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Abstract—This paper presents a new Matlab toolbox, aimed
at facilitating the use of polynomial optimization for stability
analysis of nonlinear systems. In the past decade several decisive
contributions made it possible to recast this type of problems
as convex optimization ones that are tractable in modest di-
mensions. However, available software requires their user to be
fluent in Sum-of-Squares programming, preventing them from
being more widely explored by practitioners. To address this
issue, SOStab entirely automates the writing and solving of
optimization problems, and directly outputs relevant data for the
user, while requiring minimal input. In particular, no specific
knowledge of optimization is needed for implementation. The
toolbox allows a user to obtain outer and inner approximates of
the Region of Attraction (RoA) of the operating point of different
grid connected devices such as synchronous machines and power
converters.

Index Terms—AC power systems; Software; Sum-of-squares
programming; Transient stability analysis.

I. INTRODUCTION

A RoA characterizes a set of initial conditions within the
state space of a dynamical system for which trajectories
demonstrate stability properties, such as hitting a target (finite
time horizon RoA [1], [2]) or converging towards a secure
zone of the state space (infinite time horizon RoA [3]–[5]).
Practical computation of approximations for both types of RoA
is achievable by solving a SoS Programming (SoSP) problem
within the framework known as Lasserre’s Moment-Sums-of-
Squares (SoS) hierarchy, which involves resolving Semidef-
inite Programming (SDP) problems. While accommodating
nonlinear behaviors, this approach comes with convergence
guarantees [6]–[8], providing an infinite set of certified stable
operating conditions through a singular computation.

Consequently, RoA has captured the interest of the power
systems and control community. Notably, the potential appli-
cation of SoSP to the transient stability problem have been
explored over the past decade [9]–[13]. Typically performed
through contingency analyses using time-domain simulations,
transient stability assessment is becoming increasingly chal-
lenging as the system operates near its limits in an environment
of growing variability and uncertainty.
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In this scenario, having a means to rapidly eliminate situa-
tions with guaranteed stability proves invaluable. To serve this
purpose, direct methods relying on simplified models, includ-
ing those based on energy functions or on the Extended Equal
Area Criterion (EEAC) [14], are currently being revisited.
In this context, RoA-based approaches emerge as a natural
alternative, with scalability issues being diligently addressed
by the applied mathematics community (see [15] for details
and [16]–[20] for existing solutions).

In this work, we address a set of more practical barriers that
currently limit further development in this direction, such as:

• The lack of a user-friendly interface for a practical imple-
mentation and application of the Moment-SoS hierarchy.

• The conditioning of the underlying Linear Matrix In-
equality (LMI), which depends on the specific formu-
lation of the problem.

More precisely, the existing frameworks [21]–[23] require
users to manually write and solve SoSP problems to obtain the
RoA approximation. In contrast, the proposed SOStab Matlab
toolbox fully automates the SoSP aspect, eliminating the need
for users to possess knowledge of the Moment-SoS hierarchy.
The toolbox operates with minimal input requirements, namely
dynamics, state constraints, equilibrium point, time horizon,
target set, and a complexity parameter d. It outputs the stability
certificate describing the RoA approximation and provides
graphical representation in selected state coordinates. SOStab
has been developed and made publicly available which allows
users to compute RoA of non-linear dynamical systems.

To the best of the authors’ knowledge, the only existing
toolbox for RoA approximation in a finite time horizon setting
is SparseDynamicSystem [18], coded in the Julia language.
A notable distinction lies in the fact that the Julia toolbox
exclusively supports polynomial dynamics, whereas SOStab
is built on the Matlab codes supporting [12], specifically
tailored for AC power systems that include phase variables
and trigonometric dynamics.

The article is organized as follows: first Section II provides
theoretical background on the definition of RoA and the
calculation of inner and outer approximations, introducing the
methods behind the tool and their relevance to the power
system transient stability problem. Basics about the SoSP
framework are included in Appendix A. Then, Section III
presents the models of the two case studies considered in
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this work for illustrative purposes. Section IV includes an
overview of the SOStab toolbox and offers guidance on its
usage, while simulation results are discussed in Section V.
Finally, Section VI summarizes the main contributions of this
work and elucidates on potential improvements.

II. METHODOLOGICAL FRAMEWORK

Consider a generic differential system

ẋ(t) = f(x(t)) (1a)

with polynomial dynamics f ∈ R[x], equilibrium x⋆ ∈ Rn.
Define a threshold ∆x ∈ (0,∞)n and state constraint

x(t) ∈ X := [x⋆ ±∆x], (1b)

[x⋆±∆x] := [x⋆
1−∆x1, x

⋆
1+∆x1]× . . .× [x⋆

n−∆xn, x
⋆
n+∆xn].

