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Abstract—Detection and identification of faults in large distri-
bution systems with limited metering continue to pose significant
challenges for system operators. The prevalence of installed
phasor measurement units (PMUs) in power systems, provides an
invaluable resource for fault detection and location. Therefore,
there is a rich literature on methods that leverage the benefits of
these PMUs for the purpose of event detection. However, a notable
proportion of the proposed solutions assume the presence of one
PMU at every bus, or at a large percentage of buses that will make
the system observable. Despite concerted efforts to substantially
increase the number of installed PMUs, majority of utilities have
yet to attain comprehensive PMU coverage at the terminals of
every transmission line. Thus, many of the proposed methods
cannot be practically applied to existing power systems with
limited number of installed PMUs. Consequently, the objective
of this paper is to develop a method, aided by the application of
Convolutional Neural Networks, to identify and precisely locate
faults within a system, even when only a minimal number of
Phasor Measurement Units (PMUs) are present.

Index Terms—Fault Detection, Fault Location, CNN aid Fault
Detection, Strategical PMU Placement, Ordinary Least Square
(OLS)

I. INTRODUCTION

Over the recent years, there has been a steady increase in the
number of installations of Phasor Measurement Units (PMUs)
in power systems. This surge in PMU installations can be
attributed to the numerous applications that were developed
to leverage the increasing numbers of these devices. These
methods effectively address a variety of issues prevalent within
power systems, including fault, line outage and other anomaly
detection. Nevertheless, overall PMU numbers in most power
grids still remain limited due to costs associated with their in-
stallation and maintenance. Consequently, a number of studies
are motivated by addressing the challenges related to lack of
sufficient PMUs for various applications.

Among the proposed methods, emergence of data-driven
approaches has become particularly prominent, gaining sub-
stantial popularity in the detection and localization of faults
as outlined in [1], [2]. This can be largely attributed to
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the advancements in technology that have fostered their de-
velopment. Such methodologies propose various distinctive
strategies, utilizing the unique structures of Artificial Neural
Networks (ANN). The most commonly recognized models
within this domain include the Graph Convolutional Neural
Network (GCNN) [3] and the widely adopted Multi-Layer
Perceptron (MLP) [4]–[6]. These models exemplify the diverse
structures of ANNs that are designed for fault detection and
localization in power systems. However, majority of these
approaches suggest solutions predicated on the assumption
that a PMU is either present at each bus, or is placed at
a large proportion of buses, a condition which would yield
the system observable. Thus, many of the proposed methods
cannot be practically applied to existing power systems with
limited number of installed PMUs.

In addition to the data-driven approaches, recently, an
alternative formulation which is based on the so called ”sparse
estimation” method is shown to solve the fault location prob-
lem with very few PMUs [7], [8]. For an n-bus system with p
PMUs, the approach makes use of a set of under-determined
set of equations:

[Zp] · [∆I] = [∆Vp] (1)

where,
[Zp] (p× n) contains p rows of the bus impedance matrix,
[∆Vp] (p × 1) contains the changes in bus voltage phasors
from pre-fault to post-fault conditions measured at p buses
with PMU measurements,
[∆I] (n×1) contains the change in bus current injections due
to the changes in bus voltages. This vector is expected to be
sparse having only non-zeros corresponding to the terminal
buses of the unknown faulted branch.

Applying the method of Least Absolute Shrinkage and
Selection Operator (LASSO) [9] to the solution of (1), ∆I
can be solved as shown in [7], [8] provided that there are
sufficient number of strategically placed PMUs. The required
number of PMUs may be large for certain systems and the
performance of LASSO may deteriorate if PMU numbers are
reduced.

Additionally, the location of PMUs is important for system
operators in the execution of a range of applications, includ-
ing but not limited to, State Estimation (SE), Line Outage
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Detection, and Fault Detection. Consequently, a breadth of
methods designed to optimally place PMUs for various types
of applications have been developed in the literature [10]–[12].
However, most of these methods are based on the assumption
of an abundant availability of PMUs, which are then utilized to
ensure the observability of the system. Furthermore, when con-
sidering fault detection and localization, instead of considering
network observability, PMUs should be placed in a strategic
manner to accurately capture faults system wide. Thus, this
paper introduces an approach to PMU placement, explicitly
designed to identify the best locations for these units.

