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Abstract—Unlike transmission systems, distribution systems
historically lack enough measurements, making their real-time
monitoring almost impossible. Recent deployment of diverse
types of devices such as phasor measurement units (PMUs),
smart meters, solar inverters and weather information sensors
opens up new ways of monitoring these systems, with the
assistance of customized machine learning (ML) applications.
The paper describes a grid-model-informed machine learning
(ML) tool which integrates heterogeneous data streams and
creates synchronous measurement snapshots to be used by a
hybrid robust state estimator (SE) which provides not only
accurate state estimates but also real-time feedback for ML model
refinement. Improved monitoring performance due to the use of
developed computational framework is experimentally observed
by simulated scenarios on an electric utility’s distribution system.

Index Terms—Distribution systems, graph learning, machine
learning, robust state estimation, system monitoring.

I. INTRODUCTION

With the proliferation of distributed energy resources
(DERs), the operating conditions of distribution systems are
becoming more uncertain and volatile, and the dispatch, con-
trol, and protection applications require timely and accurate
monitoring. This is accomplished via state estimation (SE)
which utilizes measurements acquired from various points in
the system and determines the best estimate of the system
state. In the absence of sufficient measurements, state es-
timation cannot be carried out due to the lack of network
observability. A major challenge in power distribution system
monitoring is the diversity of the reporting rates of measure-
ments from phasor measurement units (PMUs), supervisory
control and data acquisition (SCADA) systems, and advanced
metering infrastructure (AMI). In particular, sensors with slow
reporting rates, such as smart meters, cannot keep up with the
execution rate of state estimation, leaving gaps of observability
between the arrival of two measurement samples. A compre-
hensive review of the recent work recognizing and attempting
to address this challenge can be found in [1]. A data-driven
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technique is employed to predict the consumption patterns of
customers without smart meters to enhance the observability
of distribution systems [2]. The authors of [3] propose using
historical low-voltage side smart meters to forecast load and
DERs injections via the support vector machine with optimally
tuned parameters. In [4], an optimal measurement placement
is proposed to obtain the accurate pseudo measurement even
with limited knowledge of the profile of the injected power.
A popular category of approaches is the use of machine
learning (ML) techniques to predict measurements with slow
reporting rates to enhance their time resolution and meet state
estimation requirements [5]. There are two main limitations of
the existing work. First, most of these methods completely dis-
regard the power network models or simply learn the mapping
with the underlying assumption of fixed network topology.
Hence, they fail to produce fully satisfactory results under
network model changes which are frequent in feeder operation.
Second, most of them do not receive proper supervision from
power system domain knowledge. As a result, the predicted
measurements by the ML models are not compliant with the
power flow model, reducing their accuracy and reliability.

Another major challenge in distribution system monitoring
is the timely detection and identification of events such as
faults, line switching, and substantial DER/load switching. In
recent years, several interesting alternative solutions have been
proposed, mainly focusing on detecting those events [6], [7],
[8], [9]. These methods are well-established, with detailed
examples illustrating their application. Many rely on graph
search or brute force to identify power grid events, inherently
complicating their implementation or limiting their scalability.
Therefore, in this work a sparse estimation approach is based
on the Least Absolute Shrinkage and Selection Operator
(LASSO) will be employed. Event detection (ED) and SE
are two closely related problems in power system moni-
toring. For example, refs. [10], [11] establish a generalized
SE framework based on the minimum-information-loss (MIL)
theory, unifying analog and digital quantities in the estima-
tion of system states and switch statuses and proving that
the weighted-least-square (WLS) and weighted-least absolute-
value (WLAV) estimators are special cases under the MIL
principle. In distribution systems, a major challenge in event
detection is the sparsity of time-synchronized measurements.
To this end, a sparse estimation-based approach is developed
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Fig. 1: Proposed distribution system monitoring framework.

in this paper to detect such events using a few synchronized
measurements.

