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Abstract—Recently, online feedback optimization (OFO)
emerges as a promising approach for real-time distribution
grid management. OFO offers several advantages, including not
requiring precise grid models or real-time load metering and
demonstrating robustness against inaccurate problem data. How-
ever, one important limitation is that OFO does not consider the
intertemporal relationships and short-term planning capabilities
of assets, thus not harnessing the full potential of a variety
of distributed energy resources (DER) such as batteries and
electric vehicles. To address this limitation, this paper proposes
a multi-timescale coordinated control framework. In the slower
timescale, local optimization problems are solved to provide
real-time OFO controllers with reference setpoints. The overall
approach thereby maintains minimal model, computation, and
communication requirements while enforcing grid limits. Case
studies based on a 96-bus unbalanced low-voltage grid with a
high DER penetration and second-scale data demonstrate its
effectiveness and solution quality benchmarked with a centralized
optimal power flow approach.

Index Terms—Distribution grid management, local optimiza-
tion, multiple timescales, online feedback optimization, primal-
dual gradient projection

I. INTRODUCTION

The proliferation of distributed energy resources (DER)
such as photovoltaics (PV), electric vehicles (EV), and battery
storage in distribution grids is expected to cause frequent
voltage and congestion issues. Before turning to costly and
time-consuming grid expansion, it is imperative to fully exploit
flexibility from these DER to meet distribution grid limits
while minimizing the impact on end-users. To achieve this,
an efficient and effective DER coordination mechanism is
essential. While optimal power flow (OPF) offers a flexible
modeling framework, its applicability in distribution grids
is considered limited in the real-time operational context.
Constructing and solving OPF problems requires precise distri-
bution grid models, load metering of individual end-users, and
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sufficient computational resources, which can all be difficult
to acquire for distribution system operators (DSO).

To circumvent these difficulties, recent works in [1]–[12]
proposed to integrate real-time voltage and power flow mea-
surements into online optimization schemes such as gradient
projection, leading to online feedback optimization (OFO);
see also our earlier survey paper [13]. OFO presents sev-
eral merits. First, it does not require precise grid models
which are largely unavailable to DSO [14]. What is re-
quired are input-output sensitivities such as power-to-voltage
sensitivities. Recent works have developed model-free OFO
by introducing data-driven methods to estimate the input-
output sensitivities online [15]–[17] or resorting to zeroth-
order optimization [18]–[20]. Furthermore, it does not need
load metering which is often unavailable either due to privacy
concerns or regulatory restrictions. Finally, OFO demonstrates
robustness to inaccurate problem data such as generation
and load uncertainties, measurement noises, and intermittent
and delayed communication [21], [22]. These characteristics
render it particularly suitable for real-time distribution grid
management; see [23]–[25] for some experimental works.

Despite its various benefits, one important limitation of OFO
is that it is based on real-time measurements and immediate
response. Therefore, it does not consider the intertemporal
relationships of assets. So far, this has limited its application
primarily to reactive power or PV control. The study in [5]
also considered EV and battery storage, where EV follows
their maximum charging rates and batteries are minimally
used (i.e. following zero setpoints). This fails to utilize the
full potential of batteries. For example, batteries can be strate-
gically planned to charge over the day to supply EV demand
in peak hours, or discharge over the night to accommodate
surplus PV generation. Augmenting OFO controllers with such
short-term planning capabilities will create new possibilities
for controlling a variety of DER.

The research question this paper aims to address is how
we can effectively leverage OFO to control DER with in-
tertemporal relationships to fully utilize their capabilities. To
evaluate the effectiveness, the impact on end-users such as
generation curtailment and load shedding and the contribution
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to grid constraint satisfaction are considered. To this end, this
paper proposes a multi-timescale coordinated DER control
framework. In the slower timescale, such as day-ahead or
near real time on a rolling basis, DER scheduling within each
household is locally optimized with the objective to smoothen
individual net load profiles, see e.g. [26], [27]. This is expected
to relieve network congestion. In real time, OFO controllers
are deployed. To coordinate the different timescales, the opti-
mized scheduling decisions in the slower timescale are used as
reference setpoints for real-time OFO controllers. The strategic
choice of local optimization maintains minimum grid model,
computation, and communication requirements. Furthermore,
OFO complements local optimization by ensuring that voltage
and loading limits are kept in real-time grid operation.

