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Abstract—The breakage of the neutral conductor in low
voltage distribution networks is a major concern for distribution
companies. This breakage causes significant voltage deviations
that can damage the connected equipment as well as jeopardizing
people. The detection and localization of the breakage is a
major challenge as it does not always manifest in the same
way. This work presents a methodology based on artificial
intelligence for the detection and localization of neutral conductor
breaks in distribution networks. Two neural networks are trained
in attempt to solve each of the challenges. For this purpose,
measurements commonly taken by smartmeters such as power
and nodal voltages are used. The methodology is evaluated in
simulation exhibiting a good performance.

Index Terms—Distribution system; LV networks; Neural net-
works; Neutral breakage

I. INTRODUCTION

Loss of neutral conductor in low voltage distribution net-
works is a major concern of utilities [1], [2]. This series
open circuit fault causes overvoltages that damage electronic
equipment, electric motors, lighting loads, appliances, etc.
Another consequence can be the creation of hazardous touch
voltages on exposed conductive parts, putting people’s safety
at risk [1].

Neutral loss conditions can arise for different reasons:
overloading, load unbalancing, loose termination of neutral
conductor due to poor workmanship, poor maintenance, etc.
The adverse effects caused by neutral conductor breakage
depend on the pre-fault load and unbalance levels, as well
as the neutral grounding system adopted by the utility, the
ground resistance values, and the location of the fault [3]. A
massive presence of distributed low-carbon technologies may
even worsen the starting conditions previous to the loss of
neutral [4].

In most cases, these fault situations are only detected when
reports of supply interruption are received from customers.
Then, network operators must determine whether or not these
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outages are due to a broken neutral fault and, if so, where in the
network they have occurred. There are numerous patents for
open-neutral detection devices to be installed at the feeder end
or at the loads terminals, a good summary of which is given
in [5]. This solution is quite expensive as these protection
devices must be distributed throughout the LV network. The
authors in [5] propose using a single detection device located
at the head of the feeder. Its working is based on evaluating the
3rd harmonic current, which changes significantly when open
neutral fault occurs. This proposal is validated experimentally
in [6].

The work presented in [7] proposes to use Fourier transform
analysis of the measured neutral-earth voltage (NEV) and
system current. From this analysis it is possible to calculate a
new index whose amplitude and sign allows to know if the
neutral opening has occurred or not and its location. This
methodology requires recording measurements at each node of
the LV network, with the added difficult task of establishing
a reference ground for NEV measurement.

A great variety of methodologies are proposed in [8], all of
them based on using the data recorded by smart meters. Simple
algorithm methods based on comparing a specific electric
magnitude or index with a limit previously tuned are evaluated,
as well as a combination of these basic methods. Some of
these solutions seems to work quite efficiently, but most of
them imply installing new software in already installed smart
meters. Also, machine learning methodologies are considered,
more specifically a decision tree-based algorithm and a neural
network-based methodology, the first one performing better.
One limitation of these artificial intelligence-based solutions
is that need quite information of each smart meter, until 19
parameters. For confidentiality reasons, most of the proposed
solutions are not detailed.

This work is focused on the resolution of two main prob-
lems, namely broken neutral fault detection (BNFD) and
broken neutral fault location (BNFL). That is, given an LV
network with a European layout, i.e., three-phase four-wire
systems, this work aims to identify whether a broken neutral
fault has occurred and, if so, to determine the line segment
where the problem has occurred. In this way, the utility can
preserve the proper functioning of the network, as well as
economize on system repair due to the easy location of the
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fault. The proposed solution takes advantage of the massive
information collected by smart meters, making use of them for
the training of neural networks that can predict the problems
tackled. Thus, the main contributions of the paper are:

• Motivate the adverse effects of a neutral wire breakage
in a LV distribution network.

• The development of an AI-driven methodology for iden-
tifying neutral faults in LV distribution networks.

• The construction of a second methodology aimed at
effectively locating neutral faults within LV distribution
networks.

• The use of limited and accessible data recorded by smart
meters and metering equipment located in secondary
substations as input data for the proposed methodologies.

