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Abstract—Reliable integration and operation of renewable
distributed energy resources requires accurate distribution grid
models. However, obtaining precise models by field inspection
is often prohibitively expensive, given their large scale and the
ongoing nature of grid operations. To address this challenge,
considerable efforts have been devoted to harnessing abundant
consumption data for automatic model inference. The primary
result of the paper is that, while the impedance of a line or
a network can be estimated without synchronized phase angle
measurements in a consistent way, the admittance cannot. Fur-
thermore, a detailed statistical analysis is presented, quantifying
the expected estimation errors of four prevalent admittance
estimation methods. Such errors constitute fundamental model
inference limitations that cannot be resolved with more data.
These findings are empirically validated using synthetic data and
real measurements from the town of Walenstadt, Switzerland,
confirming the theory. The results contribute to our understand-
ing of grid estimation limitations and uncertainties, offering
guidance for both practitioners and researchers in the pursuit of
more reliable and cost-effective solutions.

Index Terms—Distribution Grid, Parameter estimation, Smart
meters, Network identification

I. INTRODUCTION

The deployment of sensors and machine learning techniques
on power grids has opened a new set of power system
monitoring applications. Among them, line parameter and
topology estimation may play a crucial role for deploying
smart energy resources [1]–[7]. This is specially needed at the
distribution level, as Distribution System Operators (DSOs)
often lack accurate models of their Distribution Grids (DGs)1.
Many recent studies have shown that physical models of a
distribution grid can be estimated from synchronized voltage
and current phasor measurements [8]–[12]. However, micro
synchrophasor measurement units (µPMUs) remain expensive
and therefore mostly absent in DGs.

Sensor costs motivate grid analysis that does not rely
on accurate phase angle measurements, as voltage and cur-

This research is supported by the Swiss National Science Foundation under
the NCCR Automation (grant agreement 51NF40 180545).

1We focus on distribution network applications in this paper, however the
analysis applies to transmission networks as well.

rent magnitude sensors are considerably cheaper than µPMU
sensors. Smart meter sensors [13] are becoming ubiquitous
for measuring power consumption. The load—coverage in
European DGs is already above 70% [14]. Thus, the question
whether it is possible to accurately estimate grid impedance or
admittance without synchronized phase angle measurements is
of practical importance. This paper investigates the feasibility
of impedance and admittance estimation from voltage and
current magnitude and power angle measurements only.

Given that phase angles are typically small in DGs, one
might consider applying the methods used for phasor mea-
surements with a zero angle. However, recent research demon-
strates that such an approach results in an inconsistent estimate
[15], even when employing Error-in-Variables (EIV) methods,
e.g., the Total Least Squares (TLS). Consistency is critical
when estimating DG parameters because the stability of the
voltage operating point leads to a low Signal-to-Noise Ratio
(SNR), which can only be mitigated by collecting a large
volume of data.

Prior research has improved the accuracy of power system
parameter estimation from smart meter measurements. The
authors of [16] attempted to simultaneously estimating phase
angles and parameters, which reduced the estimation error in
some cases but did not provide consistency guarantees. A sim-
ilar approach is employed in [17], where µPMUs are added at
some nodes to mitigate inconsistencies, albeit not eliminating
them entirely. A more recent development [18] focuses on
canceling the phase variable out of the current flow equations.
This reduction yields consistent estimates of X/R ratios and
certain transformations of conductance and susceptance, but
not of these quantities themselves. Alternatively, some studies
such as [19] have chosen to estimate impedance rather than
admittance, but inverting the impedance estimates also results
in accuracy issues [12].

In this paper, we aim to enhance our understanding of
existing estimation methods by quantifying their inherent
biases, i.e., their expected estimation errors. Our contribution
can be summarized in three main aspects. We first present
a detailed statistical model for common DG sensors and
utilize it to express the biases associated with each estimation
method in a single-line identification setup. Notably, we reveal
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that while each method effectively addresses certain biases
from previous approaches, no admittance estimation method
achieves a perfect bias cancellation, for which synchronized
phasor measurements are required. Second, we show how the
same reasoning can be applied to admittance matrix estimation
problems when the topology is unknown. Third, to validate
our findings and underscore the practical challenges of the
problem, we conduct an experiment using real DG data,
thereby demonstrating the applicability of the methods in the
real world.

A. Preliminaries and Notation

Complex numbers are defined as z = a + jb, where
a, b ∈ R2 and j2 = −1. The complex conjugate of z ∈
C is denoted by z⋆. The pseudo-inverse A† of a matrix
A ∈ Cm×n is obtained by inverting its non-zero singular
values, i.e., if A = Udiag([s, 0, . . . , 0])(V ⋆)⊤ then A† =
Udiag([1/s, 0, . . . , 0])(V ⋆)⊤. If A is square and invertible,
then A† is equal to A−1 the inverse of A. The noisy measure-
ment of a variable x is denoted by x̃. In a regression model
z̃ = Ax̃+ ϵ, we call x̃ and z̃ the Right-Hand Side (RHS) and
Left-Hand Side (LHS) variables, respectively. All variables
have an implicit time-dependence, except the parameters of
the network and probability distributions. This dependence
is implicit. The stacked vector of N + 1 measurements of
a variable x is denoted by [x̃]tNt=t0

