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Abstract—This paper provides the theoretic foundation of a
new time-domain modeling framework for three-phase unbal-
anced AC power systems. In particular, a generalized variant
of the standard dq0 transformation termed as g-dq0 transform
is derived. The proposed g-dq0 transform represents any phase
and/or magnitude unbalanced three-phase quantity in a time-
invariant coordinates system, thus replicating the features of
standard dq0 transform for balanced AC systems. Furthermore,
underpinned by an invariance-preserving property, the g-dq0
transform projects impedance and admittance matrices onto
an equivalent time-invariant representation regardless of the
structural asymmetry or imbalances in time-domain quantities.
Finally, we provide an example for the dynamic circuit modeling
in g-dq0 coordinates, modeling details on different unbalanced
load configurations, and simulation-based accuracy verification
test cases.

Index Terms—power system, power converter, unbalanced AC
systems, Park transformation, Clarke transformation.

I. Introduction

The global shift toward integration of renewable energy

sources due to the climate change concerns has been trans-

forming the power grid to a so-called converter-dominated

state. This is due to fact that the renewable energy sources are

predominantly interfaced with the grid via power electronics

converter. The replacement of well-established synchronous

machine (SM) technologies (and their stabilizing control

mechanisms) with power converters poses critical stability and

robustness challenges for the power system operation. There-

fore, designing new converter control methods, establishing

new modeling and simulation frameworks, performing stability

and interaction analysis, and redefining grid codes and test

requirements are currently and extensively being explored by

the academic community, manufacturers, and system operators

[1]–[9].

An open problem associated with the converter-based sys-

tems is the rigorous modeling and analysis of the unbalanced

system to ensure a robust and reliable operation. Unbalanced

conditions in a converter-dominated power grid can occur

in several potential scenarios, e.g., single-phase small-scale
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microgrid applications, system- and device-level unbalanced

fault conditions, unbalanced load integration, and non-uniform

per-phase parameter tolerances, among others. It is worth

mentioning that establishing accurate and generic modeling

framework for the unbalanced system dynamics is a prereq-

uisite for the control design and stability analysis of such

systems.

The aforementioned problem was previously explored along

several directions, e.g., by exploiting dynamic phasor theory

[10], independent reciprocal basis theory [11], symmetrical

component system theory [12], [13], and time-domain mod-

eling frameworks [14], [15]. However, to the best of our

knowledge a linear time-invariant representation of unbalanced

system dynamics in presence of phase-and-magnitude unbal-

anced AC quantities and asymmetric three-phase circuitry is

an open problem to this date. In this paper, we extend the

transformation proposed in [14], and derive a generalized

time-domain transformation for the unbalanced system. The

proposed transformation resembles and extends the standard

dq0 transform (that is broadly utilized in modeling and analysis

of the balanced AC systems [16]–[19]), thus, it is termed as

the generalized dq0, i.e., g-dq0 transform.

In this work, we begin by establishing the g-dq0 trans-

form for the magnitude-unbalanced AC signals (which is

centered around the unbalanced signal consideration). We

continue by highlighting the transform application for the

phase-unbalanced signals, as well. Next, we present details

on the properties of the g-dq0 transform, derive its inverse,

prove an invariance-preserving property under the g-dq0

transform, and subsequently show how it can be utilized to

transform electrical circuit dynamics (that is centered around

the unbalanced circuit parameter consideration). Finally, we

provide an example for the dynamic circuit modeling in g-

dq0 coordinates, modeling details on different unbalanced load

configurations, and simulation-based accuracy verification test

cases (that simultaneously include unbalanced signals and

circuit parameters).

II. Theoretical Foundation

In this section, we establish the theoretic foundation of the g-

dq0 transform. For the sake of completeness, we firstly follow

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



the recipe in [14] to derive an intermediate transformation that

is subsequently extended to the g-dq0 transform.

A. Notation and preliminaries
In this paper, R denotes the set of real numbers, R>0

denotes the set of positive real numbers, and R[a,b] denotes

the interval between real numbers a and b. The square matrix

of all zeros is denoted by 0n×n, the n-dimensional identity

matrix and column vector of all ones are denoted by In and 1n,

respectively. For the column vectors ym ∈ R
m and yn ∈ R

n,

y = (ym, yn) ∈ R
m+n denotes the stacked column vector.

Next, y(t) ∈ R
m and yabc(t) ∈ R

3 respectively denote a

m-dimensional non-three-phase and three-dimensional three-

phase quantities at time t > 0.

A generic three-phase quantity is defined by

yabc(t) :=

⎛
⎝ya(t)
yb(t)
yc(t)

⎞
⎠ =

⎛
⎝Ya cos (θa(t) + δa)
Yb cos (θb(t) + δb)
Yc cos (θc(t) + δc)

⎞
⎠ , (1)

where Ya, Yb, and Yc ∈ R>0 denote the per-phase magnitudes

that are not necessarily identical,⎛
⎝θa(t)
θb(t)
θc(t)

⎞
⎠ =

⎛
⎝ ω�t
ω�t− 2π

3
ω�t+ 2π

3

⎞
⎠ , (2)

denotes a set of three-phase balanced phase angles in which

ω� ∈ R>0 denote the stationary angular frequency and δa, δb,

and δc ∈ R[0,2π] denote arbitrary constant phase angle shifts.

