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Abstract—This paper proposes a real-time distributed oper-
ational architecture to coordinate integrated transmission and
distribution systems (ITD). At the distribution system level, the
distribution system operator (DSO) calculates the aggregated
flexibility of all controllable devices by power-energy envelopes
and provides them to the transmission system operator (TSO).
At the transmission system level, a distributed nonlinear model
predictive control (NMPC) approach is proposed to coordinate the
economic dispatch of multiple TSOs, considering the aggregated
flexibility of all distribution systems. The subproblems of the
proposed approach are associated with different TSOs and
individual time periods. In addition, the aggregated flexibility
of controllable devices in distribution networks is encapsulated,
re-calculated, and communicated through the power-energy en-
velopes, facilitating a reduction in computational complexity and
eliminating redundant information exchanges between TSOs and
DSOs, thereby enhancing privacy and security. The framework’s
effectiveness and applicability in real-world scenarios are vali-
dated through simulated operational scenarios on a summer day
in Germany, highlighting its robustness in the face of significant
prediction mismatches due to severe weather conditions.

Index Terms—Data Preservation, Distributed Nonlinear Model
Predictive Control, Flexibility Aggregation, Integrated Transmis-
sion and Distribution Systems, Multiperiod AC Optimal Power
Flow.

I. INTRODUCTION

With the rapid adoption of distributed energy resources
(DERs) in distribution systems, the aggregated flexibility of
all these controllable devices can play an important role in
dispatch problems in transmission systems. It can improve the
operational efficiency of the overall power grid and enhance re-
liability when integrating increased levels of renewable energy
resources [1]. Hence, coordinating integrated transmission and
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distribution systems (ITD) becomes essential for efficiently
operating future power systems [2], [3].

Multiperiod dispatch problems for ITD systems usually
couple individual steady-state optimal power flow (OPF) op-
timization problems over multiple time periods [4]–[6]. The
coupling constraints include the generator ramping limits,
the model of distributed energy storage systems (ESS), and
other time-dependent constraints to consider the controllable
devices with time-variant properties. However, it is still a
challenge to solve a multiperiod AC optimal power flow
(MPOPF) for ITD systems. On the one hand, the AC OPF
is generally NP-hard [7], and the complexity of solving
an MPOPF is further magnified by the intercoupling of
subsequent time periods [5]. On the other hand, collecting
necessary and realistic data from multiple stakeholders (i.e.,
TSOs and DSOs), including grid topology, load profiles, and
other sensitive information regarding consumer behaviors, is
either not preferred or restricted by regulations [3]. To address
these challenges and achieve an efficient operation of the
overall ITD, recent research analyzed the determination of the
aggregated flexibility of the controllable devices in distribution
networks [8], [9]. The flexible dispatch region of a distribution
network is summarized in a time-coupled power-energy band,
taking into account the network topology [10] and operational
constraints. However, the proposed ITD framework does not
consider the coordination between multiple TSOs in a data-
preserving manner, and the proposed inner approximation is
computationally inefficient, requiring solving multiple mixed-
integer linear programming (MILP) problems iteratively.

To enable privacy preservation and improve computational
efficiency, distributed operation frameworks enable TSOs and
DSOs to operate independently and collaborate effectively
by sharing limited information with a subset of other oper-
ators [11]–[16]. These proposed distributed frameworks can
maintain data privacy and decision-making independence and
are based on distributed AC OPF [12], [17] and MPOPF
with receding horizon [18]. In addition to the aforementioned
distributed algorithms, ALADIN is proposed for generic non-
convex optimization problems with convergence guarantees
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in [19]. ALADIN-type algorithms have been successfully ap-
plied to solve the single period AC OPF for heterogeneous
power systems by a single-machine numerical simulation [15],
[20], [21], as well as in a geographically distributed environ-
ment [22]. However, these aforementioned studies either lack
a convergence guarantee or their scalability is limited by the
computational complexity, which so far hinders an application
to MPOPF in ITD systems.

In this paper, we propose an economic dispatch problem for
ITD systems over multiple periods and utilize an ALADIN-type
distributed NMPC to solve the optimization problem efficiently
while preserving data privacy. The major contributions of this
paper are summarized as follows:
1) We propose a novel real-time framework that combines the

flexibility aggregation method [1] and distributed optimiza-
tion [3] for coordinating the economic dispatch problem of
ITD systems. At the distribution system level, the DSO
computes the feasible dispatch region of all controllable
devices leveraging the LinDistFlow model [23]. This region
is communicated to the TSO. At the transmission system
level, considering the aggregated flexibility of distribution
systems, the TSOs solve the coordinated economic dispatch
problem using a distributed approach. The scheme of the
proposed operational architecture is shown in Fig. 1, as
inspired by the actual situation in Germany.

