen, t ∈ T . (3)

Reactive power injections from consumers and RES are as-
sumed to follow a constant power factor, as in

Qn,t = xn,tPn tan
(
cos−1 (pfn)

)
,∀n ∈ NCons ∪NRES. (4)

On the other hand, for EVs, storage units, and generators, it is
assumed that the reactive power can vary within an operational
power factor, as in

|Qn,t| ≤ xn,tPn tan
(
cos−1 (pfn)

)
,

∀n ∈ NEVs ∪NSto ∪NGen, (5)

Storage units and EVs have the ability to charge or discharge
(both with an assumed efficiency of 1 in this paper), thus it is
Pn ≤ 0 and Pn ≥ 0. A storage unit is characterized by limits
En,En on its battery’s energy containment, as in

En ≤ En,0 +
∑
τ∈[1,t]

xn,τPn ≤ En, ∀t ∈ T , n ∈ NSto, (6)

where En,0 is the battery’s initial energy. We also impose that
the battery’s state of charge at the end of the horizon is equal
to the battery’s initial state of charge, by setting∑

t∈T
xn,tPn = 0, ∀n ∈ NSto. (7)

An EV, on the other hand, is characterized by its arrival
and departure times t̃arrn , t̃depn , its initial state of charge Ẽarr

n ,
its battery capacity C̃n, and a desired state of charge Ẽdes

n

at its departure time. All of these characteristics are random
variables, constituting the EV’s type En, and are revealed only

once the EV arrives in the system. The EV’s energy constraint
takes the form

0 ≤ Ẽarr
n +

∑
τ∈[1,t]

xn,τPn ≤ C̃n, ∀t ∈ T , n ∈ NEVs, (8)

and the difference between the EV’s desired state of charge
and the actual state of charge at departure is defined as

yn = Ẽdes
n −

(
Ẽarr
n +

∑
t∈[̃tarrn ,̃tdepn ]

xn,tPn

)
, ∀n ∈ NEVs. (9)

Moreover, for exactness, we write:

xn,t = 0, ∀n ∈ NEVs, t /∈ [̃tarrn , t̃depn ]. (10)

Each resource can control its dispatch profile xn ≜
(xn,t)t∈T over the horizon T , at a cost given by the resource’s
cost function cn(xn). In this paper, we model the resources’
cost functions as convex functions of xn. In particular, the
cost functions for generators take the form

cn:n∈NGen(xn) =
∑
t∈T

gn · (xn,tPn)2 − p̃t · xn,tPn, (11)

where gn relates to the fuel cost, and p̃t is the wholesale mar-
ket price (a random variable), yielding generation revenues.

A RES facility, gains wholesale market revenues with virtu-
ally zero operational cost. Thus, its cost function is decreasing
in xn,t, as in

cn:n∈NRES(xn) = −
∑
t∈T

(p̃t) · xn,tPn. (12)

Storage units are also subject to wholesale market revenues
(or payments for xn,tPn < 0), and additionally bear a battery
degradation cost, as in

cn:n∈NSto(xn) =
∑
t∈T

(
d ·
(xn,tPn

En

)2
− p̃t · xn,tPn

)
, (13)

where d is a battery degradation factor, and
∑

t∈T xn,tPn

En
is

the number of full charge-discharge cycles.
EVs bear the same costs as storage units, and an additional

penalty/disutility cost u(yn) (e.g. quadratic in yn) for not hav-
ing their battery charged at their desired level upon departure:

cn:n∈NEVs(xn) =∑
t∈T

(
d ·
(xn,tPn

C̃n

)2
− p̃t · xn,tPn

)
+ u(yn). (14)

Finally, a consumer has an energy demand level D̃n,t at
each timeslot. In addition to its retail cost

∑
t∈T p̃t ·xn,tPn, it

bears an instantaneous cost w2 ·
(
D̃n,t − xn,tPn

)2
for having

its load shifted from (or to) timeslot t, as well as an extra

cost w3 ·
(∑

t∈T D̃n,t −
∑
t∈T xn,tPn

)2
for having part of

its demand unsatisfied:

cn:n∈NCons(xn) =
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∑
t∈T

(
p̃t · xn,tPn +w2 · (D̃n,t − xn,tPn)