Definition 1 (RoA [1], [2]). Given a time horizon T > 0 and
a closed target set M ⊂ X, the Region of Attraction RM

T of
M in time T is defined as the set of all initial conditions of
trajectories that hit the target M at time T , i.e.:

RM
T :=

{
x(0) ∈ Rn :

∀t ∈ [0, T ], (1) holds
x(T ) ∈M

}
. (2)

The transient stability problem can be reformulated as the
search for a RoA in the state space of the post-fault system.
Determining the duration a fault can last before a synchronous
generator loses stability is equivalent to identifying how far
the trajectories can diverge before they can no longer return to
an acceptable operating point. Here, the vector field f models
the nonlinear system dynamics, and the target M represents
a positively invariant vicinity of a stable equilibrium point
x⋆, both in the post-disturbance state. Consequently, the term
initial condition refers to the system state at the moment
of fault clearance, and T characterizes, in some manner, the
recovery time. Finally, state constraints in Eq. (1b) set bounds
on state variables accounting for system limits.

Notice that here the dynamcis f are assumed to be polyno-
mial: for non-polynomial dynamics (e.g. phase-related sines
and cosines), a preprocessing (Taylor expansion or variables
change) is required to enforce polynomial structure.

SOStab builds on [1], [2] and is specifically designed to
approximate such an RM

T for ellipsoids M described by

M := {x ∈ Rn : ∥A(x− x⋆)∥ ≤ ε} (3)

where A ∈ Rn×n is a reshaping matrix such that det(A) = 1,
and ε > 0 is an error tolerance.

From a computational viewpoint, considering finite time
horizon RoA improves the properties of the resulting SoS
programs: they are convex, while their infinite time horizon
counterparts are bilinear (and thus nonconvex), which has
important consequences on the convergence properties of the
corresponding algorithms (see e.g. [11]). In practice, this is
a reasonable assumption as operational points of physical
system, such as power systems, are constantly moving, making
the results of the analysis relevant for a limited time window.
In exchange for the finite time horizon, it is necessary to

consider target sets that are not reduced to a point, defined
by parameters A and ε; in SOStab, the default value for A
is the identity matrix, but sometimes (e.g. when variables
evolve on different time scales), it is useful to make a
different choice. For instance, in a two-dimensional singular
perturbation framework |ẋ1| ∼ a2|ẋ2|, one would set

A =

(
1/a 0
0 a

)
i.e. take an ellipse of equation (x1−x⋆

1)
2
/a2+a2(x2−x⋆

2)
2 ≤ ε2

for M, which is justified by the physical reasoning that, for
a trajectory starting at (x1, x2) and converging to (x⋆

1, x
⋆
2) in

infinite time, it holds

x⋆
1 − x1 =

∫ ∞

0

ẋ1(t) dt ∼ a2
∫ ∞

0

ẋ2(t) dt = a2(x⋆
2 − x2),

and those two terms should have equal contribution in the
description of the target M, otherwise the resulting RoA will
be skewed. Also, from Eq. (3) it holds that vol(M) ∝ εn,
where vol denotes the n-dimensional volume of a set, so that
the choice of the tolerance parameter ε is directly related to
the desired size of the target M.

SOStab takes as input the problem data (f ,∆x, T,A, ε),
as well as a parameter d ∈ 2N which sets the accuracy and
complexity of the approximation, and outputs the following
objects for outer and inner RoA estimation:

yout
d =

(
λout
d voutd wout

d

)
(4a)

yin
d =

(
λin
d vind win

d

)
, (4b)

with λ
in/out
d ≥ 0, vin/outd ∈ Rd[t,x] degree d polynomials in

(t,x) and w
in/out
d ∈ Rd[x] degree d polynomials in x, such

that the following inclusion guarantees hold:

RM
T ⊂ {x ∈ Rn : voutd (0,x) ≥ 0} =: Rout

d (5a)

RM
T ⊃ {x ∈ Rn : vind (0,x) < 0} =: Rin

d . (5b)

In words, voutd (0,x) ≥ 0 (resp. vind (0,x) < 0) means
that x belongs to an outer (resp. inner) approximation Rout

d

(resp. Rin
d ) of RM

T . Moreover, λd is an upper bound of the
approximation error, and wd is often used to check numerical
results: it should separate X into a zone where its values are
close to 0 and one where they are above 1; one of those two
zones missing means that the solver failed to detect the RoA.
Eventually, the framework comes with precision guarantees:

vol
(
Rin/out

d

)
−→
d→∞

vol
(
RM

T

)
. (6)

In words, when the modelling parameter d goes to infinity,
the volume of the error made by the approximation schemes
vanishes (see Appendix A or [1], [2] for further details and
Appendix B for an elementary example).