The magnitude-preserving Clarke (i.e., abc → αβγ) trans-

formation [20] and Park (i.e., αβγ → dq0) coordinate trans-

formation are respectively defined by

TClarke =
2

3

⎛
⎝1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

1
2

1
2

1
2

⎞
⎠ , (3)

and

TPark(·) =
⎛
⎝ cos(·) sin(·) 0
− sin(·) cos(·) 0

0 0 1

⎞
⎠ . (4)

Last, ∂/∂t denotes the partial derivative with respect to time.

B. The generalized dq0 transform
We begin by considering the following three-phase time-

dependent quantity

xabc(t) =

⎛
⎝xa(t)
xb(t)
xc(t)

⎞
⎠ =

⎛
⎝Xa cos θa(t)
Xb cos θb(t)
Xc cos θc(t)

⎞
⎠ , (5)

in which the phase magnitudes are not necessarily identical1.

Let us consider the diagonal augmentation of the Clarke

transformation introduced in Subsection II-A, that is,

TClarke =

(
TClarke 03×3

03×3 TClarke

)
. (6)

1The case with the arbitrary phase angle shifts is discussed later

Similarly, one can define rotation angles for the standard Park

transformation (as in Subsection II-A) in positive and negative

directions and subsequently, augment αβγ → dq0 coordinates

transformation as

TPark =

(
TPark (ω

�t) 03×3

03×3 TPark (−ω�t)

)
. (7)

Next, we apply the signal delay cancellation method as in [14],

[21] that is the time-domain equivalent of the standard Fortes-

cue transformation [13]. The transformation matrix associated

with the signal delay cancellation method takes the form [14]

T+−0 =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −1 0
0 1 0 1 0 0
0 0 1 0 0 0
1 0 0 0 1 0
0 1 0 −1 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (8)

Last, we introduce the time-delayed copies of the original

signal in (5) as

xabc(t− τ) =

⎛
⎝xa(t− τ)
xb(t− τ)
xc(t− τ)

⎞
⎠ =

⎛
⎝Xa cos θa(t− τ)
Xb cos θb(t− τ)
Xc cos θc(t− τ)

⎞
⎠ , (9)

where τ = π/2ω� denotes the quarter-period of the periodic

signals in (5) and let

xabc(t) =

(
xabc(t)

xabc(t− τ)

)
. (10)

Having all the preliminaries in place, below composite trans-

formation projects the original signal (5) and its delayed copy

(9) onto a six-dimensional coordinate system that comprises

the positive and negative components for the dq0 coordinates,

i.e.,

x±
dq0(t) = TParkT+−0TClarkexabc(t)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

x+
d

x+
q

x+
0

x−
d

x−
q

x−
0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

κ+
d (Xa +Xb +Xc)

0
κ+

0

(
x�

abc(t)13

)
κ−

d (2Xa −Xb −Xc)
κ−

q (Xc −Xb)

κ−
0

(
x�

abc(t− τ)13

)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (11)

where (κ+
d , κ

+
0 , κ

−
d , κ−

q , κ−
0 ) = (1/6)

(
2, 1, 1,

√
3, 1

)
.

Assumption 1 (Stationary angular frequency)

We assume that all three-phase quantities are constrained to
a stationary angular frequency ω�.

The implication of the Assumption 1 is that the presented

coordinate transformations are applicable to the steady-state

three-phase quantities, thus, delivering a steady-state model of

the unbalanced systems, as in [14]. More precisely, all the AC

signals are assumed to be in a steady-state condition with a

constant frequency.

Remark 1 (Intermediate coordinate transformation [14])

Under the balanced signal condition, i.e., Xa = Xb = Xc
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in (5) and (9) all the elements of x±
dq0(t) in (11) vanish

except x+
d = Xa. Therefore, the coordinate transformation

TParkT+−0TClarke is magnitude-preserving that follows from
the choice of Clarke transformation TClarke in (3). Under the
unbalanced signal condition (i.e., the general case), although
the image of the unbalanced three-phase quantity (5) as in (11)

includes four time-invariant elements, the x±
0 coordinates are

still time-varying.

In what follows, we extend the coordinate transformation

in (11) such that all target coordinates are time-invariant. It

is worth mentioning that a time-invariant representation of the

unbalanced three-phase quantities allows to apply standard lin-

ear modeling, analysis, and control design tools to unbalanced

three-phase systems.