2) In contrast to our previous work [3], we develop an AL-
ADIN-type distributed NMPC approach for the multiperiod
coordination of ITD systems within the proposed real-time
framework. This approach is capable of decoupling the
large-scale dispatch problem associated with different sys-
tem operators and individual time periods. This particular
design distributes the computational complexity of MPOPF
over different stakeholders for computational affordability
while maintaining the privacy of relevant information.

3) We conduct a comprehensive simulation by using real-
world measurement data—including load profiles and solar
and wind outputs—from a summer day in Germany marked
by significant prediction discrepancies due to heavy rainfall,
sourced from the ENTSO-E Transparency Platform1 [24].
This simulation, involving over 100,000 state variables
divided into 400 subproblems at the transmission level,
underscores the proposed approach’s efficiency, scalability,
and practical relevance for TSO-DSO coordination.
The rest of this paper is organized as follows: Section II

presents the system model and problem formulation. Sec-
tion III introduces the proposed distributed algorithm with
implementation details. Section IV elaborates on numerical
results. Section V concludes this paper.

II. PROBLEM FORMULATION

This section presents a distributed framework for coordi-
nating ITD systems. As shown in Fig. 1, at the distribution
level, each DSO calculates its own feasible region taking into

1The data utilized in this paper is available online at the ENTSO-E
Transparency Platform: https://transparency.entsoe.eu
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Fig. 1. Proposed real-time coordination of integrated transmission and
distribution systems

account its controllable devices and provides it to the corre-
sponding TSO. The TSO then solves a coordinated economic
dispatch problem over multiple time periods, considering the
aggregated flexibility of the DSOs. Throughout this paper,
solar and wind generation are considered as negative demands.

A. Model of Flexibility in Distribution Systems

In this section, we consider a radial distribution system
denoted by a directed tree graph G(N ,L), where N =
{1, ..., Nbus} is the set of buses. The set L ⊆ N × N
collects “links” or “lines” for all (i, j) ∈ L. The number of
links in a distribution network is Nline. Bus 1 is the slack
(root) bus and is assumed to have a fixed voltage. We also
assume that the distribution systems have a pure tree topology,
i.e., Nbus = Nline + 1 holds. We leverage the definition
of connectivity matrices Cg , Cs and Cpcc with respect to
generator, ESS and the point of common coupling (PCC)
between transmission and distribution, as defined in [25].
Definition 1 [26]. Let C inc ∈ RNline×Nbus be the incidence
matrix of a given radial network; we set [C inc]αi = +1 if bus
i is the head of branch α and [C inc]αi = −1 if bus i is the
tail of the branch α.

Details about incidence matrices refer to [5], [25].
1) Exact Feasible Set
We use the LinDistFlow model [10] to describe the relation-

ship between the voltages and net loads in distribution systems
by the following linear power flow equation:

1 = e⊤1 Uk, (1a)

0 =C incUk − 2RP l
k − 2XQl

k, (1b)

0 = e1p
pcc
k − P d

k − (C inc)⊤P l
k − CsP s

k , (1c)

0 = e1q
pcc
k −Qd

k − (C inc)⊤Ql
k, (1d)

U ≤Uk ≤ U, (1e)

P s ≤P s
k ≤ P

s
, (1f)

where e1 = [1, 0, · · · , 0]⊤ ∈ RNbus , R = diag(r), X =
diag(x). r, x ∈ RNline denote the resistance and reactance
vectors respectively. Uk denotes the vector of squared voltage
magnitude at the time instant k, ppcc

k , qpcc
k denote active and

reactive power exchanges with the transmission system at the
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PCC of the distribution system. We use vectors P d
k , Qd

k to
denote the active and reactive nodal power consumptions,
P l
k, Ql

k to denote the active and reactive branch flows, and
P s
k to denote the nodal consumptions by distributed energy

storage systems (ESS) at time period k. Moreover, (1a) fixes
the voltage magnitude at the slack bus. Equations (1b)-(1d)
are the LinDistFlow constraints. Upper and lower bounds (1f)
restrict the voltage magnitude at each bus and the charg-
ing/discharging power of ESSs. We rewrite the above power
flow equations (1a)-(1d) in a compact form:

Mχk +BP s
k +Dk = 0, (2)

where

M =


e⊤1 0 0 0 0
C inc −2R −2X 0 0
0 −(C inc)⊤ 0 e1 0
0 0 −(C inc)⊤ 0 e1

 ,

χk =


U
P l

Ql

ppcc

qpcc

 , B = −


0
0
Cs

0

 , and Dk =


e1
0
P d
k

Qd
k

 .

