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Abstract—This paper presents the modeling and implementa-
tion of a customized Machine Learning (ML) model designed
to take advantage of synchrophasor data to enhance the arming
procedure of a critical System Integrity Protection Scheme (SIPS)
of the Brazilian Interconnected Power System (BIPS). This model
allows risk-averse decision-making, mitigating loss of selectivity
conditions. Implementation has been achieved using applications
developed in the Open and Extensible Control and Analytics
(openECA) software environment. Results are obtained using
simulations on a Real-Time Digital Simulator (RTDS) set-up,
which has been provided with control and protection replicas of
the high voltage direct current (HVDC) systems of the BIPS.

Index Terms—WAMPAC, Machine Learning, RTDS, SIPS,
HVDC.

I. INTRODUCTION

Over the years, power system operation has become pro-
gressively more complex, due to the demand increase, the
integration of intermittent renewable generation, and the
widespread application of inverter-based resources at the trans-
mission and distribution levels. Consequently, power systems
are currently subjected to more stressed and fast-changing op-
erating conditions, with large variations in power interchanges
among areas, where system-wide protection solutions are of
utmost importance to prevent disturbance propagation. In this
context, SIPSs [1] are needed to enhance security and prevent
the degradation of power system performance in cases of
nonsecure conditions or extreme contingencies.

Among the typical mitigating actions used in SIPS, genera-
tion rejection is widely applied to maintain transient stability
in areas with excess of generation after a critical contingency.
In fact, SIPS can readily and rapidly trip generators, under
the assumption that the system can tolerate the subsequent
generation-load imbalance [2]. This is the case of a critical
SIPS of the BIPS, which is triggered by contingencies on
the multi-infeed HVDC links connecting the main load center
(in the southeast of Brazil) and the Belo Monte hydroelec-
tric power plant (HPP) (in the north of Brazil). In terms
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of the dynamic performance of the BIPS, the most critical
scenarios occur when the high voltage alternating current
(HVAC) and HVDC interconnections operate highly loaded,
and, as a consequence of strong AC-DC dynamic interactions,
contingencies in the embedded HVDC links may affect the
synchronism of the generators.

The development of Wide Area Monitoring Systems
(WAMS) expanded the possibilities for the development of
SIPS, allowing increased levels of observability and selec-
tivity. The initiatives towards positioning additional Phasor
Measurement Units (PMUs) at AC transmission substations,
alongside the ongoing allocation of PMUs at the converter
stations of the Belo Monte HVDC links, enable an enhanced
monitoring of the embedded HVDC links and phase angle
differences between the main geoeletric regions of the BIPS.
Such possibilities constitute a promising scenario for the use of
data-driven techniques with the aim of enhancing the arming
process of the SIPS.

Several works have exploited WAMS and data-driven tech-
niques in the design of SIPSs [3], but few of them target
practical field implementations. In [1], [3], [4], applications
of SIPSs around the world are provided, highlighting their
respective types of mitigation actions, detection methods,
and decision system architectures. In [5], a comprehensive
guideline is presented for the design of SIPS, based on a
survey of operational practices and industry knowledge. The
work introduced in [6] proposes a SIPS to prevent blackouts
in the Taiwan power system using PMU data. The proposed
approach applies an instability prediction algorithm to avoid
cascade tripping of relays. In [7], a SIPS is devised based
on a set of PMUs strategically placed in the Argentine and
Paraguayan power systems, aiming to support the operation
of a new international interconnection. Hardware-in-the-loop
(HIL) and field tests have shown that the designed SIPS
is able to avoid loss of synchronism of relevant generating
units in the interconnected system. In [8], a hierarchical deep
learning machine model is proposed for the Guangdong power
system, enabling quantitative and qualitative online transient
stability predictions. In [9], a decision tree-based methodology
is developed aiming to mitigate the risk of SIPS failure in the
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Norway power system. The approach involves sampling power
system conditions to generate a large training data set for the
decision tree model.