II. SYSTEM MODEL

A. Distribution Network

We model the a power grid as a graph G(V, E) with n nodes
V = {1, . . . , n} and edges E ⊆ V×V . Each node h = 1, . . . , n
is injecting a current ih at a voltage vh. Consumer nodes are
modeled with a negative injection. Nodal AC voltages can
be expressed as phasors vh = |vh|ejθh , where θh is the phase
difference with node 1. The nodal power angle ϕh is the phase
difference between the current injection ih and the voltage
vh (i.e., the arc cosine of the power factor). Additionally, we
define all the quantities for each line h → k using a double
subscript notation ”hk”. Thus, the voltage drop, current flow,
and power angle of a line from h to k are vhk, ihk, and
ϕhk, respectively. For convenience, we define ϕhk as the angle
between ihk and vh.

Assumption 1. The voltage phase angle differences are small,
i.e., |θh| ≪ 1 for all h in V .

Comparatively small amounts of power is transmitted on
DGs, which are also quite resistive. This means that Assump-
tion 1 is quite mild. Similar to the voltages, nodal currents are
also phasors ih = |ih|ejθh−jϕh , where the nodal power angle
ϕh is not small in general.

We use a lumped-π circuit to model each electrical con-
nection in E [20], where the lines are modeled as an inductor
and a resistor in series, and the shunts as capacitors. This
gives the line and shunt admittances yhk = ghk + jbhk and
yhh,s, respectively. If two nodes h and k are not connected,
we use yhk = 0. We assume that there are no phase-shifting

transformers, and that the existing transformers have a constant
tap ratio over the duration of the experiment. This means
that the voltages and currents can be re-scaled to model the
transformers as simple line admittances.

All parameters are collected in the admittance matrix Y =
G + jB with G and B in Rn×n. Y is defined by its non-
diagonal elements Yhk = −yhk,∀h, k ∈ V2 and its diagonal
ones Ykk =

∑n
k=1 yhk − yhh,s,∀h ∈ V . For convenience, we

also define the X/R ratio ρhk = − bhk

ghk
of each line2.

B. Measuring Devices

Smart meters provide the measurements |ṽh| and |̃ih| of
the amplitudes |vh| and |ih| of the voltage and current and the
measurement ϕ̃h of the power angle ϕh [13]. However, due to
the lack of GPS synchronization do not allow Smart meters to
measure the voltage phase angles θh. Moreover, such sensors
can provide the line flow measurements ĩhk and ϕ̃hk if they
are placed on a specific line rather than a node.

Assumption 2. The noise on the current magnitude, voltage
magnitude, and power angle measurements is independent,
Gaussian, and centered on zero.

Although the regulations of commercial smart meters re-
quire a given maximum admissible error, which would imply
that the noise follow a truncated Gaussian [21], the resulting
interval is usually large enough to approximate the noise
distribution as Gaussian.

Assumption 3. The error on power angle measurement is
small.

With Assumption 3, the noise on the current phasor is
almost perfectly Gaussian in Cartesian coordinates. However,
the real and imaginary parts of the noise on current measure-
ments are not independent if the power angle is non-zero.

Remark 1. The active and reactive powers are not a linear
combination of the measured quantities and are subject to
the dependence between the real and imaginary parts of the
current noise. Their uncertainty is therefore neither Gaussian-
distributed nor independent, which is a common assumption
in the literature.

Under Assumption 2, we can define the noise on the
difference of voltage magnitudes between two nodes and its
distribution as

δvhk := (|ṽh| − |ṽk|)− (|vh| − |vk|) ∼ N (0, σv
hk). (1a)

We chose the lower-case symbol σv
hk for the variance to

emphasize the fact that it is scalar. We also define the noise
on the line current flow |̃ihk|e−jϕ̃hk measured at node h as[

δℜhk
δℑhk

]
:=

[
|̃ihk| cos(ϕ̃hk)−|ihk| cos(ϕhk)

|̃ihk| sin(ϕ̃hk)−|ihk| sin(ϕhk)

]
∼ N (0,Σi

hk), (1b)

where Σi
hk is a 2-by-2 symmetric matrix containing the

variances σℜ
hk = var[δℜhk] and σℑ

hk = var[δℑhk] of both parts of

2Inverting a complex number does not invert the ratio between its real and
imaginary parts.
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the noise on ihk in the diagonal elements, and their covariance
cov[δℜhk, δ

ℑ
hk] in the off-diagonal elements. Finally, we consider

that the final measurements are synchronized block-averages
of the instantaneous readings, and that the average over the
estimation window is subtracted from each block to center the
data.

III. LINE PARAMETER ESTIMATION

We first study the estimation problem for a single line before
addressing network identification in Section VI.

A. Impedance Estimation

The parameters zhk = y−1
hk of a line h → k relate the current

flow ihk to the difference of voltages vh − vk at each end of
the line according to the following relationship

|vh|ejθh − |vk|ejθk = zhk|ihk|ej(θh−ϕhk), (2)

which can be written in real numbers and linearized using
e−jθhk ≈ 1− jθhk from Assumption 1 as

|vh| − |vk| = rhk|ihk| cos(ϕhk) + xhk|ihk| sin(ϕhk), (3a)
|vk|θhk = −rhk|ihk| sin(ϕhk) + xhk|ihk| cos(ϕhk). (3b)

Numerical evidence that (3) is a very close approximation of
(2) when the currents and voltages are exact is given in [15].