Note that M ∈ R(2Nbus+Nline+1)×(Nbus+2Nline+2) is a square
matrix since for radial distribution grids, Nbus = Nline + 1.
In (2), M and B remain time-invariant. All dependent vari-
ables χk are influenced by controllable power injections P s

k

from ESSs, as well as the load demands P d
k and Qd

k at
each time period k. Therefore, in this paper, the flexibility
in distribution systems primarily arises from the integration of
ESSs.

In [27], it is shown that the squared voltage magnitude
U can be explicitly expressed by the active and reactive
power injections. However, positive definiteness of resistance
and reactance for all the branches is required, a condition
not universally met in practical power system datasets, as
discussed in [28]. To extend the applicability of the proposed
coordination framework to a broader range of power systems,
we generalize the result from [27]. With the assistance of
graph theory, we rigorously demonstrate the invertibility of
matrix M , affirming that all state variables, including squared
voltage magnitude U , can be explicitly expressed in terms
of controllable power injections for all radial networks. This
expansion significantly enhances the robustness and versatility
of the proposed framework for practical power systems.
Lemma 1. For a given radial network denoted by G(N ,L), let
bus i be a leaf of graph G, let branch α be an edge connected
to leaf bus β, then there is only one nonzero element in the
β-th column of incidence matrix C inc(G), and it is located in
the α-th row.

This lemma follows directly from the fact that a leaf has
only one parent in a radial network.
Lemma 2 [26]. A radial network with at least two buses has
at least two leaves. Deleting a leaf from a radial network with
N buses produces a radial network with N − 1 buses.

Proposition 1. Given a radial network G, matrix M is
invertible.

The detailed proof can be found in the Appendix. As a result
of the generalized proposition 1, for a given distribution grid,
all the dependent variables in χk can be expressed explicitly
in terms of the controllable power injections P s

k , and thus, the
exact feasible set is convex and can be written in a convex
polytope with respect to P s

k ,

Ps
k = {P s

k ∈ Re|AsP s
k ≤ bs}, (3)

where e denotes the number of ESSs. In the example illustrated
in Fig. 2, the blue polytope represents an exact feasible set
constrained by upper and lower voltage bounds along with
power limits of ESSs (1f).

2) Maximum Volume Inner Approximation
In this paper, the flexibility of distribution systems primarily

arises from the integration of ESS in (1). Instead of applying
the exact feasible set (3), we replace the complex polytope
with a strictly inner hyperbox approximation, enhancing com-
putational efficiency while maintaining safe operation guaran-
tees within the system, i.e.,

Bsk ⊆ Ps
k , ∀k ∈ {1, 2, · · · , Nk}, (4)

where the hyperbox Bk is defined as

Bsk(P appr
k , P

appr
k ) = {P s

k ∈ Re|P appr
k ≤ P s

k ≤ P
appr
k }, (5)

Note that P
appr
k and P appr

k are upper and lower bounds of the
inner hyperbox approximation. The 2-dimensional green box
in Fig. 2 represents an inner hyperbox approximation to the
exact feasible set (blue polytope). To maximize the perfor-
mance of the resulting ESS system, we adopt the so-called
maximum volume inner hyperbox [29]. The hyperbox (5) can
be written as Bsk(ζ, ζ+ ξ) and the inner approximation can be
obtained by solving the following optimization problem:

max
ξ,ζ

∑
i∈E

ln ζi, (6a)

s.t. Asξ +As+ζ ≤ bs, (6b)

where As+ is the positive part of As and E = {1, · · · , e} is the
set of ESSs. However, in practice, it can occur that the standby
mode of a ESS is excluded by the inner approximation, i.e.,

∃i ∈ E , [P
appr
k ]i < 0 or [P appr

k ]i > 0,

i.e., the origin is not included in the resulting hyperbox (green),
as shown in Fig. 2 (a).

To address this issue, instead of focusing on maximizing the
volume in Re space, i.e., finding an equilibrium where ESSs
have wide ranges of permissible power output intervals, we
propose to maximize the volume within the R2d space, thereby
expanding both charging and discharging power limits of the
ESSs according to

max
ξ,ζ

∑
i∈E

ln(ξi + ζi) + ln(−ξi), (7a)
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s.t. Asξ +As+ζ ≤ bs, (7b)

enabling scenarios where, for instance, both ESSs can charge
even during periods of high system load, as illustrated in
Fig. 2(b), but more importantly, the origin is included in the
hyperbox (green).