This paper describes a comprehensive paradigm for distri-
bution systems SE and ED using sparse and heterogeneous
measurements. The main objective is to make the states and
events in distribution systems fully observable. This will be
accomplished by developing a grid-model-informed machine
learning (ML) tool that uses several different types of measure-
ment data to create a consistent and reliable set of synchronous
measurement snapshots for a robust SE. The differentiating
features of the proposed framework include the use of a
graph neural network to capture topology information, and
the feedback of the robust SE to enhance the ML model’s
prediction accuracy and compliance with the physical power
flow model. The proposed work also features a highly effi-
cient implementation of the SE in large systems, as well as
the detection and location of events based on sparse PMU
measurements. The proposed work is validated using data and
measurements from a utility Microgrid.

II. OBJECTIVE AND PROBLEM STATEMENT

The developed SE and ED paradigm can be best described
with the block diagram given in Fig. 1. Measurements in
distribution systems are categorized into two sets: real-time
measurements with fast scan rates and little time skews, yet
being insufficient to make the system observable, constituting
the fast and sparse” (FS) set; and others received at much
slower scan rates with significant time skews, yet being
widely populated, constituting the slow but abundant (SA)
set. Typical examples of FS measurements are PMUs and
SCADA measurements. Typical examples of SA measure-
ments are AMI measurements. This assumes that the limited
number of FS measurements is insufficient to deliver an
observable system. There are also measurements provided
by smart meters, but received at a slower rate that cannot
satisfy SE requirements. Such measurements are designated
as “slow but abundant” (SA) measurements. The objective is
to provide comprehensive situational awareness (both steady-
state operation and during dynamic events) to grid operators
by exploiting the above-described set of diverse data and
measurements. Situational awareness of distribution systems

Fig. 2: Graph-learning-based measurement synchronizer.

has two aspects: steady state awareness achieved by SE, and
dynamic event awareness achieved by ED.

In order to achieve these objectives, three modules shown
in Fig. 1 are developed: graph-learning measurement synchro-
nizer, hybrid robust state estimator, and sparse event identifier.
The blue elements in the figure represent periodic information
flows providing steady state awareness, and the yellow ele-
ments in the figure represent event-triggered information flows
providing dynamic event awareness. These modules will be
described in greater detail below.

III. DEVELOPMENT OF THE MACHINE LEARNING BASED
MEASUREMENT SYNCHRONIZER

The graph-learning measurement synchronizer aims to pre-
dict the values of the SA measurements when they are not
refreshed by SE and needs to be executed, such that they
are synchronized with the FS measurements forming complete
snapshots. Suppose the SA measurements are refreshed with
time interval TS (e.g., 30 minutes), and the SE is executed
with time interval TF (e.g., 1 minute). Figure 2 shows the
framework of the NG-Transformer model. First, the Trans-
former [12] takes time series of SA measurements including
active and reactive power with time interval TS as input,
and forecasts active and reactive power TS ahead. Then,
Cubic Spline Interpolation is adopted to obtain preliminary
estimation at time interval TF . Finally, the Graph Attention
Network (GAT) [13], [14] takes FS measurements, including
bus voltages and line active and reactive power flows, as input
to refine the preliminary estimation at time interval TF and
obtain the final prediction result of SA measurements. Details
of each part are as follows.

The Transformer [12] module is to handle the prediction
time-series SA measurement data, i.e., the nodal active and
reactive power injections measured by smart meters at time
interval TS . Time-series data can be denoted by X

(t)
i =

{x(t−T+1)
i ,x

(2)
i , ...,x

(t)
i }, where x

(t)
i denotes the features of

node i at the t-th timestamp, and T denotes the time steps of
Transformer. The Transformer consists of Positional Encoding
and several Transformer Encoders.