Multi-timescale coordinated control approaches have al-
ready been explored in the literature. For instance, [28], [29]
studied voltage/var control across various timescales incor-
porating local droop control in real time. Nevertheless, due
to the lack of coordination, droop controllers cannot pursue
grid-level objectives and do not guarantee the desired voltage
regulation [7]. In [11], forecast-based optimization of on-load
tap changers and OFO-based reactive power control were
coordinated for voltage regulation. While their work also
explored OFO in a multi-timescale context, different assets
are dispatched across different timescales. Unlike our focus
on extending the capability of OFO to manage DER with
intertemporal relationships, OFO in their case only controls
reactive power from PV, which is temporally decoupled. To
summarize, our main contributions are the following:

• We propose a multi-timescale coordinated approach for
OFO to control DER with intertemporal dependencies
such as batteries and EV to harness their full potential.
Optimization problems at the slower timescale are solved
to provide OFO controllers with reference setpoints.

• With local optimization employed at the slower timescale,
the overall approach maintains minimal grid model, com-
putation, and communication requirements while enforc-
ing distribution grid limits.

The remainder of this paper is organized as follows:
Section II describes the coordinated control architecture across
multiple timescales and local optimization. Section III presents
the online feedback optimization approach. Case studies are
reported in Section IV, while Section V concludes this study.

II. MULTI-TIMESCALE COORDINATED CONTROL

A. Multi-timescale coordination framework

To address the research question, we propose a multi-
timescale coordinated control framework. Fig. 1 illustrates
its communication process. In the slower timescale, local
optimization problems, which provide real-time controllers
with reference setpoints, are solved without any communi-
cation requirement. In the faster timescale, OFO controllers,
which are enabled by inverter-interfaced fast-reacting DER
such as PV, EV, and batteries, enforce distribution grid
limits while attempting to track the given setpoints using

the gather-and-broadcast communication architecture [18]. In
this work, we employ an OFO approach using the primal-
dual gradient projection (PDGP) algorithm [4], [5], which
features distributed implementation and light communication
requirements. Note that the main contribution of this work, i.e.
combining local and online feedback optimization, provides
a general framework. While local optimization can include
various technical and economic optimization schemes, OFO
can also be implemented with different algorithms and to
address different network issues [13].

B. Local optimization

In this section, we present a standard model of batteries
and our local optimization scheme. Let T = {1, 2, · · · , T}
represent time steps in the local optimization horizon and
∆t each time step length. Consider a battery storage unit,
at each time step t ∈ T , let pch,t and pdis,t denote its
charging and discharging power, respectively. Introduce δt as a
binary variable regulating the charging and discharging status,
and let Et represent its energy content and Est its energy
capacity. Define Sst as its power rating, and ηch and ηdis as
the charging and discharging efficiencies, respectively. Finally,
consider SoC0 as the initial state of charge (SoC), and SoC
and SoC as its lower and upper limits.

We present an operational model for batteries in (1). Con-
straints (1a) and (1b) ensure that batteries do not charge and
discharge simultaneously. Equation (1c) models the energy
content, considering charging and discharging losses. Finally,
SoC limits are imposed in (1d) and (1e).

δt ∈ {0, 1},∀t ∈ T , (1a)

0 ≤ pch,t ≤ δtSst, 0 ≤ pdis,t ≤ (1− δt)Sst,∀t ∈ T , (1b)

Et = Et−1 + (ηchpch,t − pdis,t

ηdis
)∆t, ∀t ∈ T , (1c)

E0 = ET = SoC0Est, (1d)

SoCEst ≤ Et ≤ SoCEst,∀t ∈ T . (1e)

Given local generation and demand profiles pg,t and pd,t

respectively, the local optimization problem can be formulated
as (2). The objective function can be chosen as the distance
between the net load p and a desired zero load 0 using any
vector norm f(p) = ∥p− 0∥. A convenient modeling choice
is the Euclidean norm.

min
pch,t,pdis,t

f(
[
pch,t − pdis,t + pd,t − pg,t,∀t ∈ T

]⊺︸ ︷︷ ︸
Net load p

) (2)

s. t. Battery model (1).