Proposition 1 (Linear combination of sinusoids)

For a set of sinusoids with an identical frequency and arbitrary
magnitudes and phase shifts, the following identity holds

n∑
j=1

Yj cos (ωt+ φj) = Y cos (ωt+ φ) , (12)

where n is a positive integer and Y and φ are given by

Y =

√√√√(
n∑

j=1

Yj cosφj

)2

+

(
n∑

j=1

Yj sinφj

)2

, (13a)

φ = tan−1

(∑n
j=1 Yj sinφj∑n
j=1 Yj cosφj

)
. (13b)

Proof is provided in the Appendix. Note that the time-

varying coordinates in (11), i.e., x+
0 and x−

0 (similar to the left-

hand side (LHS) of (12)) are linear combinations of the cosine

functions in (5) and (9), respectively. Therefore, by applying

Proposition 1 one can alternatively write x+
0 and x−

0 in (11)

as (
x+

0

x−
0

)
= κ0X0

(
cos (ω�t+ φ0)
sin (ω�t+ φ0)

)
, (14)

where κ0 = κ+
0 = κ−

0 , and X0 and φ0 are respectively

defined by (13a) and (13b) with Yj ∈ {Xa, Xb, Xc} and

φj ∈ {0,±2π/3}. It is worth mentioning that the sine term in

(14) arises due to the time-delayed nature of x−
0 as in (11).

Note that the image of an arbitrary three-phase balanced

quantity (e.g., as in (5) while assuming Xa = Xb = Xc) in

the stationary αβγ-coordinates (established by TClarke as in

Subsection II-A) includes sine, cosine, and zero components.

Thus, the combination of x+
0 and x−

0 in (14) and x+
q in

(11), can be perceived as the image of a three-phase balanced

quantity in αβγ-coordinates. Inspired by this observation, we

replace x+
0 and x−

0 in (11) by the expressions in (14) and

introduce the permutation matrix

TP =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (15)

that subsequently reorders the coordinates of (11) to

TPx
±
dq0(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

κ+
d (Xa +Xb +Xc)

κ−
d (2Xa −Xb −Xc)
κ−

q (Xc −Xb)
κ0X0 cos (ω

�t+ φ0)
κ0X0 sin (ω

�t+ φ0)
0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (16)

Next, we construct an auxiliary transformation that respec-

tively preserves the time-invariant and rotates the time-varying

elements in (16), that is,

TR =

(
I3 03×3

03×3 TPark (ω
�t)

)
. (17)

Finally, combining (6)-(8), (15), and (17) establishes a com-

posite mapping, i.e., the generalized dq0 transform

M = TRTPTParkT+−0TClarke, (18)

that transforms xabc(t) in (10) to a time-invariant form

xg-dq0 = Mxabc(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

κ+
d (Xa +Xb +Xc)

κ−
d (2Xa −Xb −Xc)
κ−

q (Xc −Xb)
κ0 cos(φ0)X0

κ0 sin(φ0)X0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (19)

For the clarity of exposition M is expanded as in (20)2. We

close this section by remarking that the target coordinates (19)

are time-invariant when the original signal in (5) is in steady

state. Therefore, one can apply the representation (19) for the

small-signal modeling, stability analysis, and control design of

the unbalanced systems.

III. Properties and Applications

In this section, we investigate the properties of coordinate

transformation (18) and show how it can be applied to model

circuit dynamics.

A. Generalized dq0 transform properties
To begin with, let us highlight a fundamental similarity

between (18) and the standard dq0 transformation [19], [20]

that is widely recognized as a powerful tool for the modeling,

analysis, and control of the balanced AC systems.

The standard Park transformation as in [20] that is obtained

by combining the Clarke (3) and dq0 transforms (4), projects a

set of steady-state three-phase (phase and magnitude) balanced

quantity onto a three-dimensional time-invariant representa-

tion. If the axes of the rotating dq0-frame are appropriately

aligned with the those of the original abc-frame, then the

resulting quantity in dq0-coordinates has only one non-zero

element. This is the direct consequence of the fact that a

three-phase balanced AC quantity is fully represented by its

magnitude at a prescribed frequency.

2Due to the lengthy calculations required to derive (20), we recommend
the interested reader to possibly evaluate (20) with a symbolic computational
tool, as well.
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M =
1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos (ω�t) − cos
(
ω�t+ π

3

) − cos
(
ω�t− π

3

)
sin (ω�t) − sin

(
ω�t+ π

3

)
cos

(
ω�t+ π

6

)
cos (ω�t) − cos

(
ω�t− π

3

) − cos
(
ω�t+ π

3

)
sin (ω�t) cos

(
ω�t+ π

6

) − sin
(
ω�t+ π

3

)
sin (ω�t) cos

(
ω�t+ π

6

) − sin
(
ω�t+ π

3

) − cos (ω�t) cos
(
ω�t− π

3

)
cos

(
ω�t+ π

3

)
1
2 cos (ω

�t) 1
2 cos (ω

�t) 1
2 cos (ω

�t) 1
2 sin (ω

�t) 1
2 sin (ω

�t) 1
2 sin (ω

�t)

− 1
2 sin (ω

�t) − 1
2 sin (ω

�t) − 1
2 sin (ω

�t) 1
2 cos (ω

�t) 1
2 cos (ω

�t) 1
2 cos (ω

�t)

− sin (ω�t) sin
(
ω�t+ π

3

) − cos
(
ω�t+ π

6

)
cos (ω�t) − cos

(
ω�t+ π

3

) − cos
(
ω�t− π

3

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (20)

Similarly, the coordinate transformation (18) transforms

an unbalanced three-phase quantity into a six-dimensional

time-invariant representation. Note that a general three-phase

quantity (with unbalanced phase and magnitude) as in (1) is

defined by six independent quantity (i.e., the magnitudes and

phase angles) at a certain frequency. Therefore, the transform

in (18) can be perceived as the generalized form of the standard

dq0 transformation. Next remark demonstrates that the trans-

formation M in (18) is invertible, therefore, one can uniquely

recover the original signals from the target coordinates (19).