(a) Bs
k calculated by (6)

−5 5

−5

5

P s
1 [MW ]

P s
2 [MW ]

(b) Bs
k calculated by (7)

−5 5

−5

5

P s
1 [MW ]

P s
2 [MW ]

Fig. 2. Comparison of inner approximation methods with 2 ESSs located
in the heavily loaded IEEE 33-bus system. The orange and the purple lines
show the upper and lower bounds on the squares of voltage magnitudes (1e).
The red lines show the limits on ESSs’ power output (1f). The blue polytope
denotes the exact feasible set (3) and the green rectangle denotes the inner
hyperbox approximation (5).

B. Coordinated Economic Dispatch for ITD Systems

1) Aggregating Distribution Systems
Since LinDistFlow (1) ignores the power losses along

branches, power exchanged with the transmission can be
expressed with the assistance of conservation of power for
all time periods k ∈ K,

ppcc
k =1⊤P d

k + 1⊤P s
k , P s

k ∈ Bsk, (8a)

qpcc
k =1⊤Qd

k, (8b)

where Bsk is calculated by applying (7). As a result, at the
transmission level, a distribution system can be modeled as a
load and multiple ESSs at the PCC.

2) Multiperiod AC Optimal Power Flow
The bus injection model [30] with complex voltages ex-

pressed in polar coordinates is employed at the transmis-
sion level. Here, Θk, Vk stack nodal voltage angles θk,i and
magnitudes vk,i for all bus i at time period k respectively.
P pcc
k , Qpcc

k stack active and reactive power exchanges (8) for
all distribution systems, respectively. Y = G + jB denote
the complex bus admittance matrix, where j =

√
−1 and

G,B ∈ RNbus×Nbus .
The resulting multiperiod AC optimal power flow (MPOPF)

for coordinating different TSOs can be written as

min

Nk∑
k=1

(P g
k )

⊤diag(a2)P g
k + a⊤1 P

g
k + a⊤0 1, (9a)

subject to ∀k ∈ K := {1, 2, · · · , Nk}
P b
k(Θk, Vk) = CgP g

k − P d
k − CpccP pcc

k − CsP s
k , (9b)

Qb
k(Θk, Vk) = CgQg

k −Qd
k − CpccQpcc

k , (9c)∣∣Sl
k(Θk, Vk)

∣∣ ≤ S
l
, (9d)

V ≤ Vk ≤ V , P g ≤ P g
k ≤ P

g
, Qg ≤ Qg

k ≤ Q
g
, (9e)

Ek = Ek−1+∆t · P s
k with initial state E0 = E(t), (9f)

P g
k = P g

k−1+∆P g
k with initial state P g

0 = P g
0 (t), (9g)

E ≤ Ek ≤ E, P s
k ≤ P s

k ≤ P
s

k, R ≤ ∆P g
k ≤ R, (9h)

where P b
k , Q

b
k : RNbus × RNbus 7→ RNbus represent the vector

functions of active and reactive power injections for all buses
at time period k, and the corresponding i-th element can be
expressed as[

P b
k

]
i
= vk,i

∑
j∈N

vk,j (Gij cos θk,ij +Bij sin θk,ik) ,[
Qb

k

]
i
= vk,i

∑
j∈N

vk,j (Gij sin θk,ij −Bij cos θk,ij) ,

with angle difference θk,ij = θk,i − θk,j . Similarly, Sl
k

are nonlinear mappings RNbus × RNbus 7→ CNline representing
apparent branch power flows for all branches at time period
k; for the detailed formulation of branch power flows, we refer
readers to [30]. Evidently, MPOPF (9) constructs a simulta-
neous formulation of Nk AC OPF problems with standard
power flow constraints (9b)-(9e), coupled by intertemporal
interactions (9f) (9g) and the corresponding upper and lower
bounds (9h). Notice that ESSs possess time-variant power
limits in (9h), due to the inner hyperbox approximation (5)
utilized for aggregating distribution systems.

Rather than devising intricate mathematical models to pre-
cisely represent distribution systems, the flexibility aggregation
method offers a substantial reduction in computational com-
plexity of the MPOPF in (9). It enhances the scalability of the
proposed framework without sacrificing the active involvement
of distribution systems in the dispatch problems.

III. METHODOLOGY

This section presents the proposed distributed real-time
coordination framework of ITD systems using a receding
horizon scheme while considering day-ahead forecast and
actual values. Compared to the classical distributed MPC
scheme, only solving the structured optimal control problem
either in a spatially distributed manner or in a temporally dis-
tributed manner [31], our approach decouples the optimization
problems across both different system operators and periods,
with each subproblem representing an individual single-period
AC OPF of a single transmission system.