Positional Encoding is designed for the model to make use
of the order of the sequence without involving recurrence and
convolution. To inject some information about the relative or
absolute position of the time-series data, we adopt a fixed
positional encoding method [15], which is sine and cosine
functions of different frequencies as follows:

PE(pos,2i) = sin(pos/100002i/d), (1)
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PE(pos,2i+1) = cos(pos/100002i/d), (2)

where pos is the position, and i is the dimension. That is,
each dimension of the positional encoding corresponds to a
sinusoid. The wavelengths form a geometric progression from
2π to 10000 · 2π. Since for any fixed offset k, PEpos+k can
be represented as a linear function of PEpos, it would allow
the model to easily learn to attend by relative positions. Then
the positional encoding is added to the input data as follows:

H = X + PE, and Ĥ = X̂ + PE, (3)

where H and Ĥ are embeddings for X and X̂ , respectively.
While this positional encoding method is fixed, there are no
learnable parameters in this part. We do not add an additional
learned embedding layer to convert input data of the first and
second periods to the same dimension because the dimensions
of the two pieces of data not only have the same length but
also have the same meaning.

Each Transformer Encoder has two sub-layers. The first is
a multi-head self-attention mechanism, and the second is a
simple, position-wise, fully connected feed-forward network.
There is a residual connection [16] around each of the two sub-
layers, followed by layer normalization [17]. It first defines a
scaled dot-product attention function, which is shown as:

Attention(Q,K, V ) = Softmax(
Q ·K>√

dk
)V, (4)

where Q, K, and V are embeddings generated by H and θA,
denoting queries, keys, and values, respectively. Here dk is
the dimension of K. Based on Eq. (4), multi-head attention
allows the model to jointly attend to information from different
representation subspaces at different positions, which can be
formulated as:

E = Concat(head1,head2, ...,headh)θO, (5)

headi = Attention(H · θQi , H · θKi , H · θVi), i ∈ [1, h], (6)

where h denotes the number of heads, and θO, θQ =
{θQ1

, ..., θQh
}, θK = {θK1

, ..., θKh
}, and θV = {θV1

, ..., θVh
}

are learnable parameters. With a layer normalization function
LayerNorm(·), the output of the first sub-layer in Transformer
Encoder can be written by:

Ẽ = LayerNorm(H + E). (7)

Then for the second fully connected layer together with an-
other normalization layer, the Transformer Encoder generates
a hidden representation Z by the following equation:

Z = LayerNorm(Ẽ + Ẽ · θF ), (8)

where θF denotes the learnable parameters in the fully con-
nected layer. Lastly, a fully connected layer for prediction is
built as follows:

P = Z · θP , (9)

where θP is the learnable parameters in the prediction layer.

We adopt mean squared error (MSE) in our objective
function for Transformer, which is as follows:

LT =

√√√√ 1

n

n∑
i

(Pi − Yi)2, (10)

where Yi denotes the ground truth values of node i.
Cubic Spline Interpolation is a form of interpolation where

the interpolant is a special type of piecewise cubic polynomial
called a cubic spline. That is, instead of fitting a single,
high-degree polynomial to all of the values at once, cubic
spline interpolation fits low-degree cubic polynomials to small
subsets of the values. Specifically, we assume that the points
(xi, yi) and (xi+1, yi+1) are joined by a cubic polynomial
Si(x) = aix

3 +bix
2 +cix+di that is valid for xi < x < xi+1

for given i. To find the interpolating function, we must first
determine the coefficients ai, bi, ci, di for each of the cubic
functions. For n points, there are n − 1 cubic functions to
find, and each cubic function requires four coefficients. In our
setting, we use n = 4 points to get SA measurement estimation
at time interval TF from the SA measurement prediction at
time interval TS , where the first 3 points are from historical
data and the last point is from the prediction of Transformer.

Graph Attention Network (GAT) [13] is an attention-
based architecture for graph-structured data. It is used to refine
the SA measurement estimation at time interval TF based on
the FS measurements and the topological information of the
distribution grid. The grid is represented as a graph, where
nodal active and reactive power injections are taken as nodal
features, and line active and reactive power flows are taken
as edge features. GAT computes the hidden representations of
each node in a graph by attending over its neighbors, following
a self-attention strategy. In the attention mechanism, normal-
ized coefficients are calculated by the following equation:

αi,j =
exp

(
σ
(
a>[Θhi ‖Θhj ]

))∑
k∈N (i)∪{i} exp (σ (a>[Θhi ‖Θhk]))