2
)

+w3 ·

(∑
t∈T

D̃n,t −
∑
t∈T

xn,tPn

)2

. (15)

B. Distribution system

The resources are connected via a radial distribution net-
work defined by the set of nodes/buses B and their intercon-
necting lines. For a bus b ∈ B, we denote the set of resources
connected to it by Nb, its parent node by ζb and the set of
its children nodes by Cb. The active and reactive power flows
from node i to node j, at t, are denoted as Pij,t and Qij,t
respectively. A node’s active power balance is ensured by

Pζbb,t +
∑
n∈Nb

xn,tPn −
∑
c∈Cb

(
Pbc,t +RbcI

sqr
bc,t

)
= 0

∀ b ∈ B, t ∈ T , (16)

where Isqrbc,t is the squared magnitude of the current flowing
through the line connecting b to c, and Rbc is the line’s
resistance. Similarly, the reactive power balance is written as

Qζbb,t +
∑
n∈Nb

Qn,t −
∑
c∈Cb

(
Qbc,t +XbcI

sqr
bc,t

)
= 0

∀ b ∈ B, t ∈ T , (17)

where Xbc is the line’s reactance. The voltage magnitude drop
between nodes ζb and b is represented by:

V sqr
ζb,t

− 2 (RζbbPζbb,t +XζbbQζbb,t)−
(
R2
ζbb

+X2
ζbb

)
Isqrζbb,t

= V sqr
b,t , ∀b ∈ B, t ∈ T , (18)

while branch power flows are calculated using the (SOCP-
relaxed) inequality

Vb,tIζbb,t ≤ P 2
ζbb,t

+Q2
ζbb,t

, ∀b ∈ B, t ∈ T . (19)

Finally, the upper and lower bounds on nodal voltage magni-
tudes and current magnitudes are enforced by

V ≤ Vb,t ≤ V ∀b ∈ B, t ∈ T , (20)

0 ≤ Iζbb,t ≤ Iζbb ∀b ∈ B, t ∈ T . (21)

C. Problem Formulation

Under no uncertainties over the system’s parameters (e.g.
demand and RES output), the optimal-in-hindsight solution is
given by the following OPF problem:

minU
∑
n∈N

cn(xn)

s.t. (1) − (21),
(22)

where the set of decision variables is

U =
{
(xn,t,Qn,t)n∈N ,t∈T , (yn)n∈N ,

(Vb,t, Pζbb,t, Qζbb,t, Iζbb,t)b∈B,t∈T
}
.

However, the problem’s parameters include a set

Wt = {(G̃n,t)n∈NRES , (D̃n,t)n∈NCons , p̃t} ∪ (En)n∈NEVs :̃tarrn =t

(23)
of random variables for each t (i.e. the RES generation,
consumer demand, prices, and EV characteristics) rendering
the tracking of the optimal dispatch a problem of sequential
decision making under uncertainty. Using the general model-
ing framework for such problems, as introduced in [13], our
problem is defined by:

• The set of decision stages T .
• The set of action variables at each stage:

Ut =
{
(xn,t, Qn,t)n∈N , (Vb,t, Pζbb,t, Qζbb,t, Iζbb,t)b∈B

}
.

• The system’s state at t:

St ={
(xn,t−1)n∈NGen , (En,t−1)n∈NEVs∪NSto∪NCons ,Wt,Ft

}
which represents all the information relevant for making
a decision; this includes each generator’s previous output
level xn,t−1, a state-of-energy variable

En,t−1 =

t−1∑
t′=1

xn,t′ (24)

for storage, EVs and consumers, the currently revealed
information Wt, and a belief-state Ft which encompasses
all the parameters relevant for reasoning over the future
realizations (Wt′)t′∈[t+1,|T |] of the system’s random vari-
ables.

• The system’s stage cost Ct(Ut,St) defined as the sum of
the resources’ cost functions.

• A transition function H that maps (Ut,St) to a next state
St+1; this comprises the deterministic transition functions
of state components xn,t−1, En,t−1, the unknown dynam-
ics of the random variables Wt, and the method-specific
dynamics that define the update rules for the parameters
of the belief-state Ft.