Section II analyzes from a theoretical point of view the
consequences of a neutral break in a basic unbalance low
voltage network. This analysis helps to focus the design of the
solution methodology to be defined. Section III describes the
problem from an artificial intelligence perspective, including
the definition of the problem, the benchmark LV network
considered and the dataset used. In Section IV the proposed
method is introduced together with all the techniques used to
enhance the approach. Section V evaluates the performance
and robustness of the proposed solution under simulation and
Section VI summarizes the main results of the conducted
research and future work.

II. MOTIVATION OF THE PROBLEM

European LV distribution networks are radially operated
three-phase four-wire networks. In these networks, there are
both single-phase and three-phase customers. Although the
distribution company makes an effort to distribute the single-
phase customers appropriately between the phases, the arbi-
trary consumption of the different customers generates imbal-
ances in the network. These unbalances result in the sum of the
currents of the three phases at the nodes not being zero, and
therefore, there is a return current to the head-end through
the neutral conductor that relieves the nodal voltages while
maintaining operating margins.

Occasionally, the neutral conductor breaks, which is usually
difficult to identify and locate, especially if we focus on urban
networks where the cables are buried. In this situation, two
possible cases can arise. First, if the consumption node has a
ground connection, the currents caused by unbalances can use
that path to return to the head-end. However, the values of the
grounding resistances are often very high, which complicates
current flow. Second, there is no path for the flow of this
current, so Kirchhoff’s current law must be satisfied at that
node, i.e. ia+ib+ic = 0. This fact generates serious problems
in the voltages at that node. In both cases, the neutral-ground
voltage of the node may increase considerably, compromising
the isolation of the equipment connected to the network at that
point.

To illustrate the problem, consider a system in which the
low voltage side of a secondary substation (modeled as a three-
phase fully balanced voltage source) feeds an unbalanced load

by means of an aluminum power line of 500 m length. In
this example a 63 kW of active power demand is considered
being the 36 % demanded in phase a and the 32 % in phases
b and c, respectively. In addition, a perfect grounding with
zero resistance is considered at the secondary substation and a
resistance of 40 Ω at the load node. Two power flow problems
are solved over the example network defined above. For both
cases, the voltages at the head-end (red) as well as the voltages
at the load terminals are shown. On the one hand, the line
voltages are shown in cyan solid line, while the phase-neutral
voltages are shown in yellow dashed lines. Finally, the blue
dashed lines represent the phase-ground voltages. First, when
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Fig. 1. Voltage values for the test case with neutral (up) and neutral breakage
(down) in the power line. Voltages at the head-end are represented in red solid
liness; the line voltages at the load are shown in cyan solid lines; the phase-
neutral voltages are represented in yellow dashed lines; and the phase-ground
voltages are depicted in blue dashed lines.

the neutral conductor is intact, the voltage at that point reaches
a value of 2 V. This value is considered practically negligible
and, as can be seen, the triangle of voltages at the head-end and
at the load is practically identical and is only affected by the
losses in the line (reducing its size) and the small unbalance
in the load (rotating the triangle). Second, when the neutral
breakage occurs, the voltage at that point increases to about 50
V. The phase-to-ground voltages remain practically constant,
however, when the neutral is displaced, overvoltages can be
observed in the phase-to-neutral voltages at phases a and c, as
well as an undervoltage at phase b.
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Fig. 2. Dataset generation and classifier training procedure.

Note that phase-to-neutral overvoltages on phases a and c
can damage connected equipment as well as cause automatic
disconnection of the customer to ensure safe operation of the
network. These voltage problems could be even worse when
distributed generation is taken into account, as they can lead
to higher pre-fault unbalance scenarios. The neutral grounding
system adopted by the utility, the ground resistance values, and
the location of the fault are additional factors that influencing
the level of the adverse effects caused by neutral conductor
breakage [3].

When this problem is analyzed in larger networks, the
neutral brakage effect may go unnoticed, producing milder
effects on voltage levels depending on where the breakage
occurs. However, if a neutral breakage occurs in more than
one section of the network, it can have serious consequences,
involving long periods of supply interruption to carry out
repairs. Thus, having a suitable tool for the identification
and location of neutral conductor breaks seems to be a very
necessary tool.

III. PROBLEM STATEMENT

This section is structured into three subsections. Firstly,
the two problems addressed are described from an artificial
intelligence perspective, specifying the classification schemes
used for each problem’s resolution. Additionally, the input
requirements for the solution engine are defined, along with
the output format. Secondly, the network under study is
presented, outlining its topology, grid connection points, and
grounding configurations. Finally, the methodology employed
for data acquisition from this network under different operating
modes is outlined.