Remark 1: While the multi-period OPF approach can
also be used which conducts network-level optimization, it
encounters several challenges when applied to distribution
grids. First, it relies on precise knowledge of distribution
grid topologies. Second, it necessitates communication of load
data at individual households, which also introduces privacy
concerns. Finally, large grids pose scalability issues.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – June 7, 2024



Fig. 1. Multi-timescale coordinated control framework.

Fig. 2. Block diagram of a closed-loop feedback system, where x represents
system input, y represents system output, ω represents system disturbance,
and h maps system input and disturbance to system output. Figure adapted
from [25]. See [25] for comparison to a model-based feedforward system.

Remark 2: In real time, OFO controllers dispatch PV,
EV, and batteries. In the local planning stage, we focus on
batteries in this work. For EV, our primary objective is to
ensure the fulfillment of their energy demand. Therefore, their
maximum charging rates are used as reference setpoints for
OFO in real time. In the local optimization stage, they are
regarded as loads operating at an uncontrolled charging mode
(charging at their maximum rates when plugged in). In a
dynamic pricing context, EV might be charged with a cost
minimization objective. Accordingly, they can be integrated
into a profit-driven local planning to provide OFO controllers
with economically favorable reference setpoints.

III. ONLINE FEEDBACK OPTIMIZATION FRAMEWORK

In this section, we present the OFO framework based on the
PDGP algorithm, which features distributed implementation.
Notations, a real-time optimization problem, and the PDGP
algorithm which is designed to solve this problem in a
feedback-based manner are presented below.

A. Notation

Consider a distribution grid with N + 1 buses collected in
the set N = {0, 1, · · · , N}, and cables represented by the set
E = {(i, j)} ⊂ N×N . Denote a cable in E by an ordered pair
(i, j) if it points from bus i to bus j. Define N+ = N\{0}.
Bus 0 is the substation bus. Use Φ = {a, b, c} to denote the
three phases, and use ϕ or ψ to refer to any one of them. Since
the algorithm is based on real-time information, we drop the
time index t in the following notations. For each bus j ∈ N , let

vj,ϕ be the magnitude of the complex voltage phasor for phase
ϕ, and let v and v be the lower and upper limits, respectively.
Bus 0 has a fixed voltage magnitude of v0. For each cable
(i, j) ∈ E , denote by Pij,ϕ and Qij,ϕ the active and reactive
power flows from bus i to j for phase ϕ, and by Scableij,ϕ its
rated capacity. Denote by rij,ϕψ and xij,ϕψ the resistance and
reactance between phase ϕ of bus i and phase ψ of bus j, and
Strafoϕ the transformer capacity for phase ϕ.

For each bus j ∈ N and phase ϕ ∈ Φ, let pj,ϕ and
qj,ϕ be the net active and reactive power injections for con-
trollable assets, respectively. Let Spvj,ϕ and p̂pvj,ϕ be the PV
inverter capacity and maximum PV generation. Let Sevj,ϕ be
the maximum charging rate and δevj,ϕ represents if an EV
is plugged in. Let ∆Eevj,ϕ be the remaining energy demand
and δt hereafter be the time length of an OFO iteration. Let
p̂chj,ϕ = (pch,t)∗−(pdis,t)∗ be the planned battery charging rate
computed in the local optimization stage, where (pch,t)∗ and
(pdis,t)∗ are the solution to (2) for the battery located at phase
ϕ of bus j for the corresponding time step t.