In the transient stability problem, inner approximations are
more relevant as they provide stability certificates for all states
within, even if it means excluding some post-fault conditions
leading to stable trajectories. Outer approximations ensure the
inclusion of all stable states but lack conservatism guarantees.
The gap between the two may inform about the approximation
accuracy with respect to the exact RoA.
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III. MODELS FOR CASE STUDY

In this section we present the model of two different
test cases, proposed in the literature, to illustrate the tool
capabilities, flexibility and performance. The first one is the
well known synchronisation loop of classic grid-following
converters: the phase locked loop (PLL [24]–[26]). The second
consists of a synchronous machine described by a third order
model, to which a governor and automatic voltage regulator
(AVR) representations are added. The grid side is represented
by an infinite bus [10], [13].

A. Phase Locked Loop 2nd order model

Fig. 1 shows a generic PLL block diagram [24]. Here an
angular state variable θ is required to match a reference θref ; to
that end, the system computes the sine of the phase difference
ϕ, multiplies it by some gain K and takes it through a low-
pass filter with transfer function F (s) = 1+τ2s

τ1s
, resulting in

the following differential system:(
ϕ̇
ω̇

)
=

(
ω

−K τ2
τ1

cos(ϕ)ω − K
τ1

sin(ϕ)

)
. (7)

−+ sin
θref

K
ϕ

F (s)

∫
ω θ

Fig. 1. Block scheme of a PLL system.

Following [24], in the PLL setting the time constants τ1 and
τ2 are functions of the gain K, a natural frequency ωn and a
damping ratio ζ:

τ1 =
K

ω2
n

τ2 =
2ζ

ωn
(8)

In our case study, we will use SOStab to compute the RoA
of the PLL system described by Eq. (7) with parameter values
as described in Tab. I, and where sine and cosine have been
replaced by their degree 10 Taylor expansions (denoted si
and co respectively), so that the dynamics are polynomial.

Parameter K ωn ζ
Value 1 s−1 10.813 s−1 1.3303

TABLE I
PARAMETERS FOR PHASE LOCKED LOOP.

B. Single machine - infinite bus with regulations

Following [10], Fig. 2 represents a synchronous machine
connected to an infinite bus with voltage vs through a power
transmission line with impedance Zt = Rt + j Xt. The
physics of the synchronous machine are modelled by the swing
equation as well as the electromotive force dynamics:

θ̇ = ω − ωs (9a)

2Hω̇ = Pm − (vdid + vqiq + ri2d + ri2q) (9b)

T ′
d0
ė′q = −e′q − (xd − x′

d)id + Efd (9c)

where θ is the machine angle in a rotating frame synchronized
with the grid (hence the grid frequency ωs in (9a)) and the
current i and voltage v are described in the rotating frame by
the Kirchhoff laws:

iq =
(X + x′

d)∥vs∥ sin θ − (R+ r)(∥vs∥ cos θ − e′q)

(R+ r)2 + (X + x′
d)(X + xq)

id =
X + xq

R+ r
iq −

∥vs∥ sin θ
R+ r

vd = xqiq − rid

vq = Riq +Xid + ∥vs∥ cos θ

A
Zt

i B

ut

v vs

∞

Fig. 2. A synchronous machine connected to an infinite bus.

Moreover, the model includes quadratic AVR dynamics

TaĖfd = −Efd +Ka(V
2 − ∥v∥2) (9d)

as well as turbine governor equation

TgṖm = −Pm + P +Kg(ωs − ω) (9e)

where V and P are given set points for the voltage magnitude
∥v∥ and mechanical power Pm. In our case study, we will use
SOStab to compute the RoA of the 5D SMIB model given by
Eq. (9) with parameter values as described in Tab. II, along
with the variable change

x = (sin θ, cos θ, ω, e′q, Efd, Pm) (10)

so that the dynamics ẋ = f(x) are polynomial.