The solution concept for our problem takes the form of a policy
π, i.e. a method Ut = π(St) for deciding feasible actions Ut at
any realization of the state St. Based on these definitions, our
objective can be defined as the minimization (over policies)
of the expected system’s accumulated cost:

min
π

{∑
t∈T

Eψ∼π
[
Ct(Uπt ,St)

]}
(25)

s.t. St+1 = Hπ(Uπt ,St)

where the expectation is over the system’s possible state-action
trajectories ψ conditioned on the adopted policy π.

In the next section, we present two benchmark policies for
problem (25): a receding horizon stochastic program and a
learn-to-optimize approach. These policies serve as building
blocks for the proposed policy (to be presented later in Section
IV) and also as benchmarks against which the proposed policy
will be evaluated in Section V.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



III. BENCHMARK POLICIES

This section presents two benchmark policies for problem
(25) before presenting the proposed policy in the next Section.

A. Receding-horizon Stochastic Programming

Let us consider a given decision stage and denote it by τ .
Given the revealed information Wτ , a stochastic programming
approach considers a set K of scenarios for future realizations
(Wt,k)t∈[τ+1,|T |] of the system’s random variables. These
scenarios constitute the policy’s belief-state Fτ at τ and are
generated by drawing on the statistical properties of past
observations. The program uses a duplicate set Ut,k of decision
variables for each scenario and timeslot, and makes a decision
USP
τ at τ by solving the following optimization problem:

min
(Ut,k)t∈T ,k∈K

∑
k∈K

∑
n∈N

cn(xn,k) (26)

s.t. (1) − (21), ∀k ∈ K (27)
(Ut,k)t∈[1,τ−1],k∈K = (USP

t )t∈[1,τ−1], (28)
(Uτ,k)k∈K = (Uτ,k′)k′∈K, ∀k, k′ ∈ K, (29)

where (27) enforces the system’s operational constraints for
each scenario, constraint (28) fixes the decisions made before
current stage t to the applied actions (ensuring that the
algorithm cannot change the past), and constraint (29) enforces
the so-called non-anticipativity constraints. At stage τ , and
given an optimal solution to the above problem, the receding-
horizon algorithm applies the decision for the current stage
and re-solves the optimization in the next stage τ + 1 when
the belief-state is updated by considering the newly revealed
information Wτ+1.

B. Learn to Optimize

The learn-to-optimize approach avoids the need to solve a
stochastic OPF problem in online operation, by feeding the
observed state to a ML algorithm, namely a neural network
(NN), which provides an estimation of the optimal dispatch
in negligible time. More specifically, at stage τ of online
operation, the NN is provided with the input

Iτ ={
τ, (xn,τ−1)n∈NGen , (En,τ−1)n∈NEVs∪NSto∪NCons , (Wt)t∈[1,τ ]

}
,

(30)

i.e., all the relevant information currently available, and pro-
vides as output an estimation Oτ = (xLtOn,τ , Q

LtO
n,τ )n∈N of the

optimal dispatch (where the LtO superscript specifies that this
the solution prescribed by the Learn-to-Optimize approach.
The NN is trained offline, using mappings of the form

md
t =

(
Idt ,Od

t

)
. (31)

To create a mapping md
t , an instance Wd =

(
Wd
t

)
t∈T for

a whole day is considered and the respective optimal-in-
hindsight solution Ud is calculated by solving problem (22)
(under a perfect forecast). Thus, for each t of day d, the
input feature xdn,t−1 is the “(n, t − 1)” component of the

optimal solution Ud and Edn,t−1 is calculated using (24). The
output part Od

t of md
t is simply the optimal value of variables

xn,t, Qn,t ∈ Ud.
One shortcoming of this policy is that, for a large number

|N | of resources, the dimension of the NN’s output also grows,
which obstructs the NN’s efficient training and performance.
A second shortcoming refers to the inability of the policy to
guarantee the feasibility of the control actions. The next Sec-
tion presents the proposed policy which remedies these issues.