Once all PMU locations are determined, an Artificial Neural
Network (ANN) is used to assist and improve the sparse
estimation problem solution when there are few installed
PMUs. In order to accomplish this objective a Convolutional
Neural Network (CNN) is employed as the chosen Artificial
Neural Network (ANN) model. Furthermore, the approach is
comparatively evaluated with respect to the commonly used
method of the Multi-Layer Perceptron (MLP), to demonstrate
the performance disparities between them. In both method-
ologies, the chosen input features consist of the changes in
voltage phasors at the fault instant. Regarding the output of
the model, one-hot encoding is employed for all transmission
lines to indicate the fault location.

To generate a training dataset with the mentioned input and
output structure, a 196-bus three-phase system is used. The
pre-fault and post-fault network bus voltages are obtained in
three-phase for a diverse range of faults that are introduced on
each line in the system. Then, both models are trained using
the created dataset and tested using unseen data to assess their
performance in correctly identifying the faulted line. Once
the faulted line is determined via ANN, the ”Ordinary Least
Squares (OLS)” method detailed in [13] is employed to accu-
rately identify the fault location along the determined branch.
Finally, the impact of the number of PMU measurements on
the performance of the proposed approach is also investigated
for different fault scenarios.

Further details of the processes mentioned above is given
in following sections.

II. PMU PLACEMENT STRATEGY

Prior to the creation of the training and test set, it is
important to determine PMU locations. In order to achieve
this, it is observed that the positioning of PMUs around the
leaf nodes significantly improves the accuracy in capturing the
impacts of any fault occurring in the system. Consequently,
to ensure a strategic deployment of the PMUs around the
leaf nodes, the following strategic PMU placement scheme
is employed.

Consider the following optimization problem for an n-bus
power system with L branches:

min x

s.t. Cx ≥ 2

x ∈ {0, 1}
(2)

where:
x is an n × 1 binary vector with xi = 1 if a PMU is placed
at bus i, 0 otherwise.
C is the coefficient matrix formed following the procedure
described below.

Inverting the bus admittance matrix (Ybus), bus impedance
matrix (Zbus) can be obtained. Columns of Zbus, correspond-
ing to two terminal buses k and m of branch k −m are then
extracted to form a n × 2 sub-matrix ck. The LU factorization
is subsequently applied to the sub-matrix ck, resulting in the
formation of matrices L(n × 2), U(2 × 2), and P (n × n).
Following this procedure, one of the terminal buses of a branch
is fixed. Then, linearly independent solution combinations are
determined by examining the non-zero entries in the second
column of the L matrix. Upon deriving all possible combina-
tions, the respective columns of the ”Buses” corresponding to
these combinations will be set to ”1” in the C matrix for the
row of specified branch. This procedure is repeated for each
branch k = 1, . . . ,M and will be used to form C.

The constraints for the integer programming problem are
encoded in C. Each row of C corresponds to a branch,
and each column to a bus in the power system. Then the
integer linear programming problem of (2) is solved to find
the optimal placement of PMUs.

Algorithm 1 Strategical PMU Placement

Zbus = inv(Ybus)
C = zeros(num branch,num bus)
while counter ≤ num branch do

Zl = Z(:,branch list(counter,:))
[L, U, P] = lu(Zl)
cl0 = find(P(1,:) == 1)
row = find(L(:,2) > 0)
cl1 = find(P(row,:) == 1)
C(i,[cl0, cl1]) = 1

end while
ub = ones(num bus,1);
lb = zeros(num bus,1);
b = ones(num branch,1) * 2;
intcon = num bus;
intlinprog(ones(num bus,1),intcon,-1*C,-1*b,[],[],lb,ub);
found pmu locations = find(x = 1);

where,
• P is defined as the permutation matrix, which represents

the row interchanges executed during the factorization
procedure (A = P ′LU).

The objective of the placement algorithm is to identify
strategic locations for PMUs around the leaf nodes within
the system and enable capturing of the impact of any fault
occurring in the system.

III. TRAINING AND TEST DATA SET CREATION

In order to create the training and test data set, first the
fault is simulated. Note that, when a fault occurs along a
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transmission line, its impact will be observed at all system
buses as a voltage transient. In the hypothetical (not realistic)
scenario where none of the protective relays operate, the fault
transients will diminish gradually, and bus voltages will settle
at a new post fault steady state operating point. Therefore, all
bus voltages will change with respect to their pre fault steady
state conditions [7]. Faults can be visualized as shown in Fig.
1.