, (11)

where αi,j denotes the normalized coefficient of edge (i, j)
for node i, N (i) is the set of all neighbor nodes of node i, hi
denotes features of node i, Θ is a learnable matrix applied to
every node, σ is an activation function using LeakyReLU, and
a is a shared single-layer feedforward neural network as the
attentional mechanism. Here ‖ is the concatenation operation.
In order to handle edge features as well, we follow the idea of
Edge-Featured Graph Attention Network (EGAT) [14], which
considers edge features in the attention mechanism as follows:

αi,j =
exp

(
σ
(
a>[Θhi ‖Θhj ‖Θeei,j ]

))∑
k∈N (i)∪{i} exp (σ (a>[Θhi ‖Θhk ‖Θeei,k]))

, (12)

where Θe is a learnable matrix applied to every edge, and ei,j

denotes features of edge (i, j). With the attention mechanism,
the hidden representation of an aggregation can be written as:

hi = σ(
∑

j∈N (i)

αi,jΘhj), (13)

where hi is initialized as input features of node i.
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We adopt mean squared error (MSE) in our objective
function for GAT, which is as follows:

LG =

√√√√ 1

n

n∑
i

(hi − gi)2, (14)

where gi denotes the gap between the ground truth and the
interpolation value of node i.

The parameters of the deep learning model are optimized
by the Adam optimizer, and the hyperparameters are chosen
based on a validation set.

IV. ROBUST SCALABLE STATE ESTIMATOR

Having a robust and scalable state estimator is crucial
for estimating the system states in the presence of biased
measurements within an acceptable computational time. A
Weighted Least Absolute Values (WLAV) based estimator is
developed for this purpose. It uses the virtual synchronous
measurement snapshot provided by the ML-based measure-
ment synchronizer as well as any available real-time mea-
surements. WLAV SE has the implicit capability of selecting
a minimum observable set of measurements that yield the
minimum weighted sum of the absolute differences between
estimated and ”virtually” measured values. It automatically
rejects gross errors and also ignores lower accuracy measure-
ments. This is particularly important for the integration of
the virtual measurements provided by the ML model, as the
prediction based on spatio-temporal correlation is not always
reliable and compliant with the physical power flow model.
However, the WLAV SE is generally more computationally
expensive than the conventional WLS SE, hence as efficient
solution must be developed for large-size distribution systems.
In this paper, we propose a Massively Parallel Distributed
(MPD) SE framework which makes the computation time
almost independent of system size.

Implementation of the MPD SE framework involves divid-
ing the network into several zones. This enables the solu-
tion of each zone to be executed independently in parallel.
However, this partitioning procedure inadvertently excludes
those measurements incident to boundary buses. Consequently,
measurement redundancy drops at the zone boundaries, which
could potentially impact the robustness of the estimator. It is
noted that while a boundary bus may be connected to one or
more buses from other zones, an internal bus is only connected
to buses in the same zone. Hence, those measurements incident
to internal buses are never removed by network partitioning.
This observation is exploited and multiple copies of the system
are generated, ensuring that each bus serves as an internal
bus in at least one copy of the system. Different partitioning
algorithms are employed depending on the system structure
to optimize the partitioning of the power system network for
the MPD algorithm. Once the original copy of the system is
partitioned into n0 zones, an appropriate algorithm is used
to generate the required system copies. The reasoning for
using two different partitioning algorithms and details of the
algorithms can be found in [18].

Since there are multiple estimates of the states in different
copies, the resultant estimate is obtained by taking the mean
value of only the estimates of internal buses in each copy
as shown in (15). This yields a robust estimate of the system
state, free of gross errors.

x̂i = (1/n∗zones) ·
n∗
zones∑
c=1

xci,internal, (15)

where xci,internal is the estimation of the state of an internal
bus in copy c, and n∗zones is the number of zones that xi is
the state of an internal bus.

V. DETECTION AND LOCATION OF OUTAGES

Timely detection of events such as line outages is a necessity
for forming the correct network model of a distribution system,
which is essential for the usability of the graph-learning-based
measurement synchronizer and the robust state estimator.
Thus, this paper presents a methodology for timely line outage
detection utilizing a limited number of PMUs.