Parameter T ′
d xd x′

d xq r
Value 9.67 s 2.38 pu 0.336 pu 1.21 pu 0.002 pu

Parameter H ωs R X V = ∥vs∥
Value 3 s 1 pu 0.01 pu 1.185 pu 1 pu

Parameter Ta Ka Tg Kg P
Value 1 s 70 pu 0.4 pu 0.5 pu 0.7 pu

TABLE II
PARAMETERS FOR SINGLE MACHINE - INFINITE BUS.

IV. COMPUTING ROA WITH SOSTAB

In this section we showcase a step by step procedure to
assess the stability of our test cases with SOStab.

A. Installation
SOStab is a freeware subject to the General Public Licence

(GPL) policy available for Matlab. It can be downloaded at:

https://github.com/droste89/SOStab

SOStab requires YALMIP [21], as well as a semidefinite
solver. Mosek [27] is used by default, but it can be replaced
by any other solver, provided they are installed and interfaced
through YALMIP.
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B. Overview

SOStab is designed to compute a classifier, denoted as
v(0, ·), which can be evaluated at any state x of the consid-
ered system. The sign of v(0,x) indicates whether the state
belongs or not to the selected RoA approximation, thereby
characterizing the stability of the trajectory starting at x. The
toolbox requires the following minimal input:

ẋ = f(x), f ∈ R[x]n, T > 0

x⋆ ∈ {x ∈ Rn : f(x) = 0}
∆x ∈ (0,∞)n, d ∈ 2N, ε > 0,

where f ∈ R[x] means that the system dynamics should have a
polynomial form (up to Taylor expansion or variable change).
Then, it identifies the problem to be solved as: “compute
approximations Rd of RM

T with dynamics f , admissible set
[x⋆ ±∆x] and target set M = {x ∈ Rn : ∥x− x⋆∥ ≤ ϵ} ”.

SOStab also admits two optional input arguments:
• a shape matrix A ∈ Rn×n such that det(A) = 1 reshapes

the target set as M = {x ∈ Rn : ∥A(x− x⋆)∥ ≤ ϵ};
• in case the system at hand involves trigonometric func-

tions of phase variables θ1, . . . , θN , it is also possible
to specify a phase index matrix Θ ∈ RN×2 whose first
(resp. second) column consists of the indices of the sines
(resp. cosines) of the θi in the recasted variable x.

The use of the toolbox consists of four steps (see Fig. 3):
1) The initialization is performed from input (x⋆,∆x) (and

optional input Θ); it defines the admissible set [x⋆±∆x]
and identifies the dimension and variables of the system.

2) The user then inputs the dynamics f of the system and
adjusts optional settings of the toolbox.

3) The RoA approximation itself is performed from input
(d, T, ε) (with optional input A); it outputs the SDP
solutions yd = (λd, vd, wd).

4) Graphic representations of the solutions can eventually
be plotted; the choice of the plots abscissa and ordinate
and plotting options are up to the user.

Initialization input:
x_eq, delta_x,
angle_ind (opt.)

Data created by the
toolbox:

dimension, x, t

Additionnal input:
dynamics,

solver (opt.),
verbose (opt.)

Input for one calculation:
d, T, epsilon, A (opt.)

Output of one calculation:
solution, vcoef_outer,
wcoef_outer (resp. inner)

Input for plotting: i, j
(coordinates of plotted

variables), ’inner’ or
’outer’

Output of the plot: 2D plot
of RoA or 3D plot of wd

Fig. 3. Flowchart of the toolbox workings

We are now going to demonstrate the implementation of
those four steps on the PLL and SMIB test cases.

Remark 1. In the current version of the toolbox, when using
an optional argument, one should also specify all optional
arguments that appear before in the method call.

C. Initialization and dynamics specification

The first initialization step consists in choosing the threshold
∆x defining the admissible set X; For the PLL, we follow the
reference [24] and ask ∆ϕ = π rad and ∆ω = 20π rad/s
(the equilibrium is trivially x⋆ = 0). Similarly, we identify an
equilibrium point x⋆ and set a threshold ∆x for the SMIB
model (with variable x described as in Eq. (10)).

PLLeq = [0;0]; DeltaPLL = [pi; 20*pi];
SMIBeq = [sin(1.539); cos(1.539); ...

1; 1.070; 2.459; 0.7];
DeltaSMIB = [1; 1; 1; 1; 20; 4];

Remember that the PLL dynamics are approximated by
their Taylor expansion, while we study the exact SMIB model
through a variable change. Hence, for the SMIB model, we
need to specify which coordinates of x are actually trigono-
metric functions of the original variable, by adding the input:

angle_ind = [1,2];

Here angle_ind = Θ is the phase index matrix with only
one line as the SMIB model features only one phase angle θ;
the first (resp. second) column gives the position of sin θ (resp.
cos θ) in the recasted variable

x = (sin θ, cos θ, ω, e′q, Efd, Pm).