Remark 2 (Inverse g-dq0 transform)

Straightforward computations shows that all the underlying
transformations in the right-hand side (RHS) of (18) are
invertible. Therefore, the inverse g-dq0 transform is given by

M−1 = T−1
ClarkeT

−1
+−0T

−1
ParkT

−1
P T−1

R . (21)

The coordinates transformation (18) in Section II is derived

while considering magnitude-unbalanced AC quantities. In

what follows, we extend the transformation application to

the phase-unbalanced AC quantities. Consider the general AC

signal form in (1) that is alternatively written as

yabc = yabc,1 − yabc,2 =

⎛
⎝Ỹa cos θa

Ỹb cos θb

Ỹc cos θc

⎞
⎠−

⎛
⎝Ŷa sin θa

Ŷb sin θb

Ŷc sin θc

⎞
⎠ , (22)

where we exploited the trigonometric angle sum identity, and⎛
⎝Ỹa

Ỹb

Ỹc

⎞
⎠ =

⎛
⎝Ya cos δa

Yb cos δb

Yc cos δc

⎞
⎠ and

⎛
⎝Ŷa

Ŷb

Ŷc

⎞
⎠ =

⎛
⎝Ya sin δa

Yb sin δb

Yc sin δc

⎞
⎠ .

Let us shift the angles in (2) and define⎛
⎝ϑa

ϑb

ϑc

⎞
⎠ =

⎛
⎝θa

θb

θc

⎞
⎠−

(π
2

)
13. (23)

Subsequently, the sine terms in the RHS of (22) are alterna-

tively written as⎛
⎝Ŷa sin θa

Ŷb sin θb

Ŷc sin θc

⎞
⎠ =

⎛
⎝Ŷa cosϑa

Ŷb cosϑb

Ŷc cosϑc

⎞
⎠ .

Therefore, both yabc,1 and yabc,2 in (22) take a phase-balanced

cosine form as in (5). Next, creating y
abc,1

and y
abc,2

according

to (10) and applying (19) yields that

yg-dq0 = yg-dq0,1 − yg-dq0,2 = My
abc,1

−My
abc,2

= My
abc

,

where M is given by (18).

B. Dynamic circuit elements representation

Having generalized the application of coordinate transfor-

mation M to the unbalanced AC signals, in what follows,

we investigate the representation of the typical parameters

in unbalanced electrical circuit, e.g., resistance, inductance,

and capacitance in the coordinates established by M. It is

noteworthy that the standard dq0 transformation, when applied

to symmetric electrical circuits, results in a time-invariant

equivalent representation of circuit parameters. In the sequel,

we show how the g-dq0 transform replicates this feature of the

dq0 transformation for the asymmetric circuits.

Let us begin by establishing a general commutative property

under which the circuit parameter matrices are mapped onto a

time-invariant representation via an arbitrary transformation.

Proposition 2 (Invariance-preserving property)

Consider a constant square matrix P and a non-singular
differentiable time-varying transformation T, if(

∂T−1

∂t
T

)
P = P

(
∂T−1

∂t
T

)
, (24)

then PT = TPT−1 is constant3.

The proof is straightforward, however, for the sake of

completeness is provided in the Appendix.

In what follows, we revisit the dynamic model of the

resistive-inductive three-phase circuit (note that the dynamic

model of the conductive-capacitive three-phase circuits takes

a similar form).

To begin with, the dynamics of a typical three-phase RL

element in abc-coordinates is given by

Labc

diabc

dt
= v1,abc − Rabciabc − v2,abc, (25)

where Labc = diag(La, Lb, Lc) is assumed to be invertible,

Rabc = diag(Ra, Rb, Rc), v1,abc, and v2,abc are three-phase

AC quantities with arbitrary magnitudes and phase angle

displacements. Note that the phase inductances (and similarly

phase resistances) in Labc (and in Rabc) do not need to be

identical. Thus, we allow for the unbalanced circuit parameters

consideration in the forthcoming analysis. Next, let us augment

3Note that this is a basic property of any Lie group: if the infinitesimal
generator of the transformation T commutes with P, then PT is invariant.
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the RL dynamics with the time-delayed copies of the AC

quantities as in (10), i.e.,

Labc

diabc

dt
= v1,abc − Rabciabc − v2,abc, (26)

where Labc = diag(Labc,Labc) and Rabc = diag(Rabc,Rabc).
Subsequently, applying the transformations in (18) and (21)

the augmented dynamics (26) take the form in (29). Note that

replacing the input/output voltages with input/output currents

in (29), the inductor current with capacitor voltage, inductance

and resistance matrices with capacitance and conductance

matrices allows to model a parallel-connected capacitive-

conductive element in a similar fashion. In what follows,

we show that the coefficients in the RHS of (29) are time-

invariant constant matrices. Note that the coefficients PM,1

and PM,2 in (29) are both in the same form as PT in Propo-

sition 2. Some straightforward (albeit lengthy) computation

shows that for a generic constant block-diagonal square matrix

Λ = diag(Λ11,Λ11) (with similar form as L−1
abc and L−1

abcRabc)

as in Proposition 2 and transformation M as in (18) it holds

that(
∂M−1

∂t
M

)
Λ = Λ

(
∂M−1

∂t
M

)
= ω�

(
03×3 −Λ11

Λ11 03×3

)
.