A. Distributed Formulation
We describe a coordination problem of ITD systems by a

tuple C = (N , L, K, R) over Nk time periods. Thereby, N
denotes the set of all buses, L the set of all branches, and
R = {T1, T2, · · · } denotes the set of coordinated transmission
systems.

The objective function (9a) summarizes quadratic genera-
tion cost from all regions ℓ ∈ R over all time periods k ∈ K.
This enables a straightforward separation of the objective
function across different system operators and time periods:

f(x) =
∑
k∈K

∑
ℓ∈R

fk,ℓ(xk,ℓ),
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where xk,ℓ represents state variables in the transmission sys-
tem ℓ at the time period k and x is a vector stacking all the
subvectors xk,ℓ.

The constraints of MPOPF (9) can be decoupled across
time periods, where each of the temporal coupling con-
straints (9f) (9g) is associated with only one specific trans-
mission system. Thereby, these temporal coupling constraints
can be written in the following standard affinely coupled form∑

k∈K

Λk,ℓxk,ℓ = 0, ℓ ∈ R,

where the sparse matrices Λk,ℓ contain non-zero elements of
{−1, 1,∆t}, connecting the state variables current Ek,ℓ and
P g
k,ℓ with neighboring time periods {k − 1, k + 1} for each

transmission system ℓ.
Regarding spatial coupling among different TSOs, we fol-

low the idea of sharing components [32], i.e., sharing nodal
voltage angles and magnitudes at both sides of connecting tie-
lines between neighboring transmission systems. The resulting
spatial coupling constraints are linear and can be written in the
following affinely coupled form∑

ℓ∈R

Γk,ℓxk,ℓ = 0, k ∈ K,

where the sparse matrices Γk,ℓ contain non-zeros elements of
{−1, 1}, connecting the coupling voltage angles and magni-
tudes between neighboring transmission systems for each time
period k.

Thereby, the MPOPF in the transmission level can be
decoupled across different system operators and time periods
and reformulated in standard affinely distributed form

min
∑
k∈K

∑
ℓ∈R

fk,ℓ(xk,ℓ)
DECOUPLED
OBJECTIVE

(10a)

s.t. ∀k ∈ K,
∑
ℓ∈R

Γk,ℓxk,ℓ = 0 | λk
SPATIAL

COUPLINGS
(10b)

s.t. ∀ℓ ∈ R,
∑
k∈K

Λk,ℓxk,ℓ = 0 | κℓ
TEMPORAL
COUPLINGS

(10c)

s.t.

{
∀ k ∈ K, ∀ℓ ∈ R
hk,ℓ(xk,ℓ) ≤ 0 | νk,ℓ

DECOUPLED
CONSTRAINTS

(10d)

where λk, κℓ and νk,ℓ denote Lagrangian multipliers asso-
ciated with the corresponding constraints. Constraints (10d)
correspond to the standard AC OPF constraints (9b)-(9e)
with power and energy limits on the ESSs (9h) for each
transmission system ℓ ∈ R over all time periods k ∈ K.

B. Real-Time Distributed Coordination Scheme

As (9) is reformulated in an affine-coupled distributed
form (10), it can be solved efficiently by using distributed
optimization algorithms. In this paper, we tailor the ALADIN
algorithm [19] to deal with (10) in a closed loop. The resulting
distributed coordination scheme in receding horizon fashion is
outlined in Algorithm 1.

Algorithm 1 Distributed Real-Time Coordination of ITD
Systems
Offline:

– Choose initial guess (x0, λ0, κ0) for closed loop
Repeat:
1) The local operator of the regional transmission systems

measures the current states (E0,ℓ(t), P
g
0,ℓ(t)) for all ℓ ∈ R.

2) Solve (10) cooperatively to obtain solution (x∗, λ∗, κ∗) by
repeating

a) Solve decoupled NLPs for all k ∈ K and ℓ ∈ R
min
yk,ℓ

fk,ℓ(yk,ℓ) + [λ⊤
k , κ

⊤
ℓ ][Γ

⊤
k,ℓ,Λ

⊤
k,ℓ]

⊤yk,ℓ

+
ρ

2
∥yk,ℓ − xk,ℓ∥22

s.t. hk,ℓ(yk,ℓ) ≤ 0 | νk,ℓ. (11)

b) Compute the Jacobian matrix Jk,ℓ of active constraints
hk,ℓ at the local solution yk,ℓ by