With respect to the state-of-the-art, the contributions of this
work are the following: (a) design of a ML model allowing
risk-averse decision making, mitigating occurrences of insuf-
ficient generation rejections to ensure transient stability; (b)
design of a software application, developed in the openECA
environment, encapsulating the ML model and data quality
verification functions; (c) proof-of-concept tests and validation
using a RTDS environment with control and protection replicas
of the HVDC systems of the BIPS. Numerical results highlight
that enhancements in selectivity may be achieved by using the
customized ML model, fostering discussions of the benefits of
applying synchrophasor data in the SIPSs of the BIPS.

This paper is organized as follows. Section II describes key
aspects of the SIPS currently in operation with the aim of
preserving the transient stability of the BIPS, as well as the de-
veloped framework of application. Section III presents the ML
model designed to improve the current SIPS, along with the
developed implementation using the openECA infrastructure.
Section IV shows numerical results acquired through real-time
HIL simulations conducted in collaboration with the Brazilian
System Operator (BSO) towards a practical application of
Wide Area Monitoring, Protection, and Control (WAMPACS)
in the BIPS. Conclusions and final remarks are outlined in
Section V.

II. DEVELOPED FRAMEWORK OF APPLICATION

SIPSs are protection schemes designed to identify abnormal
conditions and take predefined corrective actions [1], involving
the use of local and remote measurements to characterize
the operating conditions of a power system. With advances
in computing, communication, and measurement technologies,
sophisticated tools can be applied to improve the robustness
and selectivity of conventional systemic protective actions.
In particular, PMU data can enhance SIPSs by providing
synchronized measurements of variables of interest, such as
phase angle differences between phasor voltages at substa-
tions, which are closely tied to the dynamics of the main
synchronous generators of bulk power systems.

In general, the SIPS deployment process can be divided
into two phases: the planning and the operational phases,
as defined by entities such as the IEEE [2] and ENTSO-
E [10]. The planning phase covers the initial calculations
to define the extent of the actions as well as the arming
and triggering criteria. The operational phase comprises three
essential execution steps, which can be summarized as fol-
lows: (a) arming: consists of determining the system state in
which a contingency event might jeopardize the stable system
operation; (b) parameterization: involves the adjustment of
the SIPS parameters, taking into account information such as
the availability of resources, mitigation costs, and potential
contingencies that could lead to instability and subsequent
blackouts; (c) triggering: this step encompasses the application
of specific systems to monitor and detect critical contingencies
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Fig. 1. Developed framework of application in the BIPS.

and to mitigate their effects, triggering predefined remedial
actions in a timely manner. In Brazil, the fundamental design
principles for SIPS have been outlined in [11]. This document,
which is part of the Brazilian Grid Code, delineates the main
steps to design, implement, and test a SIPS in the BIPS,
establishing responsibilities to the BSO as well as to the
generation, transmission, and distribution companies.

SIPS can be applied to avoid different phenomena in a
power system, including transient stability problems arising
from AC or DC transmission line contingencies. In the BIPS,
which is composed of six HVDC bipoles in a multi-infeed
configuration, forced outage on the HVDC links can severely
deteriorate the rotor angle stability of the system, increasing
the risks of large blackouts. Contingencies on one of the
embedded HVDC links, either Xingu-Estreito (XES) or Xingu-
Terminal Rio (XTR), both highlighted in Fig. 1, are the most
critical contingencies in the current BIPS configuration. In the
event of forced outages in these embedded HVDC links, a
SIPS is triggered to reject generation at Belo Monte HPP
within a maximum time period of 150 ms. The arming of
the SIPS is sized using reference tables that relate the amount
of rejected generation to the active power flow on the HVDC
links and the active power flow on the North-South HVAC
transmission lines.

This work focuses on applying PMU data and a risk-averse
ML model to enhance the selectivity of the arming function
of the SIPS associated with contingencies in the embedded
HVDC links of the BIPS. In the proposed infrastructure, il-
lustrated in Fig. 1, a Phasor Data Concentrator (PDC) acquires
data from P Class compliant PMUs at converter stations,
fostering the development of alternative solutions to improve
the arming, parameterization, and triggering steps of the SIPS.
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III. DATA-DRIVEN SIPS DESIGN AND SIMULATION

This section presents the proposed arming function devel-
oped to enhance the selectivity of the SIPS of the BIPS.
Section III-A introduces the ML model designed to allow for
risk-averse protective actions, taking into account PMU data.
Section III-B describes the hardware and software infrastruc-
ture devised to test and validate the enhanced SIPS using HIL
simulations.