A. Problem description

As already mentioned, the objective of this work is to solve
two main problems that can arise in LV distribution networks:
broken neutral fault detection (BNFD) and broken neutral fault
location (BNFL). It is important to note that both problems are
related. The location of the neutral breakage will be addressed
only if it has occurred.

To address both problems, Section IV proposes a deep
learning-based method. However, before delving into the
methodology, it is essential to reframe these issues from an
electrical context to a data-driven perspective. Both problems
fall under the classification paradigm, where the objective is
to categorize input data into predefined classes or categories.
The first problem, BNFD, is a binary classification task,
determining whether the neutral is damaged or intact. The
second problem, BNFL, presents a more intricate multiclass
classification challenge, where data needs to be assigned
to distinct categories indicating the specific line section in
which the fault occurred. The output of the classifiers gives a
probability to each of the possible outputs. The sum of all these
probabilities is equal to 1. Thus, the classifier for the BNFD
problem will assign one probability to the case of a neutral
breakage and another probability to to the case in which the
neutral wire is intact. On the other hand, in the BNFL problem,
the output will be the probability of breakage in each section
of the network.

The input data of both classifiers is a collection of the
available information of the current state of the network. In
this work, it is considered accessible the nodal voltages and
the active and reactive power measurements of the smart
meters installed in the network and the voltage magnitude
recorded at the secondary substation. The dataset should be
divided into the one used to train the classifier, i.e. training
dataset, and the one used to evaluate the performance of the
method, i.e. testing dataset. The dataset must be labeled since
a supervised learning approach is used, that is, it must be
specified the desired output of the classifier: the state of the
neutral conductor and, in case of breakage, the line segment
where the fault has occurred.

First, the training dataset will be used to train the classifier,
i.e. to correctly adjust its internal variables in order to match
the desired outputs (those labels included in the dataset).
Second, once the training process is completed, the testing
dataset is used to test the performance of the method by
comparing the classifier outputs with the dataset labels. The
analysis of the performance will be deeper explained together
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with the simulation results.
An illustrative schematic of the dataset generation and the

training process is shown in Fig. 2. As can be seen, the dataset
is constructed from the input data to the classifier (voltage
and power measurements taken from the network) and the
labels corresponding to these inputs (whether there is a break
and its location). Note that the dataset is composed of this
set of measurements for several time instants (with different
loads and neutral wire state). After the dataset is generated,
the input data is sent to the classifiers, which compare their
estimates of the neutral state with the labels in the dataset.
The discrepancies obtained are used to reassign values to their
internal variables in the training process.

B. Network benchmark
The considered benchmark network is part of the 400 V

European LV benchmark distribution network proposed by the
CIGRE Task Force C06.04.02 [9]. In particular, the residential
sub-network whose topology is depicted in Fig. 3. In this
network, there are several zero-injection buses without neutral
conductor grounding (such as R5 or R7). In order to facilitate
the NBFL problem, it has been decided to avoid these nodes by
adapting the line models to achieve a fully equivalent network.

LVMV

R1 R2 R3 R4 R6 R8 R9 R10

R18

R0

R16 R17R15R11

Fig. 3. Topology of residential European LV benchmark network

The benchmark system under consideration is a three-phase
four-wire underground network designed to accommodate both
single-phase and three-phase prosumers. This network spans a
length of 570 meters and is powered by a 20/0.4 kV-500 kVA
power transformer configured in a delta-star arrangement. To
ensure proper grounding, various LV grounding configuration
exist, as documented in [10]. One prevalent approach involves
the use of a multi-grounded neutral scheme, wherein the
neutral conductor is strategically grounded at multiple points
throughout the network, a strategy well-documented in [11].
In our specific scenario, grounding resistors with values of 3Ω
and 40Ω have been incorporated at the secondary transformer
and certain intermediate nodes, respectively, as detailed in
[9]. The nodes with a grounding connection as well as the
customers grid connection nodes are shown in Fig. 3.

In the absence of real network data, the decision has been
made to utilize this benchmark for the study. To ensure the
problem closely resembles reality and obtain the necessary
smart meter data, an accurate grid model has been constructed
following the procedure explained in [12]. Subsection III-C
details the process of generating consumption/generation sce-
narios that will conform the used datasets.