The phase θhk is not measured so one must use (3a) to fit
the parameters rhk and xhk. With noisy measurements, the
regression is performed on the model

|ṽh|−|ṽk| = rhk |̃ihk| cos(ϕ̃hk) + xhk |̃ihk| sin(ϕ̃hk) +ϵhk, (4)

where ϵhk = δvhk − rhkδ
ℜ
hk − xhkδ

ℑ
hk embeds the uncertainty.

Remark 2. Under Assumption 1, (3b) ≈ 0 so one
can also use (3b) as a regularizer with strength λ, by
adding −λrhk |̃ihk| sin(ϕ̃hk) + λxhk |̃ihk| cos(ϕ̃hk) ≈ 0
to the regression. This can be done by augmenting
the voltage and current data matrices with [0]tNt=t0 and
[−λ|̃ihk| sin(ϕ̃hk), λ|̃ihk| cos(ϕ̃hk)]

tN
t=t0 , respectively.

B. Admittance Estimation

Similar to the impedance, the admittance relates the current
flow ihk to the difference of voltages vh−vk at each end of the
line, but in the inverse way. This gives following relationship

|ihk|e−jϕhk = yhk
(
|vh| − |vk|e−jθhk

)
. (5)

As for (3), using the truncated expansion e−jθhk ≈ 1 − jθhk
yields

|ihk| cos(ϕhk) = ghk(|vh| − |vk|)− bhk|vk|θhk, (6a)
|ihk| sin(ϕhk) = −ghk|vk|θhk − bhk(|vh| − |vk|). (6b)

One can observe that the unobserved phase angle θhk is not
simple to remove from (6) as it is done in (3). Assumption 1
hints that one could handle the missing phase measurements
by replacing them with zero. However, the phase often has
a key role in power transmission in practice so assuming it
to be exactly zero is often too constraining. Nevertheless, for

very resistive grids, inferring ghk and bhk in the following
regression model sometimes yields good results.

|̃ihk| cos(ϕ̃hk)= ghk(|ṽh|−|ṽk|) + µhk−bhk|vk|θhk, (7a)

|̃ihk| sin(ϕ̃hk)= −bhk(|ṽh|−|ṽk|)+ νhk−ghk|vk|θhk︸ ︷︷ ︸
considered as noise

, (7b)

where µhk = δℜhk − ghkδ
v
hk and νhk = δℑhk + bhkδ

v
hk.

To conclude this section, we observe that the admittance
regression model (7) actively enforces a small phase angle
θhk, in contrast with the impedance regression (4).

IV. IMPEDANCE ESTIMATION BIAS AND VARIANCE

This section characterizes the bias and variance of single
line impedance estimation. As described in Appendix A, fitting
(4) using the Ordinary Least Squares (OLS) results in biased
estimates of xhk and rhk. This bias can be eliminated by using
Total Least Squares (TLS). However, if there are correlations
between the LHS and the RHS of the regression model, the
TLS estimates can also be biased. Nevertheless, for the noise
model (1), the TLS are a close approximation of the Maximum
Likelihood Estimator (MLE), which can only be computed
exactly if the phase is known.

Lemma 1. If a regression model z̃ = A(x̃− ϵx) + ϵz , where
ϵx, ϵx ∼ N (0,Σ)3 is fitted to D datasets x̃d, z̃d, the bias of
the TLS is given by

E[Â]−A =

(
D∑

d=1

var[x̃d]− var[ϵxd]

)−1

(8)

·

(
D∑

d=1

cov[ϵxd, ϵzd] + cov[ϵxd, z̃d] + cov[x̃d, ϵzd]

)
.

Proof. The proof is derived in Appendix A-B.

Applying Lemma 1 with D = 1 to the model (4) with the
noise statistics (1) gives the bias

E[r̂hk]− rhk = (var[|̃ihk| cos(ϕ̃hk)]− var[δℜhk])
−1

·(cov[δℜhk, |ṽh|−|ṽk|]+cov[|̃ihk|cos(ϕ̃hk), δ
v
hk]−cov[δℜhk, δ

v
hk]),

and similarly for xhk. All three covariances are zero in (1)
so we conclude that the TLS estimate of the impedance is
unbiased. Moreover, the variance of the impedance estimate
can be derived from [22] as4

var
[
r̂hk
x̂hk

]
=

σv
hk+∥[rhk, xhk]∥2Σi

hk

N
var
[
|̃ihk| cos(ϕ̃hk)

|̃ihk| sin(ϕ̃hk)

]−1

, (9)

where ∥[rhk, xhk]∥2Σi
hk

= [rhk, xhk]Σ
i
hk[rhk, xhk]

⊤. Equation
(9) shows the consistency5 of the TLS estimate because
var[r̂hk, x̂hk] → 0 as N → ∞.

3The RHS and LHS variables must be normalized to have the same noise
variance.

4var[r̂hk, x̂hk] depends on the exact parameters rhk and xhk and can, in
practice, only be estimated if the SNR is sufficiently high [22].