To make a model for the line outage detection, the DC
power flow model is used since it provides a reasonably accu-
rate linear approximation between real power injections and
voltage phase angles [19]. The following linear formulation
can be used to relate the changes in bus phase angles (∆θ) to
the real power injections (∆P ).

B ∗∆θ = ∆P, (16)

where

• B =


ifk 6= j → Bkj = − 1

xkj

ifk = j → Bkk =
∑N

j=1,j 6=k
1

xkj

0 otherwise
• xkj is the branch reactance value between bus k and bus

j,
• ∆θ is the angle difference of buses (post outage theta –

pre outage theta),
• ∆P is the injections at corresponding buses connected to

disconnected line.
When one of the lines goes out of service, B matrix and the

bus angles (∆θ) will change accordingly. However, rather than
modifying the matrix B, a line outage can be represented by
virtual power injections (∆Ps and ∆Pt) at the terminal buses
of the disconnected branch. These injections have identical
magnitudes but opposite signs, and their absolute value is
equal to the real power flow of the line. This makes the net
flow effectively zero while ensuring the terminal bus phase
angles align with the post-outage solution [20].

Then, in order to solve (16) a well-known sparse solution
method, namely LASSO (Least Absolute Shrinkage and Se-
lection Operator) is used [21]. Considering the DC model
given in (16), matrix B−1 is typically badly conditioned,
i.e. it is nearly singular. Therefore, before applying LASSO,
the following QR decomposition strategy is applied to (16).
The justification for employing the QR decomposition is
comprehensively discussed in [22].
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[
Qee Qei

Qie Qii

]
∗
[
Ree Rei

0 Rii

]
∗
[
∆θee
∆θii

]
=

[
∆Pee

∆Pii

]
, (17)

Rii ∗∆θii = [QT
ieQ

T
ii] ∗

[
∆Pee

∆Pii

]
, (18)

• subscript i refers to buses with PMUs and,
• subscript e refers to buses without PMUs.
In addition to that, to further reduce the number of non-zeros

found by LASSO solution connectivity matrix A is introduced
to (18). This will yield the following:

Rii ∗∆θii =
[
QT

ie QT
ii

]
∗AT ∗

[
∆P̃ee

∆P̃ii

]
, (19)

where
• A is the connectivity matrix b× n.
• n is the number of buses and,
• b is the number of branches in the system.
Then well-known LASSO approach is performed as:

∆P̃ := min
∆P̃

1

2
||∆θ′ −M∆P̃ ||22 + λ||∆P̃ ||1, (20)

where
• ∆P = AT ∆P̃ ,
• M =

[
QT

ei QT
ii

]
AT ,

• ∆θ′ = Rii∆θii.
Upon calculation of ∆P̃ , the location of the line outage can

be ascertained by identifying the position of the maximum
value within ∆P̃ vector. Then, based on the detected line
outages, the network model of the distribution grid can be
updated and fed to the graph-learning-based measurement
synchronizer and the robust state estimator.

VI. CLOSED LOOP ESTIMATION AND TRAINING
FRAMEWORK

The graph-learning measurement synchronizer and the ro-
bust state estimator function in a closed loop aid each other.
The way the graph-learning measurement synchronizer as-
sists the robust state estimator is by making the system
observable and enhancing measurement redundancy. However,
these measurements are predicted based on the spatio-temporal
correlations and there is no guarantee that they will exactly
follow the physical laws described by the power flow model.
Furthermore, it does not have the capability to suppress the
impact of bad data. The robust state estimator can provide the
required compliance check and help to fine-tune the graph-
learning measurement synchronizer. Once the SE converges,
the residuals of the predicted SA measurements will be fed
back to the graph-learning measurement synchronizer, which
will be re-trained by adding the residuals into the loss function
to be minimized. As such, the prediction errors of the SA
measurements will be used to back-propagate the parameters
in the deep layers.

TABLE I: MAEs of SA measurement prediction results by the
proposed and baseline methods.