B. Preliminaries

Fundamentally, OFO provides a real-time feedback-based
solution approach of the optimization problem (3); see Fig. 2
for a sketch of a closed-loop feedback system. The decision
variables pj,ϕ, qj,ϕ are the nodal net active and reactive power
injections respectively, realized by DER such as PV, EV,
and batteries owned by individual end-users connected to the
specific node. The objective function (3a) minimizes active
power deviations from the reference setpoints p̂j,ϕ and reactive
power use, where ξ is a sufficiently small weighting factor
to prioritize reactive power use. Specifically, p̂j,ϕ = p̂pvj,ϕ −
δevSevj,ϕ − p̂chj,ϕ represents the reference setpoint for nodal net
active power injection.

min g = min
pj,ϕ,qj,ϕ

∑
j∈N

∑
ϕ∈Φ

[
(pj,ϕ − p̂j,ϕ)2 + ξ(qj,ϕ)

2
]
, (3a)

s. t. [pj,ϕ, qj,ϕ]⊺ ∈ Xj,ϕ,∀j ∈ N ,∀ϕ ∈ Φ, (3b)
v ≤ vj,ϕ ≤ v : µj,ϕ, λj,ϕ,∀j ∈ N+,∀ϕ ∈ Φ, (3c)
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√
P 2
ij,ϕ +Q2

ij,ϕ

Scableij,ϕ

≤ 1 : ρij,ϕ,∀(i, j) ∈ E ,∀ϕ ∈ Φ, (3d)√
(P trafoϕ )2 + (Qtrafoϕ )2

Strafoϕ

≤ 1 : πϕ,∀ϕ ∈ Φ. (3e)

The feasibility of nodal net power injections is enforced
in (3b), where Xj,ϕ is defined in (4). Finally, (3c)-(3e)
impose limits on bus voltages and loadings of cables and
the transformer, respectively, where µj,ϕ, λj,ϕ, ρij,ϕ, and πϕ
represent the respective dual variables. Note that the voltages
and loadings are dependent, through an implicit function, on
the decision variables pj,ϕ and qj,ϕ and non-controllable loads.

Xj,ϕ =
{[
p, q

]⊺
: p = ppv − pev − pch, q = qpv − qev − qch,

(ppv)2 + (qpv)2 ≤ (Spvj,ϕ)
2, 0 ≤ ppv ≤ p̂pvj,ϕ,

(pev)2 + (qev)2 ≤ (Sevj,ϕ)
2, 0 ≤ pev ≤ δevSevj,ϕ, (4)

pev ≤
∆Eevj,ϕ
∆t

, (pch)2 + (qch)2 ≤ (Sstj,ϕ)
2

ηdis
SoCEstj,ϕ − Et−1

j,ϕ

∆t
≤ pch ≤

SoCEstj,ϕ − Et−1
j,ϕ

ηch∆t

}
.

Let λ = [λ1,a, λ1,b, λ1,c, · · · , λN,a, λN,b, λN,c]⊺ collect the
dual variables λj,ϕ for each bus j ∈ N+ and phase ϕ ∈ Φ.
Likewise, let µ, ρ, and π collect the respective dual variables,
and let p and q collect the nodal net active and reactive power
injections. Define v = [v1,a, v1,b, v1,c, · · · , vN,a, vN,b, vN,c]⊺
which collects bus voltages excluding the substation bus.
Define 1 = [1, 1, · · · , 1]⊺ as a vector of ones with a proper
dimension. The primal-dual gradient projection algorithm it-
erates between gradient projection steps for primal and dual
variables for the saddle-point problem (5).

max
λ≥0,µ≥0,
ρ≥0,π≥0

{
min

(pj,ϕ,qj,ϕ)∈Xj,ϕ,
∀ϕ∈Φ,∀j∈N

L(p,q,λ,µ,ρ,π)
}
, (5)

where the Lagrangian function is defined in (6). While several
papers such as [4], [5] leveraged primal and dual regularization
terms to establish convergence results, we found in our simu-
lations that the algorithm works well without regularization.

L(p,q,λ,µ,ρ,π) = g + λ⊺(v − v1)− µ⊺(v − v1)

+
∑

(i,j)∈E,ϕ∈Φ

ρij,ϕ


√
P 2
ij,ϕ +Q2

ij,ϕ

Scableij,ϕ

− 1

 (6)

+
∑
ϕ∈Φ

πϕ


√
(P trafoϕ )2 + (Qtrafoϕ )2

Strafoϕ

− 1

 .