5Consistent means that it converges with probability 1 to the exact param-
eters as N → ∞. Efficient means that its variance is equal to the Camer-Rao
lower bound [23].
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V. ADMITTANCE ESTIMATION BIAS

This section characterizes the biases of several admittance
estimation methods from the literature for a single line. We
focus on the limit case where the sample size is very large,
because the amount of data is not a big limitation for the
estimation problem. This means that although the variance can
be derived from [22] (similar to (9)), we do not include it in
this study because it decays to zero as N → ∞ and is therefore
less limiting than the biases.

The analysis demonstrates that four known methods for
estimating the admittance from smart meter measurements
produce biased estimates. Nevertheless, we show in Section
V-D that, surprisingly, the biases decay with N → ∞ only if
one inverts the impedance estimate. Thus, if one is interested
in the admittance of a line from a large data set, it may be
better to estimate the impedance and then invert the estimate.

A. Omitted-Phase Bias

We start by quantifying the bias that appears when fitting the
model (7) using the TLS. The magnitude difference |ṽh|−|ṽk|
is often correlated with the phase shift θhk, which means that
a bias may appear if it is incorporated as noise, as explained
in Section V-C. Using Lemma 1 with D = 1 and the model
(7a), we can express the resulting omitted-phase bias6 with

E[ĝhk]−ghk =

bhk(var[|ṽh|−|ṽk|]−σv
hk)

−1cov[|ṽh|−|ṽk|,|vk|θhk],

and similarly for b̂hk.
In order to avoid the omitted-phase bias, the authors of

[16], [17] estimate both the phase θhk and the parameters ghk
and bhk iteratively in a joint problem. This means using the
estimates ĝhk and b̂hk to find the estimate êθhk of |vk|θhk,
which can in be plugged in (7) to update ĝhk and b̂hk. Any
method to compute êθhk will aim at satisfying (7). Rearranging
the terms, vectorizing and plugging in the estimates, this
means

êθhk

[
b̂hk
ĝhk

]
=(|ṽh|−|ṽk|−δvhk)

[
ĝhk
−b̂hk

]
−|̃ihk|

[
cos(ϕ̃hk)

sin(ϕ̃hk)

]
+

[
δℜhk
δℑhk

]
.

(10)

The estimate êθhk can then be used in (7) as

|̃ihk| cos(ϕ̃hk)= [ghk, bhk][(|ṽh|−|ṽk|),−êθhk]
⊤+ µhk, (11a)

|̃ihk| sin(ϕ̃hk)= −[ghk, bhk][ê
θ
hk, (|ṽh|−|ṽk|)]⊤+ νhk, (11b)

While estimating θhk avoids the omitted-phase bias, it leads
to a real and imaginary simultaneity bias7, which is presented
in the next section.

6More commonly known as omitted-variable bias.
7The simultaneity bias problem is well known in statistics. It originates

from the lack of causality between variables that occur simultaneously [24],
i.e., variations in voltage and current flow.

B. Real and Imaginary Simultaneity

A simultaneity bias appears when LHS variables in one
equation appear on the RHS of another equation, hence
creating correlation between the noise on the LHS and the
variables in the RHS. To show that this correlation exists, we
consider that the estimates are good, i.e., [êθhk, ĝhk, b̂hk] ≈
[|vk|θhk, ghk, bhk]. Because [ĝhk, b̂hk][ghk, bhk]

† ≈ 1 by con-
struction, one obtains

cov
[
[δℜhk, δ

ℑ
hk], ê

θ
hk

]
≈ cov

[
[δℜhk, δ

ℑ
hk], ê

θ
hk[ĝhk, b̂hk]

]
[ghk, bhk]

†.

The expression (10) shows that êθhk is correlated to the noises
δℜhk and δℑhk. Hence,

cov
[
[δℜhk, δ

ℑ
hk], ê

θ
hk[ĝhk, b̂hk]

]
= var

[
δℜhk
δℑhk

]
,

which means that

cov
[
[δℜhk, δ

ℑ
hk], ê

θ
hk

]
≈ Σi

hk[ghk, bhk]
†.

Hence, using Lemma 1 for (11) with D = 2 and the
datasets [|ṽh|−|ṽk|,−êθhk], |̃ihk| cos(ϕ̃hk) and [−êθhk,−|ṽh|+
|ṽk|], |̃ihk| sin(ϕ̃hk) yields the real and imaginary simultaneity
bias

E[b̂hk, ĝhk]
⊤−[bhk, ghk]

⊤ ≈

−

(
var
[
|ṽh|−|ṽk|
−êθhk

]
︸ ︷︷ ︸

from (11a)

+var
[

êθhk
|ṽh|−|ṽk|

]
︸ ︷︷ ︸

from (11b)

−
[
sehk 0
0 sehk

])−1

Σi
hk[ghk, bhk]

†,

where sehk = var[êθhk−|ṽk|θhk] + σv
hk.

The solution given in the literature [24] to the simultaneity
bias is to study the reduced regression model, i.e. plugging
one equation into the other, substituting the exact unknown
variable rather than its estimate. This has been done in [18],
where the authors reduce the equations to remove the unob-
served phase θhk. We proceed similarly here, i.e., reducing
|ṽk|θhk by plugging (7b) into (7a), which gives the reduced
regression model

|̃ihk| cos(ϕ̃hk) = −ρhk |̃ihk| sin(ϕ̃hk) (12)

+ ghk(1+ρ2hk)(|ṽh|−|ṽk| − δvhk) + ρhkδ
ℑ
hk + δℜhk.