A. Designed ML model

The current SIPS has been parameterized using a series of
simulation cases, assuming different amounts of generation
rejection, with the aim of maintaining the stability of the
system after forced outages in the embedded HVDC links.
Tabular data can be retrieved from these simulation cases,
gathering variables of interest to characterize prefault system
conditions, such as active power flow through the North-
South parallel HVAC transmission lines, as well as phase
angle differences between the terminal buses in the Northern
and Southern subsystems. Simulation results allow for the
identification of the minimum amount of generation rejection
required to guarantee the transient stability of the system for
each case under analysis. The causal effect between a set
of attributes that characterize the prefault system conditions
and a set of possible number of units to be rejected can be
featured as a multiclass classification problem, within the ML
and statistical disciplines.

Multiclass classification problems can be addressed by data-
driven techniques, such as artificial neural networks (ANN),
decision trees, k-nearest neighbors, naive Bayes, support vec-
tor machines, and extreme learning machines. In this work, a
multilayer feedforward ANN based model has been utilized,
featuring a softmax activation function in its output layer,
which is the algebraic simplification of results from N logistic
classifiers, normalized per class by the sum of the results
of other N − 1 logistic classifiers. The output then takes
the form of a probability distribution, indicating the level
of certainty at which a set of attributes modeling prefault
system conditions finds a correspondence to a particular class
of number of rejected generating units. Using a categorical
cross-entropy loss function, quantifying the disparity between
actual and predicted probabilities, model parameters/weights
can be iteratively adjusted through supervised learning with
the aim of bringing the output closer to the intended target.
The categorical cross-entropy loss function can be expressed
as

Lθ = − 1

N

N∑
i=1

αi log
(
pθCti

(xi)
)

(1)

where αi is a balancing factor, weighting the loss function
according to the number of samples in each class; xi is
the vector of input attributes for sample i; θ denotes a
vector of model parameters; pθCti

(xi) represents the predicted
probability of the target class for sample i; and N denotes the
total number of samples in the data set.

The loss function in (1) is insensitive to predicted prob-
abilities for non-target classes, since only the probabilities
belonging to the target class are used as feedback in the
training procedure. However, in real applications, achieving
an accuracy of 100% is usually not feasible, and a certain
probability of predicting non-target classes remains. This is
appropriate in several scopes of application; however, in the
context of maintaining transient stability, if an insufficient
generation rejection is assigned, loss of synchronism is deemed
to occur, affecting the security of supply. On the other hand,
excessive generation rejection might lead to unwanted under-
frequency load shedding, as a consequence of the load-
generation imbalance. This implies the necessity to search for
the elimination of the probability of insufficient generation
rejection, favoring in turn a certain amount of over rejection
to conservatively guarantee transient stability. This objective
asymmetry can be modeled by sorting the classes in terms
of the number of generation units to be rejected, as well as
by splitting the contributions of the predicted target probability
and the predicted above-class probabilities in the loss function
as

Lζ,θ = − 1

N

N∑
i=1

αi

(
Lζ,θ

Ti
(xi) + Lζ,θ

Si
(xi)

)
(2)

where
ℓti = min(ℓ,

∣∣ΩCti

∣∣) (3)

Lζ,θ
Ti

(xi) =

1−
ℓti∑
k=1

ζ
Cti
Cti+k

 log
(
pθCti

(xi)
)

(4)

Lζ,θ
Si

(xi) =

ℓti∑
k=1

ζ
Cti
Cti+k

log
(
pθCti+k

(xi)
)

(5)

in which ΩCti
denotes the set of classes above the target class

for the sample i; ℓ is a threshold number of classes above
the target class to be considered in the analysis; Lζ,θ

Ti
(xi)

and Lζ,θ
Si

(xi) are the contributions of the predicted target
probability and the predicted probabilities of the above classes,
respectively, for the sample i. For a given class Cr, ζCr

Cr+k
are

the components of a target probability mass function expressed
as

pζCr
=

[
1−

ℓr∑
k=1

ζCr

Cr+k
, ζCr

Cr+1
, . . . , ζCr

Cr+ℓr

]T
(6)

The decision parameter vector ζ is a vector with entries ζCr

Cr+k
,

∀r = 1, . . . , Nc, where Nc denotes the number of classes.
Decision makers can use different patterns of target probability
mass functions pζCr

to customize a risk-averse perspective for
each class under analysis.