C. Primal-dual gradient projection (PDGP) algorithm

In this section, we present an implementation of OFO
based on the PDGP algorithm. While other algorithms such
as gradient projection are available, PDGP features distributed
calculations, which makes it attractive for distribution grids.
The algorithm is built upon a gather-and-broadcast communi-
cation architecture.

Let α > 0 with a proper superscript be the step size,
e.g., αλ for λ update. Let letters with a tilde symbol be
the corresponding measurements, e.g., ṽj,ϕ for the voltage
measurement for bus j and phase ϕ. Let [·]+ be the projection
operator onto the nonnegative orthant. At each time step
(iteration) k, the algorithm includes four steps:

Step 1: For each bus j ∈ N+ and phase ϕ ∈ Φ with a
voltage measurement unit (j, ϕ) ∈ M̃v ⊂ N × Φ, collect the
voltage measurement ṽkj,ϕ, update λj,ϕ and µj,ϕ locally, and
send the updated λk+1

j,ϕ and µk+1
j,ϕ to the DSO.

λk+1
j,ϕ ←

[
λkj,ϕ + αλ(ṽkj,ϕ − v)

]+
, (7a)

µk+1
j,ϕ ←

[
µkj,ϕ + αµ(v − ṽkj,ϕ)

]+
. (7b)

Step 2: For each cable of interest Ẽ ⊆ E and the transformer
and phase ϕ ∈ Φ, the DSO collects active and reactive power
flow measurements P̃ kij,ϕ, Q̃kij,ϕ, (P̃ trafoϕ )k, and (Q̃trafoϕ )k and

updates ρij,ϕ and πϕ, where S̃kij,ϕ =
√
(P̃ kij,ϕ)

2 + (Q̃kij,ϕ)
2,

(S̃trafoϕ )k =
√
((P̃ trafoϕ )k)2 + ((Q̃trafoϕ )k)2.

ρk+1
ij,ϕ ←

[
ρkij,ϕ + αρ

(
S̃kij,ϕ
Scableij,ϕ

− 1

)]+

, (8a)

πk+1
ϕ ←

[
πkϕ + απ

(
(S̃trafoϕ )k

Strafoϕ

− 1

)]+

. (8b)

Step 3: The DSO broadcasts the above dual variables and
power flow measurements of cables and the transformer.

Step 4: For each bus j ∈ N and phase ϕ ∈ Φ, update the
active and reactive power setpoints pj,ϕ and qj,ϕ locally.

ṗk+1
j,ϕ ← pkj,ϕ − α

{
(
∂g

∂pj,ϕ
)k

+
∑

(i,ψ)∈M̃v

[
(λk+1
i,ψ − µk+1

i,ψ )
∂vi,ψ
∂pj,ϕ

]

+
∑

(m,n)∈Ẽ,ψ∈Φ

[
ρk+1
mn,ψP̃

k
mn,ψ

S̃kmn,ψS
cable
mn,ψ

∂Pmn,ψ
∂pj,ϕ

]
(9a)

+
∑
ψ∈Φ

[
πk+1
ψ (P̃ trafoψ )k

(S̃trafoψ )kStrafoψ

∂P trafoψ

∂pj,ϕ

]}
,

q̇k+1
j,ϕ ← qkj,ϕ − α

{
(
∂g

∂qj,ϕ
)k

+
∑

(i,ψ)∈M̃v

[
(λk+1
i,ψ − µk+1

i,ψ )
∂vi,ψ
∂qj,ϕ

]

+
∑

(m,n)∈Ẽ,ψ∈Φ

[
ρk+1
mn,ψQ̃

k
mn,ψ

S̃kmn,ψS
cable
mn,ψ

∂Qmn,ψ
∂qj,ϕ

]
(9b)