C. Generation of the dataset
Two datasets have been generated as mentioned in the

previous section. On the one hand, the training dataset contains
multiple network states labeled with the neutral conductor
status. On the other hand, the testing dataset contains labeled
information to evaluate the model performance. Each network
state included in the dataset has been obtained by solving the
power flow problem in the proposed network. For this purpose,
the fully balanced base load scenario represented in Table I
has been considered.

TABLE I
BASE LOAD SCENARIO

Node S (kVA) cosφ

R1 200 0.85
R11 15 0.85
R15 52 0.85
R16 55 0.85
R17 35 0.85
R18 47 0.85

Starting from the base load case, random scenarios have
been generated by modifying the power demanded in each
node and phase between 80 % and 120 % of the starting value.
It is considered that the status of the network can be known
once every hour (based on the information acquired by the
smart meters), and therefore, one scenario can be included in
the dataset every this period of time.

In order to evaluate the influence of the training dataset
on the performance of the proposal, datasets constructed from
one week of data, one month, six months, one year, one and
a half years and two years are considered. It is important to
highlight that larger datasets include those of smaller size.
Thus, for example, the entire dataset with one week of data is
included in the dataset built from one month of information.

Finally, different percentages of neutral breakage exist in
each of the datasets. In particular, datasets with 10%, 9%, 8%,
7%, 6%, 5% and 4% of the scenarios presenting a breakage
are considered. Note that these percentages are of small value
since in a scenario closer to reality the breakage of the neutral
conductor should not appear with regularity.

Thus, there are 6× 7 datasets with all combinations of size
(six possibilities depending on the time extension) as well as
fault probability (seven possibilities).

IV. PROPOSED METHOD

This section presents the proposal implemented to solve
the BNFD and BNFL problems. First, the structure of the
classifier based on neural networks is presented, identifying
the considered topology as well as its activation functions.
Subsequently, the training process for the neural networks is
defined, detailing the data augmentation and data scaling tools
used.

A. Classifier architecture
The two classifiers used in this work are composed of a

neural network with a sequential model and a dense con-
nection, that is, the neurons that make up each layer of the
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neural network are connected with all the neurons of the next
layer. Both classifiers solve a Supervised Learning problem
considering limited labelled data. The neural network based
classification models have been trained considering a binary
crossentropy loss function with a learning rate of 0.001. Ta-
ble II details the structure of both neural networks identifying
the number of layers, neurons, training parameters and the
activation function used. For a more detailed explanation about
the neural networks hyperparameters reader is referred to [13].

TABLE II
NEURAL NETWORK STRUCTURE

Layer Output shape Training params Activ. func.
1 128 7424 ReLu
2 256 33024 ReLu
3 128 32896 ReLu

4 (BNFD) 1 129 Sigmoid
4 (BNFL) 12 129 Sigmoid

Note that both neural networks, either for the BNFD or
BNFL problem, have the same structure, only having a differ-
ence in the last layer due to the type of classifier used. While
in the case of the BNFD problem, the classifier is binary with
one output (probability of breakage), in the case of the BNFL
problem, the classifier is multi-class and presents a probability
for the breakage of each network segment. In the case of the
network studied in this work, there are 12 segments as shown
in Fig 3.

It is important to note that different neural network struc-
tures have been considered by modifying their hyperparame-
ters: number of layers, number of neurons, activation func-
tions, etc. Similarly, the networks have been trained with
different loss functions and learning rate values. Among all
the results obtained, the best performance has been achieved
with the ones presented in this section.

B. Dataset enhancement

The training of neural networks depends on data qual-
ity. This section covers data preprocessing techniques for
extending and modifying datasets to improve the classifier
performance with the addressed problems. Starting with the
input data described in the previous section (voltage and power
measurements at different network nodes), two strategies will
be employed: data augmentation to expand the training dataset
and data scaling to enhance classifier performance.