Fig. 1: Fault on branch k-m.

It can be shown that the fault current can be replaced by
equivalent virtual current injections at the faulted line terminal
buses as shown in Fig. 2.

Fig. 2: Virtual Current Injections on adjacent buses for
faulted branch k-m.

Moreover, by adjusting the magnitude and angular differ-
ences between these virtual current injections, it is possible
to effectively modify the fault location and impedance. Con-
sequently, the above-described modifications are employed to
produce a comprehensive training data set.

This set includes a wide variety of cases, with a total of
420 distinct fault scenarios simulated for each line within the
three-phase 196 Bus distribution system given in Fig. 3.

Fig. 3: Three-phase 196 Bus system.

To simulate the aforementioned fault scenarios, a three-
phase power flow is employed by introducing virtual current

injections as constant current sources at each terminal bus of
a faulted branch. Then, for each branch within the system
these scenarios are systematically repeated to obtain voltage
magnitudes and voltage phase angles considering the given
fault scenarios. Once all the pre and post fault voltage phasors
are obtained, the voltage difference is calculated by using the
∆V = Vpost − Vpre for these cases. Then, the strategic PMU
placement algorithm is performed for the 196 Bus system.

Fig. 4: Three-phase 196 Bus system with 50 PMU.

As shown in Fig. 4, a total of 50 PMUs (50/196 ≈ 25%)
are strategically placed throughout the 196 Bus system. This
arrangement is done based on the assumption that each PMU
device possesses a single current channel, thereby enabling the
calculation of an adjacent bus relative to the initial location
of each PMU device. In Fig. 4 the PMU locations are marked
with green color.

Then voltage phasors corresponding to those PMUs as a
result of aforementioned scenarios are gathered from the power
flow results and allocated to the data set. Subsequently, to train
and evaluate the ANN during the training process, 80% of the
data are reserved for training data set and 20% of the data are
allocated to the validation data set.

IV. CONVOLUTION NEURAL NETWORK MODEL

Convolutional Neural Networks (CNNs) offer a distinct
advantage over traditional Multi-Layer Perceptrons (MLPs)
when it comes to the classification problem, primarily due
to their ability to effectively identify and exploit local patterns
within the data [14]. This is facilitated through the use of
convolutional layers that employ local filters or kernels, which
slide across the input data, extracting valuable features from
smaller sections. As a result, CNNs can effectively learn and
recognize spatial hierarchies within the data, enabling them
to detect patterns even in large datasets. Moreover, CNNs
are well-suited for handling variable-length input data, since
their convolutional layers can be applied to inputs of different
lengths, automatically adapting to the size of the data. The
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structure of the CNN is given in Fig. 5. The details of both
MLP and CNN can be found in [15].

In contrast, MLPs process input data in a global manner, as
each neuron in a given layer is fully connected to all neurons in
the previous layer. This results in a considerable increase in the
number of parameters to be trained, which can lead to longer
training times and the risk of overfitting. Additionally, MLPs
lack the inherent ability to recognize distinctive relationships
within the data, making them less efficient at extracting and
exploiting local patterns. Consequently, CNNs outperform
MLPs in tasks where the identification and preservation of
local patterns are crucial for accurate predictions. By lever-
aging their unique architecture and local feature extraction
capabilities, CNNs provide a more efficient and powerful tool
for 1D data analysis compared to traditional MLPs.

Therefore, building upon the findings, in this paper, it
is aimed to improve the performance of the fault detection
method by using the Convolutional Neural Network (CNN)
as the Artificial Neural Network (ANN) architecture. This
modification is expected to yield improved accuracy and ef-
fectiveness in detecting and pinpointing faults occurred within
the power system.

The Convolutional Neural Network (CNN) model used in
this study consists of multiple layers, including convolutional
layers, activation layers, and fully connected layers. The
architecture of the CNN model is summarised as follows:

1) Input layer: This layer accepts input data with dimen-
sions (Xtrain, 1).
where,
• Dimension of (Xtrain, 1) is equal to the total number

of PMUs within the system.
2) First convolutional block:

• Conv1D layer with 64 filters,
• Leaky ReLU activation function with a slope coef-

ficient of α.
• Conv1D layer with 64 filters.
• Leaky ReLU activation function with a slope coef-

ficient of α.
• MaxPooling1D layer with a pool size of 2 and a

stride of 1.
3) Second convolutional block:

• Conv1D layer with 32 filters.
• Leaky ReLU activation function with a slope coef-

ficient of α.
• Conv1D layer with 32 filters.
• Leaky ReLU activation function with a slope coef-

ficient of α.
• MaxPooling1D layer with a pool size of 2 and a

stride of 1.
4) Third convolutional block:

• Conv1D layer with 16 filters.
• Leaky ReLU activation function with a slope coef-

ficient of α.
• Conv1D layer with 16 filters.