Model Active Power Reactive Power

Transformer 24.6426 5.9463
NG-Transformer 1.0875 1.4501

VII. SIMULATION RESULTS

The proposed distribution system monitoring paradigm is
validated on a real-world utility Microgrid. 3-month AMI data
with 30-minute time resolution recorded from the field is used
for validating the methods. In order to test the adaptiveness of
the ML model to topology changes, power flows under 100
different topologies with randomly selected switch statuses are
generated for training, validation, and testing purposes. It is
assumed that TS = 30 minutes, and TF = 1 minute.

Scalability of the estimator is illustrated using two very
large-scale networks (VLSN) with meshed and strictly radial
topologies containing 12589 buses. The strictly radial network
with the same number of buses is synthetically generated by
removing the loops in the meshed network. Hence, meshed
VLSN has 17529 branches, there are only 12588 branches
in the strictly radial VLSN. In this section, the unit used for
active power is denoted in kilowatts (kW), and the unit used for
reactive power is denoted in kilovolt-amperes reactive (kVAR).

A. Validation of Graph-Learning Measurement Synchronizer
under Topology Changes

One of the main features of the proposed graph-learning
method is the adaptiveness to system topology changes, as it
can take topological information as input. In order to validate
this feature, we compare the SA measurement prediction error
of the proposed NG-Transformer model and that of a standard
Transformer model, a state-of-the-art deep learning model that
cannot take graph input. In this experiment, it is assumed that
the system is already observable by FS measurements. The
performance under an unobservable system will be presented
in Section VII-C. The accuracy of the prediction results is
evaluated by mean absolute error (MAE).

Assuming all 1-minute interval line active and reactive
power injection data are given, Table I shows the prediction
results of the proposed model and the baseline model under
changing topologies. From the results of Table I, it is clear
that topology information has a significant effect on model
prediction accuracy. The NG-Transformer model achieves
much higher prediction accuracy than the standard Trans-
former model. The reason is that the standard Transformer
model is unaware of the topology changes and develops the
same mapping between FS measurements and SA measure-
ments, which actually changes with the topology. The NG-
Transformer model, on the other hand, embeds the topology
information with the graph convolution.
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(a) Active power prediction for Node 93 (b) Reactive power prediction for Node 93

Fig. 3: Prediction results using different kinds of data for Node 93.

TABLE II: The performance of MPD SE in Meshed VLSN

Number of Zones in
the Original Copy 1 4 8 16 32 48

Computational Time
(seconds) 194.92 31.20 12.11 2.59 1.26 0.70

Number of
Required Cores 1 8 20 36 75 104

B. Validation of Physical Computational Performance of MPD
Robust Estimator

As described in Section IV, to make the computational time
of the estimator almost independent of the system size, a
parallel computational framework is presented.

Since the size of the tested micro grid is relatively small in
the order of hundreds of nodes, to demonstrate the scalability
of the MPD method, the testing is performed on two VLSN
with meshed and strictly radial topologies. Tests are conducted
in MATLAB environment using the Massachusetts Green High
Performance Computing Center facilities which houses a 128
Core, 2.4 GHz Intel CPUs, with 8 GB RAM.

In Table II, cpu times for different partitioning schemes
are given for the meshed VLSN. The cpu time is reduced
below 1 second when the original copy is partitioned into 48
zones which requires a total of 104 CPU cores. The additional
56 zones are created to prevent loss of any measurement
redundancy as explained in methodology. Similarly, the cpu
time of the SE in the radial VLSN is reduced to less than 1
second when the original copy is partitioned into 32 zones as
shown in Table III. The number of additional system copies
are significantly less than those of meshed VLSN since the
number of boundary buses are quite small in radial systems.

C. Validation of Closed Loop Operation of Measurement
Predictor and State Estimator

In order to validate the effectiveness of ML retraining based
on the SE’s feedback, we down-sampled the node active and
reactive power injection data to 30-minute intervals as the
SA measurement input of the model from AMI and designed
three scenarios for comparison: clean data, corrupted data,
and residual-corrected data. In the clean data scenario, the
measurements do not contain any gross errors. In the corrupted

TABLE III: The performance of MPD SE in Radial VLSN

Number of Zones in
the Original Copy 1 4 8 16 32

Computational Time
(seconds) 17.70 4.45 2.27 1.08 0.61

Number of
Required Cores 1 5 11 21 42

data scenario, the measurements contain gross errors with
random magnitudes and durations, and the robust SE does
not provide any feedback to the ML model. In the residual-
corrected data scenario, the measurements contain the same
gross errors as the corrupted data scenario, but the ML model
is retrained based on the measurement residuals provided by
the robust WLAV SE, which forms the proposed closed-loop
operation framework.