Therefore, the condition of Proposition 2 is satisfied and PM,1,

PM,21, and PM,3 in (29) are all constant. Similar computations

show that

PM,3 = M
∂M−1

∂t
= ω�

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −1
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Thus, all the coefficients in the RHS of (29) are time-invariant

matrices. Similarly, one can consider a parallel-connected

capacitive-conductive element as

Cabc

dvabc

dt
= i1,abc −Gabcvabc − i2,abc, (27)

where Cabc = diag(Ca, Cb, Cc) is assumed to be invertible,

Gabc = diag(Ga, Gb, Gc), i1,abc, and i2,abc are three-phase

AC quantities with arbitrary magnitudes and phase angle

displacements. Next, the augmented dynamics are given by

Cabc

dvabc

dt
= i1,abc −Gabcvabc − i2,abc, (28)

where Cabc = diag(Cabc,Cabc) and Gabc = diag(Gabc,Gabc).
Similarly, the augmented dynamics in g-dq0-coordinates are

represented by (30). With an analogous procedure one can

show that the coefficients in the RHS of (30) are time-

invariant, as well.

IV. Circuit Modeling Example

In this section, we provide an example for the dynamic

circuit modeling in g-dq0-coordinates. Next, we elaborate on

three-phase unbalanced load modeling.

A. Grid-connected converter modeling

We consider a simplified grid-connected power converter

that is modeled by an ideal controllable voltage source; see

Figure 1 for an illustration. Further, we consider an LC output

filter element. Finally, the power grid is modeled with stiff

voltage source with an equivalent impedance. Putting all the

pieces together, the overall system dynamics in abc-coordinates

are described by

Labc

diabc

dt
= vc,abc − Rabciabc − vabc, (32a)

Cabc

dvabc

dt
= iabc −Gabcvabc − ig,abc, (32b)

Lg,abc

dig,abc

dt
= vabc − Rg,abcig,abc − vg,abc, (32c)

where the system parameters take the same matrix forms as

in (25) and (27), iabc denotes the converter filter inductance

current, vc,abc is the converter voltage behind the filter (that is

the control input to the system), vabc is the filter capacitance

voltage (i.e., the point of common coupling (PCC) voltage),

ig,abc denotes the grid current, and finally vg,abc denote the grid

voltage, i.e., the physical input to the systems. Next, one can

augment the system (32) following a similar approach as in

(26) and (28) that results in

Labc

diabc

dt
= vc,abc − Rabciabc − vabc, (33a)

Cabc

dvabc

dt
= iabc −Gabcvabc − ig,abc, (33b)

Lg,abc

dig,abc

dt
= vabc − Rg,abcig,abc − vg,abc. (33c)

Finally, by applying the g-dq0 transform (18), we transform

the dynamics (33) to a time-invariant representation in g-

dq0 coordinates, i.e., (31). Note that all the coefficients in

(31) are time-invariant based on construction in Subsection

III-B. Further, the unbalances in (31) can possibly originate

from non-uniform per-phase parameter tolerances or phase

and/or magnitude unbalanced grid voltage. Moreover, in

certain scenarios the three-phase converter voltage might be

unbalanced, as well; see next section for an example where

all the potential unbalanced factors are considered. In the next

subsection, we show how the same modeling methodology is

applicable when considering star/delta-connected unbalanced

loads.

B. Unbalanced load modeling

1) star-connection: let us consider a three-phase RL ele-

ment that is connected between the phases and ground. The

load dynamics in abc-coordinates can be written as

L�,abc

di�,abc

dt
= S∗v�,abc − R�,abci�,abc, (34)

where L�,abc = diag(L�,a, L�,b, L�,c) is assumed to be in-

vertible and R�,abc = diag(R�,a, R�,b, R�,c), i�,abc denotes the
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dig-dq0

dt
=

( =PM,1

ML−1
abcM

−1

)
v1,g-dq0 −

( =PM,2

ML−1
abcRabcM

−1 +

=PM,3

M
∂M−1

∂t

)
ig-dq0 −

(
ML−1

abcM
−1

)
v2,g-dq0. (29)

dvg-dq0

dt
=

(
MC−1

abcM
−1

)
i1,g-dq0 −

(
MC−1

abcGabcM
−1 +M

∂M−1

∂t

)
vg-dq0 −

(
MC−1

abcM
−1

)
i2,g-dq0. (30)

dig-dq0

dt
=

(
ML−1

abcM
−1

)
vc,g-dq0 −

(
ML−1

abcRabcM
−1 +M

∂M−1

∂t

)
ig-dq0 −

(
ML−1

abcM
−1

)
vg-dq0, (31a)

dvg-dq0

dt
=

(
MC−1

abcM
−1

)
ig-dq0 −

(
MC−1

abcGabcM
−1 +M

∂M−1

∂t

)
vg-dq0 −

(
MC−1

abcM
−1

)
ig,g-dq0, (31b)

dig,g-dq0

dt
=

(
ML−1

g,abcM
−1

)
vg-dq0 −

(
ML−1

g,abcRg,abcM
−1 +M

∂M−1

∂t

)
ig,g-dq0 −

(
ML−1

g,abcM
−1

)
vg,g-dq0. (31c)