This regression gives the estimates of ρhk and ghk(1+ρ
2
hk). The

latter can then be divided by (1 + ρ̂2hk) to obtain an estimate
of ghk. A similar process can be followed for bhk by plugging
(7a) into (7b).

C. Endogeneity of δℜhk and δℑhk
We investigate the bias of TLS estimates when using the

regression model (12). As explained in Section II-B, there is
a correlation between δℜhk and δℑhk when the power angle is
not zero. Hence, from Lemma 1, the estimate of ρ̂hk has the
following endogeneity bias

E[ρ̂hk]−ρhk = [1, 0] ·

−
(
var
[
|̃ihk| sin(ϕ̃hk)
|ṽh|−|ṽk|

]
−
[
σℑ
hk 0
0 σv

hk

])−1[
cov[δℜhk, δ

ℑ
hk]

0

]
,
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when estimated from (12).
The removal of the endogeneity bias can be done by

dividing (12) by ghk(1+ρ2hk) and putting |ṽh| − |ṽk| on the
LHS. Thus, the dependence of δℜhk and δℑhk does not cross
sides. Surprisingly, adjusting (12) in this way produces (4), an
impedance estimate, because

rhk =
g−1
hk

(1+ρ2hk)
=
(
ghk+b2hkg

−1
hk

)−1
, (13a)

xhk = ρhkrhk = −
(
bhk+g2hkb

−1
hk

)−1
. (13b)

D. Impedance Inversion Bias

If the goal is to estimate the admittance values, rather than
the impedance values, the problem is still not fully solved as
one must invert (13) to obtain the estimates of ghk and bhk

8.
This yields

ghk =
(
rhk+x2

hkr
−1
hk

)−1
, (14a)

bhk = −
(
xhk+r2hkx

−1
hk

)−1
. (14b)

We can quantify the quality of the admittance estimate using
bounds on E[|ĝhk|] and E[|b̂hk|], as the signs are known9. To
do so, we rewrite (14) as

|ghk| = rhk(x
2
hk + r2hk)

−1 + xhk · 0,
|bhk| = rhk · 0 + xhk(x

2
hk + r2hk)

−1.

Plugging the functions f1(r, x) = (x2 + r2)−1 and f2(r, x) =
0, which are convex on the positive quadrant, into a sharp10

Jensen-like inequality [25, Theorem 2.1] gives the bounds11

E[|ĝhk|]≥E[r̂hk]f1

(
var[r̂hk]
E[r̂hk]

+E[r̂hk],
cov[x̂hk,r̂hk]

E[r̂hk]
+E[x̂hk]

)
,

E[|b̂hk|]≥E[x̂hk]f1

(
cov[x̂hk,r̂hk]

E[x̂hk]
+E[r̂hk],

var[x̂hk]

E[x̂hk]
+E[x̂hk]

)
,

where the variance of the estimates var[r̂hk, x̂hk] is given by
(9). Using the definition of f1(r, x) = (r2+x2)−1 and noting
that E[r̂hk] = rhk and E[x̂hk] = xhk, one gets

E[|ĝhk|]≥
r3hk

(var[r̂hk]+r2hk)
2+(cov[x̂hk, r̂hk]+rhkxhk)2

, (15a)

E[|b̂hk|]≥
x3
hk

(var[x̂hk]+x2
hk)

2+(cov[x̂hk, r̂hk]+rhkxhk)2
.(15b)

Because of the consistency of the TLS estimate,
var[r̂hk, x̂hk] → 0 as N → ∞. This means that ĝhk
and b̂hk can be asymptotically unbiased because the RHS of
(15) tends to (14). However, with a finite number of samples,
var[r̂hk, x̂hk] can remain quite high, which may heavily bias
the admittance estimate.

8In Section V-B, inverting (1 + ρ̂2hk) also leads to a bias because ρhk is
not known exactly.

9From the line model in Section II-A, rhk and xhk are positive. One can
enforce the signs of the conductance and susceptance by setting ĝhk = 0 if
the result was negative and b̂hk = 0 if it was positive.

10the equality holds for at least one realization of r̂hk and x̂hk
11Upper bounds were recently discovered for univariate functions [26],

however there are no upper bounds yet for bivariate problems such as (14)

VI. NETWORK IDENTIFICATION

Often, DSOs are interested in estimating the model for their
full network. Ideally, the model could be estimated from smart
meter injection measurements throughout the network. When
a grid is radial and the topology is known, the network identi-
fication problem for the full network can be decomposed into
individual line parameter estimation problems for each line
using Kirchoff’s Current Law. However, this is not possible for
mesh networks or radial networks with unknown topologies.
Thus, it is desirable to have a method for estimating the grid
parameters for a full single-phase12 network13 from just smart
meter voltage and injection measurements.

Estimating a network from just smart meter voltage and
injection measurements is a much more challenging task than
estimating just a single line, however, and thus requires the
following additional approximation:

ih ≈ |ih|e−jϕh : neglect current phase shifts.