The designed ANN has been conceived with two interme-
diate layers using the Exponential Linear Unit as activation
function. The Adam optimization algorithm [12] has been
used to iteratively adjust model weights during training, by
minimizing (2) using an improved stochastic gradient descent
method, which incorporates an adaptive estimation of first-
and second-order moments. A metric has been developed to
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monitor and measure the performance of the model during
training and testing. It evaluates the average probability of
insufficient rejection as

Mζ,θ =
1

N

ϱti∑
k=1

pθCti−k
(xi) (7)

where ϱti stands for the number of classes below class
Cti , corresponding to classes corresponding with insufficient
generation rejection.

In case an optimized set of target probability mass functions
is required, aiming to support the customization of a risk-
averse solution, a hyperparameter optimization problem can
be formulated as

min f(ζ) =

Nc∑
r=1

(
ℓr∑

k=1

bkζ
Cr

Cr+k

)
(8)

s.t.
ℓr∑

k=1

ζCr

Cr+k
≤ 1,∀r = 1, . . . , Nc (9)

Mζ,θ ≤ plim (10)

where br is a non-negative real value such that br >> br+1,
∀r = 1, . . . , Nc − 1, and plim is an acceptable average prob-
ability of insufficient rejection. In the proposed application
framework, the BSO has dictated that plim must be adjusted
aiming at the null risk of transient instability, considering the
set of samples under analysis.

B. Designed real-time simulation environment

Although conventional dynamic simulations provide a rela-
tively rapid way of generating data for ML training, real-time
simulation tests are of utmost importance to validate proposed
approaches intended for practical use in the field. A real-time
simulation environment has been designed to support testing
and validating the enhanced SIPS. Hardware-in-the-loop and
software infrastructure are described in Section III-B1 and
III-B2, respectively.

1) Hardware-in-the-loop infrastructure: The proposed ap-
proach has been validated using a RTDS, capable of simu-
lating electromagnetic transient phenomena in real time. The
BIPS is modeled in RSCAD, a software package built within
the RTDS, using an equivalent representation provided with
dynamic models of relevant components, aiming to simulate
the main electromechanical oscillations among synchronous
machines in the North and Southeast subsystems. By utilizing
the RSCAD/RTDS infrastruture, the conditions of the BIPS
during contingencies on the embedded HVDC bipoles can be
simulated, enabling the testing of the remedial actions required
to stabilize the power system. The resulting infrastructure takes
advantage of the capabilities of the RSCAD/RTDS infras-
truture, by representing the control and protection cubicles
of the XES and XTR bipoles with replicas provided by the
transmission companies.

With the aim of enabling the PMU function within the
RSCAD/RTDS infrastructure, two distinct hardware elements

have been installed: the GTSYNC synchronization card and
the GTNETx2 Giga-Transceiver network communication card.
The GTSYNC synchronization card is used to synchronize
the simulation time with an external GE RT430 GNSS clock,
referenced to the GPS and GLONASS satellites. The GT-
NETx2 Giga-Transceiver network communication card facili-
tates real-time interaction with the simulator, enabling Ethernet
connectivity. The GTNET-PMU firmware allows the network
communication card to provide synchrophasor output data
streams in compliance with the IEC/IEEE 60255-118-1 stan-
dard. The GTNET-PMU firmware can be configured to provide
symmetric component or individual phase data related to three-
phase voltages and currents, using UDP or TCP connections.
The frame rate of each PMU is set to 60 frames per second.