[Jk,ℓ]i =

{
∂ [hk,ℓ(yk,ℓ)]i if [hk,ℓ(yk,ℓ)]i = 0,

0 otherwise
(12)

with [·]i denotes the i-th row, and gradient

gk,ℓ = ∇fk,ℓ(yk,ℓ),
and choose Hessian approximation

0 ≺ Hk,ℓ ≈ ∇2
{
fk,ℓ(yk,ℓ) + ν⊤k,ℓhk,ℓ(yk,ℓ)

}
. (13)

c) Update (x← y +∆y, λ← λQP, κ← κQP) by solving

min
∆y,s

∑
k∈K

{
λ⊤
k s1,k +

µ1

2
∥s1,k∥22

}
+

∑
ℓ∈R

{
κ⊤
ℓ s2,ℓ +

µ2

2
∥s2,ℓ∥22

}
(14a)

+
∑
k∈K

∑
ℓ∈R

{
1

2
∆yk,ℓ⊤Hk,ℓ∆yk,ℓ + g⊤k,ℓ∆yk,ℓ

}
s.t.

∑
ℓ∈R

Γk,ℓ(yℓ +∆yℓ) = s1,k | λQP
k , k ∈ K, (14b)∑

k∈K

Λk,ℓ(yℓ +∆yℓ) = s2,ℓ | κQP
ℓ , ℓ ∈ R, (14c)

Jk,ℓ ∆yk,ℓ = 0, ℓ ∈ R, k ∈ K. (14d)

3) The local ℓ-th TSO for all ℓ ∈ R deploys their first
inputs (P s,∗

0,ℓ (t),∆P g,∗
0,ℓ (t)) to the real process and sends

the solution to connected DSOs.
4) Reinitialize for all ℓ ∈ R

x0
ℓ ← (x∗

2,ℓ, ..., x
∗
Nk,ℓ

, x∗
Nk,ℓ

), κ0
ℓ ← ([κ∗

ℓ ]2, ..., [κ
∗
ℓ ]Nk

, 0)

with [·]k the elements w.r.t k-th time coupling, and

λ0 ← (λ∗
2, ...., λ

∗
Nk

, 0).

Then, set t← t+ 1 and go to Step 1).
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Based on the local measurements collected in Step 1), Step
2) of Algorithm 1 outlines the tailored ALADIN algorithm to
solve (10). Step 2.a) solves Nk · |R| subproblems, in which
the regional TSO deals with the Nk temporal subproblems
in parallel locally. These problems are constructed using the
Lagrangian of (10) by dualizing the spatial coupling (10b)
and temporal coupling (10c). Based on the decoupled solu-
tions yk,ℓ, Step 2.b) computes sensitivities of objective and
constraints with respect to the current iteration of ALADIN.
Here, in order to improve the numerical robustness of the
algorithm, a small perturbation is added to the second-order
derivatives (13) approximated by positive definite Hk,ℓ Notice
that under a mild assumption for the perturbation as outlined
in [3, Theorem 2], the local quadratic convergence can be
guaranteed. Step 2.c) solves the coupled QP (14) with only
equality constraints. Taking the temporal coupling (14c) as
local equality constraints for the ℓ-th region, one can solve (14)
in a decentralized manner that only requires neighbor-to-
neighbor communications. For more details, the reader is re-
ferred to [33]. Algorithm 1 terminates if the primal conditions

max
k∈K

∥∥∥∥∥∑
ℓ∈R

Γk,ℓyk,ℓ

∥∥∥∥∥ ≤ ϵ, max
ℓ∈R

∥∥∥∥∥∑
k∈K

Λk,ℓyk,ℓ

∥∥∥∥∥ ≤ ϵ, (15a)

and dual condition

max
k∈K
ℓ∈R

∥yk,ℓ − xk,ℓ∥ ≤ ϵ (15b)

hold. Practically, the dual condition (15b) is sufficient to
ensure a small violation of the condition (15), when the
predefined tolerance ϵ is small enough [34]. Under some
regularity assumptions, Algorithm 1 has local quadratic con-
vergence guarantees for both primal and dual iterations. One
can construct the proof of this result by following that the
coupled QP (14) is equivalent to the Newton-type method
while the local solutions maps are Lipschitz continuous. A
detailed analysis can be found in [19], [20].

When employing Algorithm 1 as an online solver, Algo-
rithm 1 presents a receding horizon scheme to coordinate the
ITD system in the closed loop. During the online process,
each local TSO measures the states (E0,ℓ, P

g
0,ℓ) and then,

Algorithm 1 solves (10) in a distributed manner. After local
solutions are determined at the transmission level, the deter-
mined inputs (P s,∗

1,ℓ ,∆P g,∗
1,ℓ ) are allocated to the respective

generators and storages. Notably, step 4 in Algorithm 1 serves
as an initialization phase for step 2 in the ensuing online cycle,
adhering to the methodology outlined in [35].