• Leaky ReLU activation function with a slope coef-
ficient of α.

• MaxPooling1D layer with a pool size of 2 and a
stride of 1.

5) Flatten layer to convert the feature maps into a one-
dimensional vector.

6) Dense layer with the same number of neurons as the di-
mensions of ytrain and a Leaky ReLU activation function
with a slope coefficient of α.

7) Output layer: Dense layer with the same number of neu-
rons as the dimensions of ytrain and a softmax activation
function.
where,
• Dimension of ytrain is equal to the number of

branches where faulted branch is marked with ”1”
while others are kept as ”0”.

Upon finalizing the structure of the model, hyperparameters,
including the learning rate, batch size, among others, are
adjusted in accordance with the observed performance of the
model. Furthermore, a learning schedule strategy is imple-
mented during the training process. For every 30 epochs in the
training, the learning rate is reduced by a factor of 1

10 . This
approach seeks to achieve more effective and accurate results.
Then, utilizing the training dataset acquired as described in
Section III, the CNN model is trained and validated using
the test dataset. A comprehensive analysis of the training
outcomes can be found in Section VI.

V. ORDINARY LEAST SQUARES ESTIMATION

Upon identification of the fault location utilizing the trained
model, the subsequent step is the estimation of virtual currents
via the Ordinary Least Squares Estimation (OLS) method. The
reason behind employing the OLS estimation is to determine
the virtual fault currents and pinpoint the fault locations
with greater precision. To achieve this, initially, all variables
associated with the phasor domain are transformed into the
sequence domain yielding:[

Yseq,ee Yseq,ei
Yseq,ie Yseq,ii

]
∗
[
∆Vseq,e
∆Vseq,i

]
=

[
∆Iseq,e
∆Iseq,i

]
(3)

• subscript i refers to buses with PMUs and,
• subscript e refers to buses without PMUs,
• ∆V is the voltage differences between post and pre

outage event,
• ∆I is the virtual current injection vector,

Then QR transformation is applied to eliminate ill-
conditioning caused by the collinearity:

Rseq,ii ∗∆Vseq,ii = [QT
seq,eiQ

T
seq,ii] ∗

[
∆Iseq,ee
∆Iseq,ii

]
(4)

where,

• Subscript seq refers to ”zero, positive, and negative”
sequences,
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Fig. 5: The Architecture of CNN.

Then, each sequence component can be estimated as fol-
lows:

[Qfault
bus1,seq Q

fault
bus2,seq] ∗

∆Ifaultbus1,seq

∆Ifaultbus2,seq

 ≈ ∆V ′seq (5)

where,
• Qfault

bus1,seq and Qfault
bus2,seq denotes the reduced [QT

ei Q
T
ii]

matrix for the corresponding sequence, whose columns
correspond to the terminal buses of the faulted branch
and whose rows correspond to the buses with PMU
measurements,

• ∆Ifaultbus1,seq and ∆Ifaultbus2,seq , are the entries of the 2 × 1
unknown current vector for the corresponding sequence,
at the terminal buses of the faulted branch,

• ∆V ′seq = Rii,seq ∗∆Vii,seq ,
An optimal solution of (5) can be found by a standard

Ordinary Least Squares (OLS) algorithm [13]:

β̂ = (XTX)−1XT y (6)

where:

β =

∆Ifaultbus1,seq

∆Ifaultbus2,seq

,

y = ∆V ′seq ,

X = [Qfault
bus1,seq Q

fault
bus2,seq].

Then, the computed virtual sequence currents are trans-
formed back to the phase domain and the fault distance from
each terminal bus can be calculated as:

FaultLocation(m) =
|Ifk|

|Ifk|+ |Ifm|
∗ 100% (7)

FaultLocation(k) =
|Ifm|

|Ifk|+ |Ifm|
∗ 100% (8)

where,
• Ifm is the virtual fault current at bus m,
• Ifk is the virtual fault current at bus k.