Data augmentation consists of expanding the initial dataset
by generating altered instances from the original data. Its main
purpose is to allow effective training when the input dataset
is small, however, it is considered also a prudent approach
for mitigating overfitting or optimizing model performance.
In addressing this problem, efforts have been made during the
data generation process to create a training dataset that closely
resembles data typically accessible from a real network. This
has resulted in training datasets where the majority class
represents the absence of neutral breakage. The scarcity of
scenarios involving failures may consequently result in a

reduced ability to accurately detect these failures. To address
this issue, a set of new synthetic data for the minority classes
(instances with neutral breakage) has been generated. For this
purpose, all the instances of the minority class of the dataset
have been taken in order to subsequently apply a random
uniform noise to each of the measurements for each instance,
obtaining new synthetic instances that extend the base case
dataset.

Once the training dataset has been extended based on the
data augmentation method, all the information included in
the dataset must be scaled. The data scaling method consists
in adjusting the input values of the dataset to be within
a specific range. The main benefits of scaling the datasets
information are [14]: (i) stability is improved during the
training process since all the information in the dataset and
its optimality gradients take values on the same scale; (ii)
numerical problems such as overflows that can arise when
working with data with different scales are avoided; (iii) data
scaling allows better compatibility with activation functions;
and (iv) when features are on comparable scales, the neural
network can learn patterns and relationships more effectively.
Thus, a MinMaxScaler has been applied to all the datasets
gathered, transforming all the dataset features within the range
[0, 1].

V. METHOD PERFORMANCE

This section presents the results obtained after applying the
proposed methodology to the network under study. For this
purpose, multiple training of the classifiers have been carried
out, taking into account the datasets presented in Section III-C
and the neural network structures defined in Table II. This
section first presents the metrics used to objectively evaluate
the quality of the results obtained. After that, the results of
the NBFD problem are analyzed and, finally, those obtained
for the NBFL problem. A comparative analysis has not been
performed because previous equivalent works based on the
use of artificial neural networks [8] do not provide details on
the proposed solutions that would allow their implementation.
All simulations have been executed in a personal computer,
with a 2.24 GHz AMD 16-Core Processor and 64 GB RAM,
using OpenDSS to generate the dataset and Python with the
artificial intelligence library TensorFlow to train and evaluate
the developed neural networks.

A. Performance metrics and evaluation procedure

To evaluate the performance of the classifiers a second
dataset was generated, namely testing dataset. The same
procedure used in the case of the training dataset detailed in
Section III-C has been followed. This dataset contains new
scenarios that differ from those included in the training dataset.
In this way, it is possible to evaluate with sufficient certainty
the quality of the classifiers outputs. It is important to note
that this dataset has also been preprocessed with data scaling,
but unlike the training dataset, no data augmentation strategy
has been applied to it, as it does not make sense to apply it
in this case.
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To evaluate the results in the case of the BNFD problem,
there are four possible cases. If the classifier has been fed with
input data from a scenario with neutral breakage, it can either
identify the breakage (TP: True Positive) or fail to identify it
(FN: False Negative). If, on the other hand, it has been fed
with input data from a scenario without a neutral breakage,
it can either succeed (TN: True Negative) or identify a non-
existent breakage (FP: False Positive). Thus the accuracy and
the precission of the classifier can be defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
,

Precision =
TP

TP + FP
.

Note how the accuracy shows the success of the classifier in
either identifying a break or confirming the good condition of
the network, with respect to the total dataset. On the contrary,
the precision only evaluates the correct neutral break iden-
tification with respect to all the neutral break identifications
triggered by the classifier.

On the other hand, in the case of the BNFL problem, only
the precision term will be used to quantify the number of times
the classifier correctly identifies the line section in which the
fault occurred (CP: Correct Predictions), with respect to the
total number of cases, i.e AP (All Predictions):

Precision =
CP
AP

.

Note that in this case the classifier only acts when it is sure
that there is a neutral breakage in the network.

B. BNFD problem results

The results obtained in the BNFD problem are presented in
the Tables III and IV, which shows, respectively, the accuracy
and precision for the classifiers generated from the different
training datasets. As can be seen, in the case of the accuracy,
the results remain practically constant being slightly better for
larger training datasets and failure rates, always performing
above 85%. Nevertheless, when evaluating precision results
(a metric focused on measuring the effectiveness in predicting
true positives, i.e. broken neutral fault), the results of Table IV
are highly sensitive to the size of the training datasets and
the fault ratio. Additionally to these results, Table V shows
the time spent in training the model for each data availabil-
ity context evaluated. As can be observed, the smaller the
original data set, the longer the computation times, which is
reasonable since it is necessary to generate more synthetic
scenarios to reinforce learning. Nevertheless, the values here
presented evince the scalability of the methodology in terms
of computational requirements. An illustrative representation
of these metrics are presented in Fig. 4.