Table IV shows the prediction results with clean, cor-
rupted, and residual-corrected data. For model training, we
use the same NG-Transformer model with different SA and
FS measurement data but the same topology information. The
topology information varies 10 times throughout the whole
period. For the test, we use different kinds of data as input,
but use ground truth from clean data for all of the trained
models.

From the results of Table IV, we can see that the corruption
of data has a significant influence on model training. Com-
pared with the clean data scenario, the prediction performance
is much degraded when data is corrupted. When the ML model
is retrained based on the measurement residuals provided by
the WLAV SE, the performance improves a lot compared to
corrupted data. In fact, the performance gets very close to that
of the clean data scenario, implying that the impact of the
data corruption is largely suppressed. Figure 3 is an example
of the prediction results of a node, from which it is clearly
observed that the deviation of prediction due to the presence of
gross errors in certain time sections is largely eliminated. The
prediction results of the residual-corrected data scenario are
very similar to those of the clean data scenario. This validates
the concept of mutual assistance between graph-learning-based
measurement synchronizer and robust state estimator.
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TABLE IV: FS measurement prediction results with different
data over the first group of bus voltage control and distribution
system topology information in terms of MAE.

Data Active Power Reactive Power

Clean 11.9233 5.7904
Corrupted 29.1641 9.7516
Residual-Corrected 13.9248 6.2632

TABLE V: The results of the line outage detection algorithm.

Disconnected
Branch

Detected Line Outage
Branch / ∆P̃

42-49 / -4.4153 42-49 -4.5193
59-61 / -0.6758 58-61 -0.7177
82-83 / -4.6718 82-83 -4.8802
64-61 / 1.2346 64-61 1.1854
8-5 / 34.3989 8-5 36.9010

94-100 / 0.1305 94-100 0.1084
94-95 / 1.4166 94-95 1.1456
89-92 / 13.5493 89-92 10.4212

101-102 / -1.3665 101-102 -1.3464

D. Validation of Line Outage Detection Method

The proposed line outage detection method is tested in IEEE
118 Bus system to validate its effectiveness [23]. To test the
approach, first limited number of PMU devices are placed at
buses 2, 13, 22, 39, 49, 53, 58, 63, 81, 84, 103, 105, 106,
114. Additionally, each of these PMUs is presumed to possess
a channel for measuring one current phasor along an incident
branch. This capability to measure current phasors facilitates
the computation of voltage phasors at the distant end of the
corresponding branches. Consequently, utilizing the available
voltage and current phasors, the phase angles of buses 2, 12,
13, 15, 22, 23, 39, 40, 53, 54, 58, 56, 63, 59, 81, 80, 84, 85,
103, 110, 105, 108, 106, 107, 114, 115 are determined for the
IEEE-118 bus system.

Once the locations of PMUs are determined, 9 different
sample outage scenarios are created and tested to demonstrate
the utilization of the proposed line outage detection method.
The results given in Table V show successful identification of
line outages even when they do not occur in the vicinity of
PMUs.

VIII. CONCLUSION

In this paper, a new framework for monitoring distribution
systems is described. It features a graph-learning model for
synchronizing fast and slow measurements, a robust and scal-
able state estimator based on the physical power flow model,
and the closed-loop operation paradigm between the two for
further enhancing their performance. The paper also introduces
an ED method that can pinpoint line outages in distribution
systems based on sparse PMU measurements. Test results from
a real-world system demonstrate that the proposed framework
can adapt to topology changes, integrate information from
spatio-temporal patterns and power flow model derived from

physical laws, and achieve both steady state awareness and
dynamic event awareness for distribution systems with diverse
measurements.
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