IV. CASE STUDY

This section presents a comprehensive evaluation of the
proposed coordination strategy by examining its performance
through operational scenarios on a summer day in Germany,
characterized by considerable prediction mismatches due to
severe weather conditions.

A. Simulation Setting

To model an operational scenario within the German elec-
trical grid, we utilize four 118-bus systems from the PGLib-
OPF dataset [36], representing the transmission systems. These
are interconnected through multiple tie-lines, reflecting the
configuration of the four TSOs in Germany, as depicted in
Fig. 1(b). Additionally, each transmission system is connected
to 10 distribution systems in a star configuration, employing
the IEEE 33-bus system with multiple DERs for these distri-
bution networks. As a result, the ITD system encompasses a
total of 1792 buses with 472 buses at the transmission level
and 1320 buses at the distribution level.

To capture modern and contemporary power system dynam-
ics under the impact of severe weather, we utilize measurement
data from the ENTSO-E Transparency Platform2 [24] dated
July 24, 2023. As depicted in Fig. 3, the utilized data includes
day-ahead predictions (dotted lines) and actual values (solid
lines) for load demand, solar generation, and wind generation
in each TSO in Germany. This day was marked by adverse
weather events, including heavy rainfall, leading to noticeable
prediction mismatches, particularly in solar generation. This
is visually represented in Fig. 3, highlighting a substantial
mismatch during the noon hours.

The simulations cover a 24-hour period with a prediction
horizon with Nk = 96 and a time interval of ∆t = 15 min. By
aggregating flexibility from DSOs to the transmission level,
we significantly reduce the complexity of the optimization
problems by not delving into the detailed network topologies
but rather by considering the power-energy envelope of the
distribution systems at PCC. Consequently, The optimization
tasks at the transmission level involve 187, 776 state variables
divided into 4 transmission systems, each across 96 time
periods, resulting in a total of 384 subproblems.

Note that, in Fig. 3 to Fig. 6, the data are arranged in
multiple columns to enable a detailed comparative analysis.
Specifically, the first four columns in each figure correspond to
data from four distinct control areas, i.e., four TSOs and their
respective DSOs, respectively. The final column integrates this
data, offering a synthesized overview of these four control
areas. This configuration facilitates a straightforward compar-
ison across the spatial decomposition to ensure a structured
and clear presentation of the simulation results.

B. Isolated vs. Coordinated Operation Mode

Three distinct operating strategies are explored in the case
study: isolated operation, centralized coordination, and dis-
tributed coordination. In all these strategies, the flexibility of
distribution systems is aggregated to the transmission level
as proposed in Sec. II, and the dispatch problems at the
transmission level are optimized with a receding horizon.
The primary differences between these strategies lie in their
operational methodologies and how they address the economic
dispatch problems at the transmission level.

2The data utilized in this paper is available online at the ENTSO-E
Transparency Platform: https://transparency.entsoe.eu
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Fig. 3. Day-head forecasts and actual values of load demand, solar generation, and wind generation for 4 TSOs in Germany from ENTSO-E platform [24]
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Fig. 4. Power generation for optimal economic dispatch by isolated operation mode for 4 TSOs during simulation
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Fig. 5. Power generation for optimal economic dispatch by coordinated operation mode for 4 TSOs during simulation
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In isolated operation mode, each TSO operates in an is-
landed manner without any communication or power exchange
with other transmission systems. The results of the economic
dispatches per time period are comprehensively visualized in
Fig. 4. The net power generations—calculated as the positive
stacked bars minus the negative stacked bars—marginally
exceed the actual demands (red lines) over a 24-hour period,
across all instances in Fig. 4. This indicates that the balance
between supply and demand is maintained, with minimal
power line losses.

Contrary to isolated operation, both the centralized and
the distributed coordinations utilize the combined system
model (9) to facilitate autonomous power exchange (purple
bars) between TSOs, aiming to minimize overall generation
costs, as depicted in Fig. 5. Fig. 6 demonstrates the state of
charge (Soc) of ESSs, highlighting the effective autonomous
management in supporting dispatch tasks while adhering to
the energy constraints of the ESSs.

A noteworthy instance occurs at 13 : 00, highlighted as
vertical dotted lines, where transmission system T1 encounters
a significant prediction mismatch. In this time period, T1 ex-
periences higher actual demand and reduced solar generation,
as shown in Fig. 3, coinciding with lower SOC of ESSs in T1,
as shown in Fig. 6. In response to this prediction error, power
export to other systems (purple bar) is intentionally curtailed as
a compensatory measure, demonstrating the system’s capacity
to adapt to unexpected operational dynamics.