In order to collect the generated data and perform real-
time application testing, a PDC is built on a Dell PowerEdge
R640 Server. The server is equipped with 2 Intel Xeon Gold
5222 processors, 64 GB of RAM, 2x 1 Gbps network cards,
with data storage capacity of 2 TB. This setup is referred as
RSCAD/RTDS/PMU/PDC infrastructure.

2) Software infrastructure: Within the PDC server, Grid
Protection Alliance (GPA) open-source software components
known as Open Phasor Data Concentrator (openPDC) and
openECA are applied. The openECA serves as a platform de-
signed to facilitate the creation of processes and analyses that
involve the use of synchrophasors. This software provides the
necessary framework for constructing application prototypes
aimed at real-time decision making, offering the capability
to effectively process synchrophasor measurements acquired
through the configured GTNET-PMU boards.

The openECA software is utilized to specify the input and
output data structures and to manage the mapping of structures
with their corresponding sources on the GTNET-PMU boards.
The openECA software is used to produce an External Appli-
cation (EA) with open source code in C# language, serving as
an environment to code embedded functions to, for instance,
verify data quality and execute ML models. The ML model
becomes an integral part of the EA by using the Open Neural
Network Exchange (ONNX) library [13], which allows the
integration of pre-trained ANN models using a standardized
file format (.onnx), making it possible to deploy these models
across various platforms and programming languages. Essen-
tially, the ONNX library assumes the pivotal role of uploading
and executing the ML model within the real-time simulation
framework.

The diagram in Fig. 2 shows the main components that
comprise the real-time simulation environment and highlights
the associated communication protocols. The real-time process
begins with the activation of the RTDS, which contains the
necessary parameters to simulate the dynamic equivalent sys-
tem of the BIPS under the conditions of interest. The GTNET-
PMU boards provide the desired measurements, which are
conveyed using the IEEE C37.118-2 protocol [14] to the
PDC Server, where the openPDC and openECA softwares are
executed.
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Fig. 2. Designed real-time simulation environment.

During an off-line development stage, the ANN is trained
using an application coded in the Python programming lan-
guage, with support of widely recognized packages such
as the TensorFlow [15]. Within the EA, the computations
related to retrieving the ML attributes are carried out using
measurements provided by the GTNET-PMU boards, which
are requested from the EA in real time according to the
mapped input structures. The attributes are then processed
by the ML model, which outputs the necessary amount of
generation units to be rejected, with the aim of maintaining
the angular stability of the system.

The EA is called every time an additional measurement is
received, even if, at the moment of reception, other measure-
ments with the same timestamp are not available. Data quality
verification functions are executed to interpret quality-related
fields in transmitted frames [14], as well as to handle the
composition of blocks of attributes. From the moment that
a block of attributes with the same timestamp is complete,
the block is sent to a thread that executes the ML model. To
handle redundancies in variables of interest, data with better-
recognized accuracy are prioritized in the composition of each
block. In case one of the required attributes is unavailable,
or a non-temporary loss of frame is identified, the enhanced
arming is disabled and the conventional arming, associated to
the current SIPS, must be applied. The enhanced arming is
also disabled in the absence of steady-state operation, since
the ML model is trained with steady-state prefault conditions.
Through signals indicating steady-state operation and required
data availability, an enabling signal is formed, which is sent
to a master application along with the number of generating
units to be rejected in case of forced outage in the embedded
HVDC links.

IV. NUMERICAL RESULTS

The EA has been configured to receive the following at-
tributes, acquired with electromechanical simulations: angular
difference between the HVDC converter stations (AngDif),
the active power flow through the North-South parallel HVAC
interconnection (NSeF), total power generated at two impor-
tant generating centers in the North region and the power
produced in generation clusters in the Southeast region. The
operating conditions under consideration primarily involve
cases with heavily loaded HVDC/HVAC interconnections,

Fig. 3. Convergence of the performance metric.