In view of the results, several conclusions can be drawn.
Firstly, it is logical that better accuracy values than preci-
sion values are obtained, since the dataset used for classifier
training comprises more situations in which the neutral wire
remains intact and is therefore better suited to identify these
sitiuations rather than the other ones. Second, when analyzing

TABLE III
BNFD PROBLEM CLASSIFIER ACCURACY.

Rate 2.0 y 1.5 y 1.0 y 0.5 y 1.0 m 1.0 w
10% 94.2 93.0 92.0 90.5 84.8 89.4
9% 92.5 93.0 91.5 93.0 86.8 86.8
8% 94.2 93.2 92.8 87.0 87.2 88.2
7% 94.2 93.8 91.2 90.2 86.2 86.2
6% 93.0 92.0 92.8 86.2 87.0 87.2
5% 93.5 93.8 87.2 91.0 86.0 84.8
4% 92.5 93.0 91.5 87.0 85.5 87.2

TABLE IV
BNFD PROBLEM CLASSIFIER PRECISION.

Rate 2.0 y 1.5 y 1.0 y 0.5 y 1.0 m 1.0 w
10% 95.4 96.5 95.4 93.6 74.6 84.4
9% 94.2 91.9 89.0 92.5 78.6 78.6
8% 95.4 91.3 91.9 91.3 80.3 81.5
7% 96.0 94.2 88.4 93.1 79.2 78.0
6% 91.9 94.2 94.2 91.3 80.3 79.8
5% 96.5 94.8 83.8 92.5 76.9 73.4
4% 98.3 91.9 89.6 89.6 75.7 79.8

TABLE V
BNFD PROBLEM CLASSIFIER TRAINING SPENT TIME (MIN).

Rate 2.0 y 1.5 y 1.0 y 0.5 y 1.0 m 1.0 w
10% 1.406 2.429 3.117 3.484 3.569 3.607
9% 1.406 2.456 3.158 3.518 3.601 3.640
8% 1.422 2.470 3.162 3.536 3.617 3.655
7% 1.446 2.513 3.212 3.568 3.649 3.691
6% 1.390 2.430 3.114 3.467 3.548 3.586
5% 1.368 2.450 3.154 3.506 3.583 3.622
4% 1.380 2.408 3.121 3.489 3.570 3.607

the precision results, it is evident that the performance of the
classifier decreases with the size of the dataset. However, it
is worth noting that thanks to the use of data augmentation
technique, it has been possible to achieve precisions above
70% even for datasets with only one week of information,
and above 80% for datasets comprising half a year or longer.

C. BNFL problem results

In order to properly analyze the results, it is important
to remember that in this case the classifier output assigns a
probability of breakage to each section based on the input data.
Using this information, the user can consider that the breakage
has occurred in that section to which a higher probability
has been assigned, or set a threshold to that probability
below which the information provided by the classifier is not
considered consistent. For example, if the classifier identifies
that the break has occurred in a particular section of the
network with a probability of the 90 %, it seems to be quite
consistent, however, if the maximum probability assigned to a
section is 10 % it seems that the classifier has failed to identify
the location of the break with certainty.

In this problem, given its complexity, we have chosen to
train the classifier only with datasets with a 10 % presence
of neutral conductor breakage. Based on that information, the
results obtained are the ones plotted in Fig. 5 (not setting any
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Fig. 5. BNFL precison.

threshold value and choosing that section of the network to
which the classifier assigns a higher probability of breakage).
Note that in this case, unlike the BNFD problem, the obtained
precisions are much lower, even more so when small datasets
are considered. For training data with an acquisition time of
less than one year, the results obtained are rather weak, with
detection rates of no more than 50 %, and therefore their use in
this type of problem is discarded. However, when the classifier
is trained on data from more than one year, the probabilities of
correctly detecting the network fault increase to rates nearly
80%, which are quite effective values.