−+ vc,abc

iabc Rabc Labc Rg,abc Lg,abc
ig,abc

−+vg,abcGabc Cabc

+

−
vabc

Fig. 1. The grid-connected converter model configuration as in (32).

current flowing through the load, and S∗ models a load con-

figuration selector, i.e., for single/two/three-phase-to-ground

connections and is defined by

S∗ ∈ {S∗,a, S∗,ab, S∗,abc},
where S∗,a = diag(1, 0, 0), S∗,ab = diag(1, 1, 0), and S∗,abc =
diag(1, 1, 1). Finally, v�,abc denotes the system voltage at the

load connection point. Note that if a diagonal element of S∗
in (34) is zero, then the corresponding per-phase dynamics

is asymptotically stable and converges to zero. Subsequently,

one can consider the augmented abc-coordinates dynamics

associated with (34), i.e.,

L�,abc

di�,abc

dt
= S∗v�,abc − R�,abci�,abc, (35)

similar to (26). Finally, applying the coordinates transforma-

tion (18), one can transform (35) to a similar g-dq0 represen-

tation as in (29). Note that the formulation in (34) allows to

model single/two-phase load connections while preserving the

three-phase representation of load dynamics that is essential

when applying the g-dq0 transformation. We close by remark-

ing that a star-connected capacitive-conductive load can be

modeled following a similar approach.

2) Δ-connection: let us consider a three-phase Δ-

connected RL load in abc-coordinates, i.e.,

L�,ph-ph

di�,ph-ph

dt
= SΔv� − R�,ph-phi�,ph-ph, (36)

where L�,ph-ph = diag(Lab, Lbc, Lca) is assumed to be invert-

ible and R�,ph-ph = diag(Rab, Rbc, Rca), i�,ph-ph denotes the

current flowing within the Δ-connected load, SΔ is the load

configuration selector, i.e., for single/two/three-phase connec-

tion and is defined by

SΔ ∈ {SΔ,ab, SΔ,ab,bc, SΔ,ab,bc,ca}, (37)

where

SΔ,ab =

⎛
⎝1 −1 0
0 0 0
0 0 0

⎞
⎠ , SΔ,ab,bc =

⎛
⎝1 −1 0
0 1 −1
0 0 0

⎞
⎠ , and

SΔ,ab,bc,ca =

⎛
⎝ 1 −1 0

0 1 −1
−1 0 1

⎞
⎠ .

Note that the current absorbed from the system phases by the

Δ-connected load can be represented based on the internal

load currents, i.e.,

i�,abc = Tph-ph→phi�,ph-ph, (38)

where

Tph-ph→ph =

⎛
⎝ 1 0 −1
−1 1 0
0 −1 1

⎞
⎠ .

To further illustrate, if a Δ-connected load of the form (36) is

combined with the system (32) (i.e., connected at the PCC in

parallel to the filter capacitive-conductive element), the overall

dynamics in abc-coordinates takes the form

Labc

diabc

dt
= vc,abc − Rabciabc − vabc, (39a)

Cabc

dvabc

dt
= iabc −Gabcvabc − i�,abc − ig,abc, (39b)

L�,ph-ph

di�,ph-ph

dt
= SΔvabc − R�,ph-phi�,ph-ph, (39c)

Lg,abc

dig,abc

dt
= vabc − Rg,abcig,abc − vg,abc, (39d)

where i�,abc is defined based on (38). Reverting back to the

dynamics (36), one can augment the time-domain signals and
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parameter matrices as in (26), and derive the augmented Δ-

connected load dynamics, i.e.,

L�,ph-ph

di�,ph-ph

dt
= SΔv� − R�,ph-phi�,ph-ph. (40)

Finally, by applying the (18) allows to transform (40) to a g-

dq0 representation that resembles (29). Note that if zero rows

of SΔ in (37) sets the voltage difference over the corresponding

phase-phase load to zero, thus rendering the phase-phase

current dynamics asymptotically stable and converging to zero.

Therefore, allowing to model asymmetric phase-phase load

connection while preserving the overall three-phase formula-

tion. Last, one can employ the same modeling approach when

considering capacitive-conductive Δ-connected load.

We close this section by remarking that the g-dq0 transfor-

mation is applicable when considering three-phase unbalanced

constant current load models, as well. Further, the case of

single/two-phase constant current source models can be inves-

tigated by employing the configuration selector formulation as

in the case of a star/Δ-connected load. Note that an in-depth

systematic investigation on the extension and application of g-

dq0 transform for modeling the polyphase (i.e., beyond three-

phase) or single/two-phase system is an interesting direction

for future research.