TABLE I
COMPARATIVE RESULTS BETWEEN THE PROPOSED MODEL AND A

REFERENCE MODEL

Proposed model Reference model
Accurate rejection 96,43% 94,64%

Above-class rejection 3,57% 3,57%
Below-class rejection 0% 1,79%

where the attributes fall within the following ranges: 16.4 to
72.9 electrical degrees for AngDif; 0 to 2.4 GW for NSeF;
8.3 to 11 GW and 5.5 to 8.5 GW for two hydroelectric power
plants (HPP) in the North region; and 10.3 to 13.2 GW for
the generation clusters in the Southeast region. The number of
rejected generating units to be selected by the arming function
ranges from 2 to 7 units, representing six classes for the ML
model. The threshold number of classes ℓ and the probability
plim are specified as 1 and 2.8%, respectively.

For an optimized ζ of 0.185, the proposed model has
produced results with 0% of insufficient generation rejections
with smooth convergence of the performance metric, as shown
in Fig. 3. Results for the proposed model are compared in
Table I with those obtained with a reference model, which
has been trained using the reference loss function in (1). Using
the reference loss function, 94.64% of the samples have been
correctly assigned with the minimum number of generating
units required to achieve angular stability, in the case of
forced outage in the embedded HVDC bipoles. Approximately
3,57% of the results correspond to above-class rejections, all
of which refer to only one generating unit above necessary.
However, insufficient generation rejections can be retrieved
with the reference model, amounting 1,79% of the outcomes,
thereby offering risks to the security of the BIPS operation. By
applying the proposed model, the results related to accurate
rejections have increased to 96.43%. Insufficient generation
rejections are eliminated, while the proportion of above-class
rejections of 3,57% remains unchanged.

Using the ML model, real-time simulations have been
performed with the aim of illustrating key aspects of the
developed application.

A. Loss of PMU data

In this experiment, the loss of PMU signals used to compute
the attribute AngDif and NSeF is simulated sequentially.
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(a)

(b)

(c)
Fig. 4. SIPS arming in case of loss of PMU data.

After the unavailability of the sources, the lost signals are also
reactivated sequentially. This simulation has been performed to
test the redundancy management and unavailability detection
functions. The results are shown in Fig. 4. In Figure 4a, a logic
signal pointing to the availability of the attribute AngDif, in
accordance with the availability of PMUs, is shown. PMU 1,
2 and 3 are necessary for the computation of the attribute
AngDif, while data from PMU 4 are used to compute the
attribute NSeF, which has been simulated without redundancy.
Initially, all PMUs are active, assuming the Boolean value 1.
At 08:20, PMU 1 (green) becomes inactive, followed by PMU
2 (yellow) and PMU 3 (blue) at 08:21 and 08:23, respectively.
PMU 3 is reactivated at 08:23, followed by PMU 2 and
PMU 1, at 08:24 and 08:25, respectively. At 08:26, PMU 4 is
deactivated and, after one minute, reactivated.

In Fig. 4b, the effects of PMU deactivation on the con-
ventional and enhanced arming can be observed. A priority
indicator (PI), shown in dark yellow for the attribute AngDif,
assumes the value 0, 1 and 2 (arranged from highest to lowest
priority), corresponding to the disconnection of PMU 1, 2
and 3. When PMU 1 is disconnected, the PI assumes the
value 1 and when PMU 2 is disconnected, the PI assumes the
value 2. Between 08:22 and 08:23, PMUs 1, 2 and 3 are all
disconnected, causing the attribute AngDif to be unavailable.
During this period, PI assumes the value -1. As PMUs 3, 2 and
1 are reactivated, the PI assumes values 2, 1 and 0. Fig. 4b also
shows the number of generating units to be rejected according
to the assumed conventional arming (CnA), in blue, and the
enhanced arming (EhA), in green. The conventional arming
assigns the rejection of 6 to 7 generating units, depending
upon the availability of the attribute NSeF, which is sourced
from PMU 4. The number of generating units to be rejected by

the enhanced arming is 5, a value retrieved by executing the
ML model, assuming that the attributes AngDif and NSeF
are available.