IV. PROPOSED POLICY

In this Section, we present the proposed distributed policy
for problem (25). Let us first consider a distributed algorithm
for the perfect forecast case (refer to problem (22)) before we
address uncertainty. Let us consider the active and reactive
power balance residuals, for each node and timeslot, as

δpb,t = Pζbb,t +
∑
n∈Nb

xn,tPn −
∑
c∈Cb

(
Pbc,t +RbcI

sqr
bc,t

)
, (32)

δqb,t = Qζbb,t +
∑
n∈Nb

Qn,t −
∑
c∈Cb

(
Qbc,t +XbcI

sqr
bc,t

)
. (33)

By relaxing the respective active and reactive power balance
constraints (16), (17), we can write the augmented Lagrangian
of problem (22) as:

L =
∑
n∈N

cn(xn)−∑
t∈T

∑
b∈B

(
λb,t · δpb,t −

ρ

2

(
δpb,t
)2)−∑

t∈T

∑
b∈B

(
µb,t · δqb,t −

ρ

2

(
δqb,t
)2)

, (34)

where λb,t, µb,t are the Lagrange multipliers of the ac-
tive and reactive power balance constraints for b, t. Given
that the Lagrangian is per-node separable, the optimal-in-
hindsight problem (22) lends itself to a distributed solution
where, at iteration i, each node updates its decisions Ub =(
(xn,t, Qn,t)n∈Nb,t∈T , (yn)n∈Nb

)
as

U (i)
b ∈ argminU {L}

s.t. (1) − (15),

UDSO = U (i−1)
DSO

(35)

and the DSO updates its variables

UDSO =
(
Vb,t, Pζbb,t, Qζbb,t, Iζbb,t

)
b∈B,t∈T

as
U (i)
DSO ∈ argminU {L}

s.t. (18) − (21),

Ub = U (i−1)
b , ∀b ∈ B.

(36)

Given the simultaneous variables’ updates (35), (36), the
Lagrange multipliers can be updated using the Alternate
Direction Method of Multipliers (ADMM), as:

λ
(i)
b,t = λ

(i−1)
b,t + ρδpb,t

(
U (i)
b ,U (i)

DSO

)
, ∀b ∈ B, t ∈ T , (37)
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Algorithm 1 The proposed policy for the data-driven, dis-
tributed sequential OPF problem at stage τ .

1: Feed the input (Eq. (30)) to the NN, and obtain the
predicted multipliers λ∗b,t, µ

∗
b,t, for each node b ∈ B, and

future stage t ∈ [τ + 1, |T |]
2: Fix the multipliers for future stages to the ones predicted

by the NN: λb,t, µb,t = λ∗b,t, µ
∗
b,t, ∀b ∈ B, t ∈ [τ+1, |T |].

3: Initialize the iteration number and the multipliers for the
current stage i = 0, λ(0)b,τ , µ

(0)
b,τ = 0, ∀b ∈ B.

4: repeat:
5: i = i+ 1
6: for b ∈ B:
7: Update node’s decisions U (i)

b by solving (35)
8: Update DSO decisions U (i)

DSO by solving (36)
9: Update the multipliers for the current stage, as:

λ
(i)
b,τ = λ

(i−1)
b,τ + ρδpb,τ

(
U (i)
b ,U (i)

DSO

)
, ∀b ∈ B,

µ
(i)
b,τ = µ

(i−1)
b,τ + ρδqb,τ

(
U (i)
b ,U (i)

DSO

)
∀b ∈ B.

10: until maxb∈B{λ(i)b,τ − λ
(i−1)
b,τ } < ε

AND
maxb∈B{µ(i)

b,τ − µ
(i−1)
b,τ } < ε

11: apply: (x(i)n,τ , Q(i)
n,τ )n∈Nb

µ
(i)
b,t = µ

(i−1)
b,t + ρδqb,t

(
U (i)
b ,U (i)

DSO

)
∀b ∈ B, t ∈ T . (38)

We now turn to constructing the proposed policy for the se-
quential decision-making problem under uncertainty. Similarly
to the learn-to-optimize policy of Section III-B, the proposed
policy is assisted by a NN trained on instances of the problem’s
optimal-in-hindsight solution. However, instead of training the
NN to estimate the optimal dispatch at current stage τ , it
is trained to return an estimation (λ∗b,t, µ

∗
b,t)t∈[τ+1,|T |] of the

problem’s optimal dual variables that correspond to constraints
(16), (17) of problem (22). Thus, at stage τ of online operation,
the NN is fed with the same input Iτ as defined in (30), plus
the dual variables in which the ADMM algorithm converged in
the previous timeslot, and predicts the optimal dual variables
for future stages. Then, the ADMM algorithm is executed,
where only the multipliers for the current timeslot τ are
iteratively updated, while the multipliers for future timeslots
are kept fixed to the estimated values (λ∗b,t, µ

∗
b,t)t∈[τ+1,|T |].