VI. TEST RESULTS

Proposed methodology is comparatively evaluated with re-
spect to the prevalent approach (MLP) by employing the Keras
library in Python for model construction [16]. Subsequently,
the training and test datasets, as obtained in Section III are
used to train both the CNN and MLP networks under the
assumption that the PMUs are placed as shown in Fig. 4.The
outcomes of the training process are quantified in both loss
and accuracy graphs as shown in Fig. 6 and 7, respectively.

Fig. 6: Loss graph of MLP network with 50 PMU.
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Fig. 7: Accuracy graph of MLP network with 50 PMU.

Upon the strategic placement of 50 Phasor Measurement
Units (PMUs) throughout the system, the Multi-Layer Per-
ceptron (MLP) structure yields an accuracy of approximately
85%. Moreover, the training process necessitates close to 200
epochs to achieve this accuracy level. In contrast, when the
proposed method is trained with identical PMU locations, the
training process yields the loss and accuracy charts given in
Fig. 8 and 9 respectively.

Fig. 8: Loss graph of CNN network with 50 PMU.

As evident from Fig. 8 and 9, use of the CNN network
architecture significantly improves the accuracy from 85% to
99.9% for the identical data set by using only 50 PMUs. Fur-
thermore, utilizing the CNN architecture substantially reduces
the number of epochs, thereby increasing time efficiency of
the training process.

Upon completion of the model training, in order to further
evaluate its performance, new fault cases comprising unseen
fault locations and magnitudes are produced. Subsequently, the
trained model is performed to identify the locations of these

Fig. 9: Accuracy graph of CNN network with 50 PMU.

faults, which were previously unseen by the trained model.
The results of detecting fault locations using both proposed
method and MLP are given in Table I.

After predicting the locations using the trained model, the
OLS estimation method detailed in Section V is employed to
determine both the fault type and its precise location on the
line. The results of the OLS process, subsequent to identifying
fault locations for previously unseen fault cases using the
proposed CNN model, are presented in Table II.

TABLE I: The performance comparison of proposed method
and MLP for unseen fault cases.

Total Fault

Cases

Utilized PMU

Number

Used

Method

Detected Fault

Locations
Performance

4116 50 CNN 4056 98.54%

4116 50 MLP 3085 74.95%

In Table I, results for a total of 4,112 created fault cases are
reported. During the generation of these unseen fault cases,
three distinct fault locations ”15%, 45%, and 70%,” of he
line length are used; these locations were not utilized during
the training process. Once the fault distances are determined,
different types of faults labeled as ”ABC, AB, AC, A, B, C to
ground” were systematically simulated based on the specified
locations for each branch within the system. Then, both post-
fault and pre-fault values were collected for corresponding
PMU locations. Finally, trained models are used to determine
the faulted branch within the system and the results are given
in Table I. As evident from the performance results in Table I,
the proposed method has much higher percentage of success
compared to the MLP in terms of detecting the previously
unseen cases by the trained model.

As evident from Table II, it is apparent that after identifying
the locations through the trained ANN models, OLS is utilized
to ascertain both the fault type and its exact location among
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TABLE II: The performance of the OLS process for
determining the fault types and distances.

Method
Detected

Locations

Utilized PMU

Number

Used

Method

Detected Fault

Type & Distance
Performance

Overall

Performance

CNN 4056 50 OLS 3999 98.60% 97.15%

MLP 3085 50 OLS 3035 98.38% 73.73%

the detected faulted branches with considerable accuracy using
the voltage differences gathered from the deployed PMUs.

As depicted from both Table I and II, using the proposed
method provides satisfactory results for not only the training
process but also the detection and identification of previously
unseen fault cases in the 196-bus three phase distribution
system utilizing the capabilities of CNN architecture and OLS.

VII. CONCLUSION

Accurate identification of types and locations of faults
in power networks is needed to avoid or minimize service
interruptions. This paper introduces an approach which is
aided by artificial neural networks to achieve this goal with a
high rate of success. One significant and distinguishing feature
of the proposed approach is its reliance on a limited number
of synchronized voltage measurements received from a set
of strategically placed PMUs. Effectiveness of the proposed
approach is illustrated by simulated scenarios on a typical
three-phase distribution system.
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