In case AngDif or NSeF are unavailable, the enhanced
arming is disabled. This is shown in Fig. 4c, where the
enabling signal (ES), in red, goes from 1 to 0, between
08:22 and 08:23, as well as 08:26 and 08:27. In Fig. 4c the
arming selected by the master application is presented as a
combination of conventional and enhanced arming. The master
application gives priority to the enhanced arming, that is, the
conventional arming is used only when the enhanced arming
is disabled. The master application sends the arming decision
to a dedicated protection system at the Belo Monte HPP,
responsible for reacting to a HVDC link emergency switch
off signal, produced at the Xingu converter station.

B. Rejection of generating unit

In this experiment, variations in the angular differences
between areas are simulated through the disconnection of
one generating unit in the Belo Monte HPP. The purpose of
this simulation is to observe the performance of the routine
devoted to detect the loss of steady-state condition. In Fig.
5a, its possible to observe the effect of rejecting the gener-
ating unit, causing oscillations in the attribute AngDif. The
angular difference has a transient variation ranging from 55°
to approximately 35°, stabilizing roughly at 44°.

In Fig. 5b, it is observed that the transient effects caused
by generation rejection have been correctly identified. Before
01:26:23, the attribute AngDif is approximately 55°, and the
enhanced arming indicates 5 generating units, following the
ML model. At 01:26:23, the steady-state indicator (SSI), in
red, assumes the value 0, indicating the absence of steady-state
condition, and remains in this condition until 01:26:35, when
the rate of change of the attribute AngDif assumes values
lower than a specified threshold. Due to the identification of
transient operation conditions, enhanced arming is disabled.
Between 01:26:23 and 01:26:35, the conventional arming is
selected by the master application, indicating 6 generation
units to be rejected. At 01:26:35, when the SSI returns to value
1, the enhanced arming is enabled and indicates 4 generating
units due to the change in operation conditions caused by the
event.

C. Forced outage of the HVDC bipole

This experiment consists of a contingency on the embedded
HVDC bipole XES, representing an outage of 4,000 MW,
without power transfer to the remaining bipole XTR, followed
by the rejection of 6 generation units in Belo Monte (HPP),
150 ms after the event. The simulated event can be seen in
Fig. 6a, which shows the HVDC power flow (dark yellow)
changing from 4000 MW to 0 MW at the instant of the forced
outage in the XES bipole. Fig. 6b shows the effect on the
attribute AngDif, which goes from a steady-state condition,
at approximately 53°, to a transient condition, with a maximum
swing angle of 110°. At 08:23:27, the tripping signal (TS), in
orange, immediately assumes value 1, as shown in Fig. 6c.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



(a)

(b)
Fig. 5. SIPS arming in case of loss of steady-state condition.

(a)

(b)

(c)
Fig. 6. SIPS triggering due to forced outage of the HVDC bipole.

This tripping signal serves as backup for a primary tripping
signal sent to a dedicated system at Belo Monte HPP, after
the occurrence of an emergency switch off at the embedded
HVDC link.

V. CONCLUSIONS AND FINAL REMARKS

The modeling and implementation of a customized ML
model is the focus of this work, where synchrophasor data
is used to enhance the arming procedure of a critical SIPS
of the BIPS. Risk-averse decision-making, mitigating loss of
selectivity conditions, is achieved by modeling an alternative

loss function with the aim of avoiding insufficient generation
rejections. Implementation has been described, highlighting
the specification of an RSCAD/RTDS/PMU/PDC infrastruc-
ture, the usage of the openECA software environment, the
application of data quality verification functions, and the
embedding of the ML model within the software framework.
Numerical results emphasize the effectiveness of the ML
model in mitigating cases of insufficient generation rejections,
in order to guarantee the transient stability of the BIPS,
in cases of forced outage of the HVDC links. The results
using HIL simulations show the appropriate functioning of the
approach in cases of loss of PMU data, loss of steady-state
conditions, and forced outage of the HVDC links.

Future works are envisioned to carry out a pilot project with
field implementations at the corresponding HVDC converter
stations in Brazil. The impact of communication latency on
the robustness of the application is an aspect to be analyzed
in the pilot project. Moreover, the ML model is expected
to be expanded, taking into account the PMU data currently
available in the Brazilian WAMS, as well as data associated
to post-fault conditions.
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