The exact policy at decision stage τ , reads as in Algorithm 1.

Remark 1. Notice that the proposed policy of Algorithm 1
converges to an uncertainty-informed dispatch that always
respects the system’s constraints (by construction).

V. EXPERIMENTAL EVALUATION

A. Evaluation Setup

The presented policies are evaluated for a 24-timeslots
horizon on the 11 kV MV-distribution network of [14]. The
substation voltage was set to 1.0 p.u. on the secondary side and
voltage magnitude limits to V = 1.05 p.u. and V = 0.95 p.u.
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Fig. 1: Comparison of the three policies with the optimal-in-hindsight solution.

The dataset from [15] was used for the consumers’ con-
sumption. For EVs, we assumed that each user wants to charge
his/her EV as much as possible within the given deadline and
the disutility cost is linear in the amount of energy not charged.
The dataset from [16] was used for EVs’ characteristics.
Wholesale market prices were drawn from [17], and RES
generation was drawn from [18]. For the proposed policy, a
Graph Neural Network was used to predict the dual variables.
The NN consists of two graph convolution layers and 3 linear
layers. The layers use the Relu activation function. Each
bus/node n is represented with its local state variable which
contains only the variables that refer to that bus/node.

B. Evaluation Results

Our main result is the comparison of the proposed policy of
Algorithm 1 against the optimal in hindsight solution (oracle)
of problem (22) and against the two benchmark policies (the
receding-horizon stochastic program and the learn-to-optimize
policy). Naturally, the optimal-in-hindsight solution provides
us with the ideal objective value that could only be reached if
all information was known beforehand and it is not attainable
in practice. Nevertheless, it serves as a theoretical benchmark
against which we can assess the performance of the three
policies. In Fig. 1, we present each policy’s system cost
accumulated along the horizon, where the value at the last
timeslot (t = 24) expresses the policy’s overall performance as
a percentage of the optimal-in-hindsight solution’s cost. As can
be observed, the proposed policy significantly outperforms the
two benchmarks by achieving a cost that is only 15% higher
than the one of the perfect information case.

The performance documented in Fig. 1 for the proposed
policy was achieved by setting ρ equal to 1. Higher values
of ρ can provide faster convergence times as can be seen
in Fig. 2, although at the expense of higher system cost
(loss of efficiency) which can be significant as shown in
Fig. 3. However, for the near-optimal choice of ρ = 1, the
computational time required to make a decision was in the
order of only one minute, which is already fast enough for
the intended application and validates the policy’s suitability
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Fig. 3: Efficiency loss for different values of parameter ρ.

for real-time decisions. Further simulation results, including
e.g. a sensitivity analysis to biased data are included in the
extended online version of the paper [19].

VI. CONCLUSION AND FUTURE WORK

This paper motivated the need to solve the distribution-level
OPF problem in a stochastic, sequential, distributed and data-
driven manner. The problem was formulated as a problem of
sequential decision-making under uncertainty and the notion
of a policy was identified as the relevant solution concept.
A policy was proposed which uses a Graph Neural Network
to predict the problem’s optimal dual variables for future
intervals combined with an iterative distributed optimization
algorithm for making coordinated real-time decisions that, by
construction, respect the system’s operational constraints. The
proposed policy was compared to two policies commonly
used in the literature (a stochastic programming and a di-
rect machine-learning approach) demonstrating a significant
difference in the achieved efficiency. The simulation results
indicated the ability of the proposed policy to make fast online
decisions while approaching the objective value of the optimal
(perfect information) solution. The proposed methodology is
not confined by the distribution network’s (radial) structure
and can also work for meshed networks in principle. However,

how well it would performed in meshed networks is an open
question that can be empirically evaluated in future work.
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