V. Simulation Verification

In this section, we consider a simplistic grid-connected con-

verter model of the form (32) that is depicted in Figure 1. Note

that here a three-wire converter-grid connection is assumed.

We consider (somewhat extreme) non-uniform tolerances of

the converter filter parameters, converter and grid voltages

as the source of unbalances. In what follows, we verify the

equivalence of abc and g-dq0 representations in (32) and

(31). Next, we show how a simple proportional-integral (PI)-

based control design can be employed in g-dq0 coordinates to

balance either the PCC voltage or the grid current.

A. Accuracy verification
Let us begin by investigating the accuracy of g-dq0 trans-

form (18) by comparing the evolution of the dynamical sys-

TABLE I
Circuit parameters of the grid-connected converter system (32).

Filter RL element [pu]

Ra Rb Rc La Lb Lc

0.95 1.00 1.05 0.95 1.00 1.05

Filter GC element [pu]

Ga Gb Gc Ca Cb Cc

1.00 1.10 0.90 1.00 1.10 0.90

Grid RL element [pu]

Rg,a Rg,b Rg,c Lg,a Lg,b Lg,c

1.15 0.85 1.00 1.15 0.85 1.00

Base values

Rbase Gbase Rg,base Lbase Cbase Lg,base

1 [mΩ] 103 [Ω−1] 10 [mΩ] 100 [μH] 100 [μF] 1 [mH]

tems (31) and (32). The parameters of the abc-coordinates

representation (32) are given in Table I. Further, ω� = 2πf�,

f� = 50 [Hz], and v�peak = 1 [kV] respectively denote the

reference angular frequency, frequency, and peak-per-phase

voltage in abc-coordinates. Next, let us consider the converter

and grid voltages in (32) (with a similar form to (1)) as

vc,abc = v�peak

⎛
⎜⎜⎜⎝
1.10 cos

(
θa(t) +

π

10

)
cos (θb(t))

0.90 cos
(
θc(t)− π

10

)
⎞
⎟⎟⎟⎠ ,

vg,abc = v�peak

⎛
⎜⎜⎜⎝
0.95 cos

(
θa(t)− π

5

)
1.05 cos

(
θb(t) +

π

5

)
cos (θc(t))

⎞
⎟⎟⎟⎠ .

Figure 2 illustrates the evolution of the trajectories of (31) and

(32) under the aforementioned asymmetric circuit parameters

and unbalanced converter and grid voltage input characteriza-

tions. The results in Figure 2 confirm the exact equivalence

of representations (32) and (31). Further, although the abc

system is strongly unbalanced the g-dq0 system converges to

a stationary equilibrium point. Subsequently, one can perform

a linear stability analysis on the g-dq0 system.

B. Proportional-integral balancing control
In this simulation scenario, we consider a simple PI-based

balancing control (that is identical for all g-dq0 coordinates)

that brings the grid current injection to a balanced three-

phase form. To this end, we consider the same parametric

characterization as in the previous subsection, however, in this

case the converter voltage serves as control input. Let us define

the g-dq0-coordinates grid current reference as:

i�g,g-dq0 = (1000, 0, 0, 0, 0, 0)�,

and define eig,g-dq0
= i�g,g-dq0 − ig,g-dq0. Therefore, with slight

abuse of the notation the converter voltage is given by:

vc,g-dq0 = κpeig,g-dq0
+ κi

∫ t

0

eig,g-dq0
dτ. (42)

We combine (42) with (31), and transform vc,g-dq0 in (42)

to the abc-coordinates and apply it as an input to (32). The

resulting evolution of the abc and g-dq0 systems under the

balancing control (42), with κp = 1 and κi = 50 is illustrated

in Figure 3. As it is shown in Figure 3, the simplistic PI-based

current balancing control design in (42) exhibits satisfactory

performance that further highlights the benefit of utilizing

g-dq0-coordinates transformation (see the ig,g-dq0 evolution

under the balancing control and its abc-coordinates image).

Following a similar approach one can implement a PCC

voltage balancing control, as well.

VI. Conclusion and Outlook

In this paper, we provided a review of the modeling and

analysis methods for the unbalanced systems. Next, starting

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



Fig. 2. The time-evolution of system trajectories under the parameter and input characterization is Subsection V-A: abc-coordinates dynamics (32) (left), the
g-dq0-coordinates dynamics (31) (middle), and abc-coordinates signals constructed based on the evolution of the g-dq0 dynamics (31) by utilizing the inverse
transformation (18) (right).

from a previously proposed time-domain modeling frame-

work, we derived a generalized variant of the standard dq0

transformation, that is termed g-dq0 transform. Further, we

investigated the mathematical properties of this transformation

and explored its application to the dynamic circuit element

modeling. We provided an example of converter-based systems

accompanied by details on unbalanced load modeling. Finally,

a simulation-based accuracy verification was presented and a

simplistic balancing control design was discussed. Our agenda

of future work includes: extending the modeling approach to

more complex converter configurations (possibly with a four-

wire connection and exploring the impact of zero-sequence

flow), considering detailed converter model with either star or

delta connection, theoretic extension of the proposed trans-

form for single/two-phase or polyphase systems, exploring

the transform application while considering the DC converter

dynamics, more complex control design for the unbalanced

systems based on the g-dq0 transform, and simulation-based

case studies of the fault ride through behavior and harmonics

modeling when utilizing the g-dq0 transform.