+
∑
ψ∈Φ

[
πk+1
ψ (Q̃trafoψ )k

(S̃trafoψ )kStrafoψ

∂Qtrafoψ

∂qj,ϕ

]}
,

[pk+1
j,ϕ ,q

k+1
j,ϕ ]← projXk

j,ϕ
[ṗk+1
j,ϕ , q̇

k+1
j,ϕ ]. (9c)
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To finalize the gradient computations in (9a) and (9b), we
must define the partial derivatives for voltages and power
flows. To achieve this, we leverage the linearized power
flow relations in (10), which are established assuming nearly
balanced voltages and lossless cables [30], [31].

v = v01+R(pg − pc) +X(qg − qc), (10a)

Pij,ϕ =
∑
k∈β(j)

(pck,ϕ − pgk,ϕ),∀(i, j) ∈ E ,∀ϕ ∈ Φ, (10b)

Qij,ϕ =
∑
k∈β(j)

(qck,ϕ − qgk,ϕ),∀(i, j) ∈ E ,∀ϕ ∈ Φ. (10c)

Equation (10a) presents a linear relation between bus volt-
ages and power injections and consumption pg, pc, qg, and
qc, where R = [Rij ]3N×3N and X = [Xij ]3N×3N are the
voltage sensitivity matrices. These matrices can be constructed
following [30], [32]. Equations (10b) and (10c) indicate that
the power flows through a cable (likewise the transformer)
are calculated as the summation of net consumption of all
downstream buses from the same phase, where β(j) is defined
as all descendants of bus j including itself [30]. The partial
derivatives can now be calculated as:

∂vi,ψ
∂pj,ϕ

= Riψ,jϕ,
∂vi,ψ
∂qj,ϕ

= Xiψ,jϕ, (11a)

∂Pmn,ψ
∂pj,ϕ

=
∂Qmn,ψ
∂qj,ϕ

=

{
−1 if j ∈ β(n)&ψ = ϕ,

0 otherwise,
(11b)

∂Ptrafo,ψ
∂pj,ϕ

=
∂Qtrafo,ψ
∂qj,ϕ

=

{
−1 if ψ = ϕ,

0 otherwise.
(11c)

OFO algorithms have demonstrated robustness to such model
approximation errors [21]–[23] due to its feedback-based
implementation. Finally, the projection step (9c) ensures the
feasibility of the active and reactive power setpoints.

Remark 3: Instead of relying on the grid model (10) to
compute voltages and power flows, the algorithm incorporates
measurements of voltages, as well as active and reactive power
flows at cables of interest and the substation transformer as
part of its feedback system. This creates a closed control
loop, eliminating the necessity for precise distribution grid
topologies and real-time data of non-controllable loads. This
enhances robustness facing inaccurate problem data such as
generation and load uncertainties, modeling errors, and inter-
mittent and delayed communication.

Remark 4: The algorithm exhibits low computation and
communication requirements, making it scalable to large grids.
The gradient projection steps are performed locally and in
parallel, including only basic arithmetic operators and small-
scale convex quadratic programs. During each iteration, there
are two communication rounds: initially, each bus sends up-
dated Lagrangian multipliers to the DSO, followed by the
DSO broadcasting all Lagrangian multipliers and power flow
measurements for a few cables of interest and the transformer.
Notably, the algorithm does not require user-specific genera-
tion and load data.

06:00 09:00 12:00 15:00 18:00 21:00 24:00 03:00 06:00

−10
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Fig. 3. Example PV generation, load, and EV profiles for two households
#1 and #2. Positive values represent power injections, while negative values
represent consumption.

Remark 5: The algorithm relies on input-output sensitivities
to determine the optimal power setpoints, which reflects how
voltages and power flows react to nodal power injections. This
study leverages the linearized unbalanced power flow relations
to compute the sensitivities offline, which works only for radial
grids. By properly constructing sensitivity matrices through for
example perturbations, as outlined in [33], the algorithm can
also be applied effectively to meshed grids.