Such approximations are quite accurate if Assumption 1 is
satisfied, as shown in [18]. With the aforementioned approxi-
mations, the Kirchhoff law at node h is given by |ih|e−jϕh =∑n

k=1 yhk(|vh|(1− jθh)− |vk|(1− jθk)). In matrix form and
for all h ∈ V , this gives

Iℜ = (G|V | −B(|V |Θ)), (16a)

Iℑ = −(B|V |+G(|V |Θ)), (16b)

where Iℜ = [|ih| cos(ϕh)]
n
h=1, Iℜ = [|ih| sin(ϕh)]

n
h=1,

|V | = [|vh|]nh=1, and Θ = [|θh|]nh=1. The parameter estimation
problem consists in finding G ∈ Rn×n and B ∈ Rn×n

from noisy measurements of the current magnitudes, voltage
magnitudes and power angles.

A. Reduced Regression Model

Similar to [29], we use pseudo-inverses to avoid the prob-
lems caused by the singularity of Y in the absence of shunt
elements. Recall that if Y is invertible, its pseudo-inverse is
equal to its inverse. We first note that BG†G = B because
the matrices have the same null space14 defined by the vector
of all ones and are both rank n− 1. Hence, multiplying (16b)
by BG† on both sides, one can rewrite (16) as

B(|V |θ) = (G|V | − Iℜ),

B(|V |θ) = −(BG†B|V |+BG†Iℑ).

Combining the two equations yields the reduced model

(G+BG†B)|V | = Iℜ −BG†Iℑ. (17)

12Three-phases networks can be identified using single-phase methods by
splitting the measurement into sequences [27]. However, as the imbalances
are small in practice, the zero and negative sequence data is often too ill-
conditionned for identification.

13The “full” network that is estimated consists of the Kron-reduced network
connecting just the nodes at which the injections are measured. Note,
the Kron-reduction is different than the statistical reductions that are used
elsewhere in this paper. The unmeasured injections are treated as noise [12],
[28].

14For this reason, the equality also holds for GB†B = G and other
combinations of these matrices, as well as their sums and products.
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This model was first presented in [18], where the au-
thors regress |V | and Iℑ onto Iℜ to obtain G = (G +
BG†B)(GG† + (BG†)2)†, and similarly for B. However, as
explained in Section V-C, the regression (17) suffers from a
correlation between Iℜ and Iℑ, which makes the estimation
of BG† very challenging.

B. Equivalent Impedance

In order to avoid the bias caused by the correlation between
Iℜ and Iℑ, we define the matrix O such that Ohh = n−1

n and
Ohk = 1

n . This matrix has the same null space as G and B
and has rank n− 1. Moreover, the matrix (G+ BG†B) also
has the same null space and rank, which means that O(G +
BG†B)†(G+BG†B) = O. Moreover, by construction O(G+
BG†B)† = (G + BG†B)†. We can therefore multiply both
sides of (17) by O(G+BG†B)† to obtain

O|V | = (G+BG†B)†Iℜ − (G+BG†B)†BG†Iℑ.

Finally, because (G+BG†B)†BG† = (B+GB†G)†, similar
to (4) and (13), one obtains the regression

O|V | = RIℜ +XIℑ, (18)

where

R = (G+BG†B)†,
X = −(B +GB†G)†,

⇔ G = (R+XR†X)†,
B = −(X +RX†R)†.

(19)

Estimating R and X using the TLS is consistent, unbiased and
efficient for the same reasons as in the single line problem.
Similar to Section V-D, the pseudo-inversion of the estimates
of R and X lead to an asymptotic bias. It can also be bounded
using [25, Theorem 2.1]. The exact expressions are very long
and are outside of the scope of this paper. Nevertheless, we
show the accuracy of the estimates numerically in the next
section.

VII. EXPERIMENTS

We validate our results on the 16kV distribution grid of
Walenstadt, Switzerland. Not all the nodes are observed/have
smart meter measurements. We first use the line from the
substation to Schlittriet to test the single-line identification
methods. We then experiment with network identification us-
ing the Brüsis-to-Freihof six-node sub-network. A groundtruth
model of the network is not available so we assess the accuracy
of the estimation methods using a combination of intuition,
validation, and synthetic data, as explained below.

A. Single Line Estimation

The line of interest connecting ”Schlittriet” to the substation
(see Fig. 1) has a resistance of approximately 0.1Ω.15 Its
reactance is however unknown.

15The linear resistivity is 114mΩ/km and the line is 880m long. The
reactance is much harder to compute as it depends on the environment of
the line [30].

Schlittriet

Brüsis

Tscherlach

Sonnental

Töbeli

Generator

Freihof

Sub-network
Rest of the network

Fig. 1: Graph of the region of interest in the Walenstadt network.
The lines that will be identified are in blue. The unobserved nodes
are in red.

1) Synthetic Data Single Line Estimation: In order to
understand better the biases generated by all methods, we
generate synthetic data by computing the voltages that would
perfectly match the measured power for all 7 days and
y = 10− 0.5j Siemens16. We then add an increasing amount
of Gaussian noise to observe how the estimates behave and
compute the expected biases from Section V.
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Fig. 2: Estimates of the conductance and susceptance of a single line
using the four methods (a)-(d) with synthetic data. For each method,
the points mark the estimates affected by one of the 50 realizations
of the noise generated for each noise level. The line in color shows
their average and the black line shows the predicted bias. In case (d)
the black line is a lower bound on the bias.