C. Centralized vs. Distributed Coordination Approaches

The key difference between these two coordination strate-
gies lies in the optimization approaches. Centralized coordi-
nation communicates all private data to a centralized entity
and employs a centralized algorithm to solve the optimization
problem. In contrast, distributed coordination solves the opti-
mization problem based on the proposed algorithm in a dis-
tributed fashion with limited information exchanged between
TSOs.

Given that both the centralized and the distributed coordi-
nation adopt the same system model (9) with 187, 776 state
variables divided into 384 subproblems, we use centralized
solutions as reference solutions to evaluate the effectiveness
of the proposed distributed approach in solving the economic
dispatch problems at the transmission level. The convergence
performance of the proposed distributed approach across 24
hours is demonstrated in Fig. 7, representing a number of
iterations to converge, total computing time for solving one
economic dispatch problem, primal and dual residual (15),
deviations of controllable power injections and optimality gap
for each TSOs, expressed as

∣∣∣ f(xℓ)−f(x∗
ℓ )

f(x∗
ℓ )

∣∣∣. Notably, all the
96 optimization tasks during the daily operation demonstrate
fast convergence in a dozen iterations, under 500 seconds,
with both the primal and dual residuals reaching tolerable
values. Compared with centralized coordination, the proposed
distributed approach showcases remarkable accuracy in terms
of controllable power injections and total optimality gap over
all 96 time periods. These results highlight the scalability and

numerical robustness for real-world applications in large-scale
ITD systems.

TABLE I
GENERATION COSTS [¤] WITH AGGREGATED FLEXIBILITY OF DSOS

Isolated Centralized Distributed
Coordination Coordination

T1 2 034 052 2 499 736 2 499 785
T2 2 006 145 2 396 549 2 396 573
T3 5 597 566 4 058 846 4 058 842
T4 1 778 179 2 241 376 2 241 368

Total 11 415 942 11 196 505 11 196 568

The economic efficiency comparison among the three op-
erational strategies, as shown in Table I indicates that op-
erating in isolation leads to the highest total costs, whereas
centralized coordination results in the lowest. Distributed co-
ordination presents a viable alternative, balancing data privacy
and competitive costs, approximately 0.0006% higher than
centralized methods. Both coordination strategies effectively
find local minimizers of the system model (9), with negligible
differences in total costs.

V. CONCLUSION

This paper proposes a novel real-time distributed opera-
tional framework for efficient coordination of ITD systems.
It employs a flexibility aggregation method at the distribution
level, leveraging controllable devices through power-energy
envelopes provided by DSOs, thereby avoiding additional
computational complexity of economic dispatch problems at
the transmission level. Furthermore, the framework’s reced-
ing horizon strategy enhances its robustness against predic-
tion mismatches, especially under severe weather conditions,
highlighted by a case study of a summer day in Germany.
By utilizing real operational data with significant prediction
mismatches, this study confirms the framework’s practical rel-
evance and applicability in real-world scenarios. Future work
includes further exploring flexibility aggregation methods, uti-
lizing more detailed transmission grid data, and strengthening
cyber-physical security.

APPENDIX

Considering a non-slack leaf bus β, (α, β) is the only
nonzero element in β-th column in matrix C inc due to the
incidence matrix property in Lemma 1. Hence, (α+1, β) is the
only nonzero element in β-th column in matrix M . Similarly,
(β+N bus, β+N bus) and (β+2N bus, β+2N bus) are the only
nonzero elements in the (β+N bus)-th and the (β+2N bus)-th
row respectively.

By eliminating the leaf bus β of the network G, we obtain
a reduced radial network G(1). The resulting matrix M (1) can
be viewed as a submatrix of M by removing the set of row
{α+ 1, β +N bus, β + 2N bus} and the set of column {β, α+
N bus, α+ 2N bus}.
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Since the nonzero elements in the incidence matrix C inc(G)
is {−1, 1}, the determinant of matrix M can be written as

|det(M)| =
∣∣∣det(M (1))

∣∣∣ (16)

with the assistance of cofactor expansions.
By further removing non-slack leaves of the resulting re-

duced radial networks, we have

|det(M)| =
∣∣∣det(M (1))

∣∣∣ = · · · = ∣∣∣det(M (N bus−1))
∣∣∣

=det

1 0 0
0 1 0
0 0 1

 = 1. (17)

Therefore, M is invertible for the given radial network.
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