Appendix

Proof of Proposition 1. Let us expend the LHS of (12) as(
n∑

j=1

Yj cosφj

)
cosωt−

(
n∑

j=1

Yj sinφj

)
sinωt. (43)

The time-invariant coefficients in (43) can take the form

n∑
j=1

Yj cosφj = Y cosφ and

n∑
j=1

Yj sinφj = Y sinφ, (44)
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Fig. 3. The time-evolution of system trajectories under the parameter and input characterization is Subsection V-A and the current-balancing control (42):
abc-coordinates dynamics (32) (left), the g-dq0-coordinates dynamics (31) (middle), and abc-coordinates signals constructed based on the evolution of the
g-dq0 dynamics (31) by utilizing the inverse transformation (18) (right).

where straightforward trigonometric computations yields the

expressions in (13) for Y and φ. Finally, replacing the coef-

ficients in (43) with the expressions in the RHSs of (44) and

exploiting the angle sum trigonometric identity, one can derive

the expression in the RHS of (12).

Proof of Proposition 2. If PT is constant then

∂PT

∂t
=

∂
(
TPT−1

)
∂t

=
∂T

∂t
PT−1+TP

∂T−1

∂t
= 0n×n. (45)

Note that T is invertible, i.e., TT−1 = In, therefore

∂
(
TT−1

)
∂t

=
∂T

∂t
T−1 +T

∂T−1

∂t
=

∂In
∂t

= 0n×n, (46)

which means
∂T

∂t
= −T

∂T−1

∂t
T. (47)

Replacing ∂T/∂t in (45) with (47) results in

∂PT

∂t
= −T

(
∂T−1

∂t
TP

)
T−1 +TP

∂T−1

∂t
= 0n×n, (48)

which always holds if condition (24) is satisfied.
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and challenges of low-inertia systems (invited paper),” in Power Systems
Computation Conference (PSCC), 2018, pp. 1–25.

[2] A. Tayyebi, D. Groß, A. Anta, F. Kupzog, and F. Dörfler, “Frequency
stability of synchronous machines and grid-forming power converters,”
IEEE Journal of Emerging and Selected Topics in Power Electronics,
vol. 8, no. 2, pp. 1004–1018, 2020.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



[3] N. Hatziargyriou, J. Milanovic, C. Rahmann, V. Ajjarapu, C. Canizares,
I. Erlich, D. Hill, I. Hiskens, I. Kamwa, B. Pal et al., “Definition and
classification of power system stability–revisited & extended,” IEEE
Transactions on Power Systems, vol. 36, no. 4, pp. 3271–3281, 2020.

[4] R. Henriquez-Auba, J. D. Lara, D. S. Callaway, and C. Barrows,
“Transient simulations with a large penetration of converter-interfaced
generation: scientific computing challenges and opportunities,” IEEE
Electrification Magazine, vol. 9, no. 2, pp. 72–82, 2021.

[5] B. Shakerighadi, N. Johansson, R. Eriksson, P. Mitra, A. Bolzoni,
A. Clark, and H.-P. Nee, “An overview of stability challenges for power-
electronic-dominated power systems: The grid-forming approach,” IET
Generation, Transmission & Distribution, vol. 17, no. 2, pp. 284–306,
2023.

[6] A. Crivellaro, A. Tayyebi, C. Gavriluta, D. Groß, A. Anta, F. Kupzog,
and F. Dörfler, “Beyond low-inertia systems: Massive integration of
grid-forming power converters in transmission grids,” in IEEE Power
& Energy Society General Meeting (PESGM), 2020, pp. 1–5.

[7] M. Lu, S. Dhople, and B. Johnson, “Benchmarking nonlinear oscillators
for grid-forming inverter control,” IEEE Transactions on Power Elec-
tronics, vol. 37, no. 9, pp. 10 250–10 266, 2022.

[8] “Voluntary specification for grid-forming inverters,” Australian Energy
Market Operator (AEMO), Tech. Rep., 2023.

[9] “Great Britain grid-forming best practice guide,” National Grid Electric-
ity System Operator (ESO), Tech. Rep., 2023.

[10] A. Stankovic and T. Aydin, “Analysis of asymmetrical faults in power
systems using dynamic phasors,” IEEE Transactions on Power Systems,
vol. 15, no. 3, pp. 1062–1068, 2000.

[11] Z. Li, S.-C. Wong, C. K. Tse, and X. Liu, “Modeling of unbalanced
three-phase driving-point impedance with application to control of grid-
connected power converters,” International Journal of Circuit Theory
and Applications, vol. 44, no. 4, pp. 851–873, 2016.

[12] C. L. Fortescue, “Method of symmetrical co-ordinates applied to the
solution of polyphase networks,” Transactions of the American Institute
of Electrical Engineers, vol. 37, no. 2, pp. 1027–1140, 1918.
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