Fig. 2 shows that the bias estimates accurately predict the
twice too high susceptance estimate from (a), the tendency of
(b) to underestimate the conductance, and the error trends of
(c). However, the error of (d) is much lower than predicted be-
cause (15) is only a lower bound, and the high-noise behavior
of (a) is not captured by the bias. For larger, more realistic
noise levels, the bias predictions become worse because (i)
infinite amounts of data would be required to compute the
bias exactly and (ii) Assumption 3 may not be fully satisfied.
Moreover, the approximation of E[b] for (b) given in Section
V-B is not very close. This is explained by the fact that this
approximation relies on a good estimation of the phase, which
is only possible with accurate parameter values. As the noise
increase, the phase estimates degrade, which further increases
the error in the parameter estimate.

16This is an estimate of the unknown reactance, not the real value.
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2) Real-World Data Single Line Estimation: We use prac-
tical P , Q, and V measurements with 1% of error17 in all
four methods described in Section V to obtain the results
in Fig. 3. In the rest of the section, we use the sub-figure
indices (a)-(d) of Fig. 3 to denote the corresponding methods.
Because the true conductance and susceptance of the line is
not known, we use a validation dataset in order to determine
the accuracy of the methods. We split the data into 6 days
for estimating the parameters, and 1 day to validate the line
flow power predictions that use the parameters. Note that
practical parameters are subject to variations from temperature,
humidity, and loading, which further limit the estimation
accuracy.
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(a)

b
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]

7 3 2 1
(b)

7 3 2 1
(c)

7 3 2 1
(d)

sample size [days]

Fig. 3: Estimates of the conductance and susceptance of a single line
using (a) the admittance regression (7), (b) the joint estimation using
(10), (c) the reduced model (12), (d) the impedance regression (4)
with real data. For each method, the points mark the estimates using
each data subset and the line their average. The true conductance b
and susceptance g of the line is not known, but R ≈ 0.1Ω.

We assess the consistency of the estimates with R = 0.1Ω,
i.e., our only ground truth, by inverting the 7-days estimate
using (13). We observe that (a), (c), and (d) are consistent
with R = 0.1Ω, but (b) yields y = 0.003 − 0.46j S, which
corresponds to an incorrect R = 0.01Ω. Moreover, (b) and (c)
estimates a much larger X/R ratio than all three other methods.
The tendency of (b) to estimate g as zero is consistent with the
experiment with synthetic data and can be partially explained
by the bias. The larger susceptance and lower conductance
estimates from method (c) are also consistent with the higher
noise experiments with synthetic data. Table I shows that (a)
provides a good estimate18 for only P , (b) provides good
estimates for only Q, and (c) does not provide a good estimate.
Thus, only (d) could approximate both P and Q sufficiently
well.

B. Network identification

We now apply the results of Section VI to the sub-network
indicated in Fig. 1 in order to estimate its admittance matrix.

17The active and reactive powers are used to compute ihk and ϕhk , which
should not introduce additional error, as explained in Section II-B. The rated
voltage and power are 230V and 250kVA, respectively.

18The predictions in Table I are a useful validation albeit quite inaccurate.
In practice, more powerful tools for line flow estimation are available [31].
In this work, the P and Q predictions are mostly used as a cross-validation
tool to tune the regularization from Remark 2.

TABLE I: Power transmission in the estimated line for the last day of
the data. The predictions (a), (b), (c), and (d) are given by P +jQ ≈
(|ṽh| − |ṽk|)2ŷhkejϕhk using ŷhk from each method.

method P [kW] Q [kVA]
measured 107.49 5.19

(a) admittance (7) 138.69 13.34
(b) joint (10) 0.044 6.98
(c) reduced (12) 15.62 47.08
(d) impedance (4) 140.34 6.63

1) Synthetic data network identification: Similar to Section
VII-A, we first compare the methods using synthetic data. To
do so, because the true matrix is unknown, we use the arbitrary
yet realistic admittance matrix Ys, of which the element-
wise magnitude is shown in Fig. 4 (e). In order to ensure a
perfect linearization such that Assumption 1 is not needed, we
generate synthetic voltage profiles as V = |(Iℜ+jIℑ)Y †

s |. We
ensure that Assumptions 2 and 3 are satisfied by adding 1% of
Gaussian noise to the current and voltage profiles. Estimating
Ys with this data yields the following results:
(a) from [15] diverges with both OLS and TLS, yielding a

quasi-infinite admittance estimate.
(b) from [16] converges to zero.
(c) from [18] diverges with the TLS but results in the matrix

shown in Fig. 4 (c).
(d) using (18) yields the matrix shown in Fig. 4 (d) with the

TLS and a similar one with the OLS.
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(e)
Fig. 4: Heatmaps of the magitudes of the admittance matrix estimates
given by the methods (c) and (d) with synthetic data, as well as the
synthetic ground truth (e).

One key observation from Fig. 4 is that the ”Generator”
node is wrongly connected to many nodes. We can explain
this by the relatively large amounts of reactive power injected
in and out of the network by this node, leading to a power
angle that varies between −60 and +60 degrees. As the grid is
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mostly resistive, this means that most of the signal lies in the
unobserved phase of the voltages. The reactive injections also
explains the poor performance of method (c), as the power
angle is the source of the endogeneity described in Section
V-C.