Next, we choose to analyze the behavior of the classifier that
has achieved the best performance, i.e. the one trained with
a dataset collected from two years and with an occurrence

of defects in the 10% of the scenarios. Table VI shows the
precision obtained for the classifier when different thresholds
are set on the ouput returned by the classifier, i.e. considering
inconsistent those responses of the classifier in which no
section of the network is assigned a breakage probability
higher than the one set by the threshold. It has been confirmed
that, although there would be some cases in the testing dataset
for which the proposed solution could not return a conclusive
location, it is possible to improve the performance of the
classification model by being more rigorous in determining
that a broken neutral fault has been located.

TABLE VI
BNFL PRECISION WITH RESPECT TO THE CHOSEN THRESHOLD.

Threshold None 0.5 0.6 0.8 0.9 0.95 0.99
Precision 75.0 77.7 78.2 79.0 81.5 84.6 85.6

Finally, Fig. 6 shows the confusion matrix of the evaluated
classifier (the one trained with two years of data and a fault rate
of the 10%). A confusion matrix is a compact representation of
the performance of a classification model. In the specific case
presented in this work, each row represents each of the line
sections in which a neutral breakage has occurred (according
to the testing dataset) and each column the prediction made
by the classifier for each case. Each cell shows the percentage
of times a break occurred in the corresponding row section
and the classifier concluded that the breakage occurred in
the corresponding column section. Thus, if the matrix were
an identity matrix, the classifier would have been correct
about the location of the breakage for all cases. Off-diagonal
elements are defined as false positives, i.e. identification of
breakages in erroneous sections. In view of the results, it can
be concluded that the classifier is correct in most cases and,
in case of misidentifications of the fault location, it is usually
confused with line segments adjacent to the fault, perfectly
adapting to the requirements imposed. This would respond to
the behavior reflected in 5 where very high accuracy values
would not be achieved because, on some occasions, faults are
assigned to the adjacent segment.

VI. CONCLUSIONS

This work has presented a strategy for the detection and
location of neutral breaks in low voltage electrical networks.
Thanks to the use of data-based classification models and
artificial intelligence techniques it is possible to identify and
locate these defects, facilitating the repair work of the distri-
bution company and avoiding major problems in the safety
and equipment of consumers.

For this purpose, the work has presented two classifiers
based on neural networks that solve two specific problems: the
identification of neutral breakages and their localization. The
results obtained in simulation have been evaluated for different
training datasets with different sizes and defect rates presence
in data. The construction of these datasets has been brought
as close as possible to reality by considering that most of the
instances are taken when there is not fault in the network.
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R1-R2 R2-R3 R3-R4 R4-R6 R6-R8 R8-R9 R9-R10 R3-R11 R4-R15 R6-R16 R9-R17 R10-R18

R1-R2

R2-R3

R3-R4

R4-R6

R6-R8

R8-R9

R9-R10

R3-R11

R4-R15

R6-R16

R9-R17

R10-R18

0.500 0.450 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.000

0.467 0.533 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.053 0.895 0.000 0.000 0.000 0.000 0.000 0.053 0.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.545 0.364 0.000 0.000 0.000 0.000 0.000 0.091

0.000 0.000 0.000 0.000 0.750 0.250 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.400 0.000 0.000 0.000 0.000 0.600

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.933 0.067 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.333 0.056 0.000 0.000 0.000 0.611

Fig. 6. BNFL confusion matrix.

The results obtained are quite promising, reaching an ac-
curacy of more than 90 % in the identification of defects.
Likewise, defect localization is achieved with an accuracy
of over 80 %. Moreover, when the classifier establishes an
erroneous location, the defect usually occurs in segments
adjacent to the identified one. It should be noted that the
detection and localization of the defect is performed with
limited data from a specific time instant of the network status.
Therefore, if the evaluation of the defects is considered with
temporal data of days or weeks, the results would be even
more conclusive and probably would improve the results here
obtained. In addition, input data considered are electrical
magnitudes accessible in current LV networks: active and
reactive power and voltage magnitudes collected by smart
meters and voltage magnitude in secondary substation. This
gives the solution a strong practical feature.

Finally, the application of this method to a real network
with data acquired directly from smart meters is considered as
a future line of work. For this kind of real cases, model-based
data augmentation, instead of purely data-based as is the case
here, is expected to be promising in improving the dataset,
after demonstrating throughout this work the effectiveness of
applying an extension on the dataset.
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