Remark 6: The gradient projection step (9c) involves
solving a small-scale quadratic program locally, which outputs
unique net nodal active and reactive power setpoints. However,
this can be realized by the local PV, EV, and battery system
in different ways. To obtain the final active and reactive
power setpoints for individual DER, a new local small-scale
optimization problem (12) is solved. The constraint ensures
that the operational limits of individual DER are satisfied and
the net nodal active and reactive power setpoints from (9c)
are followed exactly. The objective function prioritizes PV
energy harvest and EV demand fulfillment over discharging
and charging of batteries respectively.

max
ppv,qpv,pev,qev,pch,qch

ppv + pev (12)

s. t. [pk+1
j,ϕ , q

k+1
j,ϕ ] ∈ X kj,ϕ.

IV. CASE STUDY

A. Case description

To evaluate the performance of the proposed multi-timescale
coordinated control strategy, simulation studies are conducted
on a 96-bus unbalanced low-voltage distribution grid with 6-
second resolution generation and load data. The local opti-
mization at the slower timescale is implemented with a 15-
minute resolution. A 100% penetration scenario is studied for
the three DER including PV, EV, and batteries. The distribution
grid is adopted from Simbench [34] with a radial topology
shown in Fig. 1. The substation transformer has a rated
capability of 400 kVA. All households are assumed to evenly
spread over different phases. PV capacities are uniformly
generated from 3 to 10 kW. PV profiles are simulated using
the HelioClim-3 dataset [35] with a 1-minute resolution. The
power ratings, energy demand, arrival, and departure data
of EV are sampled with distributions from ElaadNL Open
Data [36] for a weekday. The energy capacities of batteries
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(a) Voltages w/o storage (b) Voltages w/ storage

(c) Loadings w/o storage (d) Loadings w/ storage
Fig. 4. Voltages and transformer loadings with/without battery storage.

(with a charging rate of 0.5C) are assumed to meet base load
demand and 30% of the EV demand. The initial, minimum,
and maximum SoC are taken as 0.2, 0.2, and 0.8, respectively.
The charging and discharging efficiencies are both 98%.
Finally, base load profiles are obtained by aggregating 1-
second resolution profiles from the ECO dataset [37]. Fig. 3
visualizes two example PV, load, and EV profiles, showing
their variability. High PV generation and EV charging demand
can result in violated voltage limits and overloading of cables
and transformers.

The voltage limits v and v are taken as 0.95 and 1.05 pu,
respectively. The weighing factor ξ is chosen sufficiently small
as 0.01. The step sizes for the PDGP algorithm are chosen
with the trial and error strategy proposed in [9] as: α = 0.5,
αλ = αµ = 1 × 103, and αρ = απ = 100. It should be
noted that based on our experience, the algorithm works with
a large range of those step sizes. An OFO iteration runs every
6 seconds, indicating that at each generation and load data
point with a 6-second resolution, OFO runs once. Finally, the
simulation runs from 6:00 am til 6:00 am the next day.

All simulations are performed on a standard PC with an
Intel i7-9750H processor and a 16 GB RAM. Power flow
calculations are implemented with a high-performance library
PowerGridModel [38], [39]. Gurobi 10.0.1 [40] is used to
solve optimization programs. The overall series implemen-
tation of the online feedback optimization framework takes
around 28 minutes for a total of 14400 iterations, averaging
less than 0.12 seconds for every iteration. This demonstrates
its computational efficiency. In real-world implementation, the
communication infrastructure and actuation speed of DER
inverters can pose bottlenecks on the OFO update frequency.

B. Results

1) Local optimization: Fig. 4 shows bus voltages and trans-
former loading percentages with/without locally optimized
battery storage profiles. In local optimization, batteries bridge
PV generation and EV demand. Batteries store local surplus
PV generation and use the stored energy to supply EV charg-
ing need. As expected, this significantly reduces voltage issues

TABLE I
COMPARISON OF PV HARVEST AND EV CHARGING BETWEEN OUR

PROPOSED APPROACH AND OPF. ALL UNITS IN KWH.

PV harvest PV curtailed EV charge EV unserved
Proposed 4562.4 42.1 1783.1 0.0
OPF 4543.4 61.1 1783.1 0.0

and transformer loadings. However, due to the limited battery
capacities, voltage issues and transformer overloading are not
entirely eliminated. This calls for real-time control to fully
resolve voltage and congestion issues.