2) Real-World data network identification: We use V, P
and Q measurements from real smart meters installed on
the sub-network Fig. 1. The singular values of [V, Iℜ, Iℑ]
reveal a SNR of approximately 1, which makes the estimation
challenging. In order to avoid numerical stability issues19, we
test the TLS-based methods with OLS as well. The estimation
with all 7 days of data yields results similar to Section VII-B1
for all methods. The estimates of methods (c) and (d) are
reported in Fig. 5.
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Fig. 5: Heatmaps of the magitudes of the admittance matrix estimates
given by the methods (c) and (d).

We highlight that, while the admittance matrix given in
Fig. 4 (e) is not the practical one, it should have the same
order of magnitude, which only the method (d) achieves.
Moreover, while the topology is not recognizable from Fig.
5 (d), the estimate may be useful for control and state
estimation purposes. If it is not, the data must be improved
by installing more accurate smart meter sensors, µPMUs, or
lineflow measurements.

C. Discussion

Estimating electrical grid parameters without µPMUs is
challenging. This paper quantifies this challenge by showing
that while impedance estimation can be unbiased, admittance
estimation contains a non-zero expected error when using four
common methods in the literature. This means that if enough
data is used, adding more measurements does not improve
accuracy and other types of knowledge may be required. Some
µPMUs may be present at a few nodes. Including the phase
measurements using (3b) may be necessary. In practice, one
may know the topology and the length or type of some of the
lines. which can be included as a Bayesian prior [27].

19In high SNR scenarios, the TLS may fail to estimate the EIV correctly
and remove parts of the signal instead. While the OLS is biased, it is more
robust than the TLS.

VIII. CONCLUSION

Estimating electrical grid parameters without phase measur-
ing devices is challenging. This paper quantifies this challenge
by describing the non-zero expected admittance estimation
error for four admittance estimation methods in the literature,
as well as the variance of impedance estimation. Impedance
estimation can be conducted without bias using TLS. The
results in this paper warrant further impedance and admittance
estimation experiments with real smart meter data, and exper-
iments that combine smart meter data with prior knowledge or
data from other types of sensors such as uPMUs and lineflow
measurements.
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APPENDIX A
DILUTION BIAS AND TOTAL LEAST SQUARES

We explore different methods to fit regression models such
as (4) or (7a). In order to present the theory in various cases,
we consider a general regression model z̃ = Ax + ϵ. For
example, in (4) z represents the voltage drop and x represents
the current. The matrix A contains the parameters and the
noise term ϵ is such that E[ϵ] = 0.

A. Dilution Bias

The OLS are a very common method for parameter estima-
tion, which estimates A as

Â = var[x]−1cov[x, z̃]. (20)

This estimate is exact if (i) the variance and covariance
estimates are exact and (ii) cov[x, ϵ] = 0, which means
cov[x, z̃] = Avar[x]. The condition (i) is usually almost
satisfied with very large amounts of data, as the uncertainty
on variance scales with the inverse of the number of samples.

The condition (ii) is not satisfied in (4) and (7a), as
the noises on |ṽh| − |ṽk|, |̃ihk| cos(ϕ̃hk), and |̃ihk| sin(ϕ̃hk)
are collected in ϵhk, thus creating correlations. Independent
uncertainty in the measurement x̃ of x, then var[x̃] = var[x]+
var[x̃− x], so var[x̃]−1 ≺ var[x]−1, which leads to a dilution
bias in the OLS [32].

B. Total Least Squares

The TLS estimate the parameters A and the exact variance
var[x] simultaneously, assuming that ϵ = ϵz+ϵx ∼ N (0,Σz)+
N (0, AΣzA

⊤), i.e., that the right and left hand side variables
are i.i.d., Gaussian and centered on zero. The variance var[x] is
computed as var[x̃]− var[ϵx], where var[ϵx] is obtained using
a low-rank approximation of [x + ϵx, z + ϵz] [32]20. In this
case, (20) becomes

Â = (var[x̃]− var[ϵx])−1cov[x̃, z̃]. (21)

This estimate is unbiased if and only if cov[x̃, z̃] = cov[x, z]+
cov[ϵx, z̃] + cov[x̃, ϵz]− cov[ϵx, ϵz] = cov[x, z]. Otherwise the
bias is given by (var[x̃] − var[ϵx])−1(cov[x̃, z̃] − cov[x, z]),
which is equal to (8) when D = 1.

C. Multiple Datasets

If D datasets x̃d, z̃d of equal size such that zd =
Axd for d = 1, . . . , D are combined, (20) becomes
Â =

(∑D
d=1 var[xd]

)−1∑D
d=1 cov[xd, z̃d]. Moreover, sim-

ilar to (21), the TLS estimate uses var[xd] = var[x̃d] −
var[x̃d − xd] when the noise is independent. Hence the
bias is

(∑D
d=1 var[xd]− var[x̃d − xd]

)−1∑D
d=1(cov[x̃d, z̃d]−

cov[xd, zd]), which is equal to (8).

20The TLS can also be computed online using its recursive formulation
[33]
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