2) Real-time online feedback optimization: Given the refer-
ence setpoints computed in the local optimization stage, OFO
controllers provide fast DER control to regulate voltages and
asset loadings in real time. Fig. 5 shows voltages, asset load-
ings, and various DER profiles using OFO controllers. While
temporally exceeded due to the corrective nature of OFO,
voltage and asset loading limits are successfully enforced.
Figs. 5d-5f show that batteries charge and discharge to absorb
surplus PV generation and supply EV demand, respectively.
When the energy capacities of batteries are reached, PV gener-
ation is noticeably curtailed to meet grid limits. The overshoots
in battery charge profiles are caused by the saturation of EV
demand. Once an EV is fully charged, it no longer draws
power. Nevertheless, it takes some time for the net nodal power
injection setpoints to increase (drawing less power), which
results in temporary charging of the batteries.

3) Benchmark with optimal power flow: To assess the
solution quality of the proposed strategy, a multi-period cen-
tralized OPF approach is used for benchmark purposes. We
introduce several assumptions to attain the tractability of the
centralized OPF problem. First, we assume 100% charging and
discharging efficiencies, eliminating the need for binary vari-
ables to prevent simultaneous charge and discharge. Second,
we use 15-minute resolution data with averaged generation
and demand values to manage the problem size. Note that
these two assumptions are also applied to obtain results of
OFO for a fair comparison. Finally, we leverage the linearized
power flow relations and assume accurate knowledge of grid
topology and generation and load profiles. The OPF model
is solved offline once to get results for all time steps during
the simulation horizon, representing a perfect-information case
for a model-based method. Since both approaches effectively
address voltage and congestion issues, we evaluate their
performance based on key indicators including the total PV
energy yield and the satisfaction of EV demand. Table I
shows that while both approaches result in negligible unserved
EV demand, our proposed approach leads to slightly more
PV energy harvest. Comparing Figs. 5a, 5c, and 6, we find
that our proposed approach utilizes existing grid capacities
more efficiently than OPF. By leveraging measurements as
feedback, OFO controllers can maximize the utilization of
grid capacities. In contrast, OPF, relying on approximate
grid models, results in voltage and asset loading headrooms.
To summarize, our proposed multi-timescale approach, while
not requiring precise distribution grid topologies or intrusive
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(a) Voltages (b) Cable loadings (c) Transformer loadings

(d) PV (e) EV (f) Batteries

(g) Net active power injections (h) Net reactive power injections (i) Battery SoC
Fig. 5. Grid states and DER profiles with real-time OFO controllers. Positive values represent power injections, while negative values represent consumption.
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Fig. 6. Grid states using centralized optimal power flow.

load metering of end-users, and having light computation and
communication requirements, demonstrates efficient utilization
of DER also with short-term planning capabilities.

V. CONCLUSION

In this study, we proposed a multi-timescale coordinated
strategy integrating local optimization and OFO for distribu-
tion grid management. Using reference setpoints computed
with local optimization, OFO controllers make an efficient use
of DER with short-term planning capabilities, which is demon-
strated with improved PV energy harvest and fully satisfied
EV demand. The overall approach does not require precise
grid topologies or intrusive load metering, has minimum
computation and communication requirements, and guarantees
compliance with grid limits. These characteristics make it
highly applicable to manage distribution grids.

While this paper advocated the use of local optimization
due to its light communication and computation requirements
and reduced privacy concerns, optimal power flow methods
remain a viable option for potentially better coordination of
various DER in the slower timescale with ideal grid con-
ditions: perfect knowledge of topology, accurate generation
and load forecast, and advanced communication infrastructure.
The slower timescale optimization can also be solved on a
rolling basis leveraging the most recent forecast. Furthermore,
these DER can be planned for economic benefits, which
might exacerbate congestion issues in local distribution grids.
OFO controllers can consequently be used to ensure grid
safety in real time while tracking economically favorable DER
setpoints, integrating markets and control.
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