Next, for each of our two test cases we create an instance
of SOStab with the following commands:

PLL = SOStab(PLLeq, DeltaPLL);
SMIB = SOStab(SMIBeq, DeltaSMIB, Z);

The initial call creates an instance of the class, and defines
a number of internal properties, among which one can find the
following useful ones:
• internal copies of the inputs XXXeq and DeltaXXX (and

optionally angle_ind, empty by default)
• dimension: problem dimension (number of variables)
• x: a YALMIP sdpvar polynomial object, of the dimension

of the problem. It represents the variable x and is called by
the user to define the dynamics of the system

• t: sdpvar polynomial of size 1, representing the time
variable t, which can be needed to define the dynamics of
the system (if non-autonomous)

• solver, the choice of the solver used in the optimization,
defined as Mosek by default, it can also be SeDuMi

• verbose, the value of the verbose parameters of the
YALMIP optimization calls, defined at 2 by default (all
numerical SDP solver info displayed), it can also be 1 (se-
lection of info displayed) or 0 (no info about the numerical
resolution of the underlying SDP)

• dynamics, a YALMIP polynomial defining the polynomial
dynamics f of the system.
Eventually, after declaring all required parameters (see

Tab. I and II), the system dynamics are introduced:
PLL.dynamics = [PLL.x(2); ...
-K/tau1*(si(PLL.x(1)) + tau2*co(PLL.x(2))];
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where PLL.x denotes the variable x of the PLL system
(automatically defined by SOStab when it is first called). For
the sake of brevity the code for SMIB dynamics is reported
in Appendix C. A crucial note is that it features the recasted
dynamics ẋ = f(x), meaning that θ̇ = ω − ωs is replaced
with the dynamics of its recasted images s = sin θ, c = cos θ:

ṡ = (ω − ωs)c (11a)
ċ = (ωs − ω)s (11b)

D. RoA approximation

The inner and outer RoA approximation of the system de-
fined by the call of SOStab are then computed by the methods
SoS_in and SoS_out, respectively. For the PLL system,
we first compute a degree 16 outer approximation of the time
T = 1 RoA of M =

{
(ϕ, ω) ∈ R2 : 20ϕ2 + 0.05ω2 ≤ 1.72

}
using the following commands:

T=1; epsilon = 1.7; d=16;
A = [[20ˆ(1/2) 0] ; [0 20ˆ(-1/2)]];
[vol, vc, wc] = PLL.SoS_out(d,T,epsilon,A);

In the SMIB case, we seek a degree 6 inner approximation of
the time T = 10 RoA of M = {x ∈ R6 : ∥x− x⋆∥ ≤ 0.2},
hence we enter the commands:

T=10; epsilon = 0.2; d=6;
[vol, vc, wc] = SMIB.SoS_in(d,T,epsilon);

Additionnal properties are related to a specific solution of the
optimization problem. They are calculated at each call of the
optimization and stored until the next call, i.e. each of them
correponds to the previous optimization call:
• internal copies of the inputs d, T, epsilon (and optional
A, set to identity by default); recall that d is the degree of
the polynomials vd and wd

• vcoef_outer, the coefficients of the solution voutd for the
last calculated outer approximation of the ROA

• wcoef_outer, the coefficients of the solution wout
d for

the last calculated outer approximation of the ROA
• vcoef_inner, the coefficients of the solution vind for the

last calculated inner approximation of the ROA
• wcoef_inner, the coefficients of the solution win

d for the
last calculated inner approximation of the ROA

• solution, a volume approximation of the last calculated
ROA, ie the solution λd of the optimization problem
The output of SOStab can be used as follows: as introduced

in Section II, λd and wd are used to assess the numerical
solver performance; the key output is then the polynomial
classifier vd, which is used as follows: in any situation where
the dynamics are valid for the considered system (be it
initialization or post-fault transients) and its state is repre-
sented by x(t), vind (0,x(t)) < 0 means that the system will
remain in the secure zone X and hit its target: x(t+T ) ∈M;
conversely, if voutd (0,x(t)) < 0, then either the state will leave
X before time t+ T or it will miss its target: x(t+ T ) /∈M;
hence, the only remaining uncertainty will be when both
v
in/out
d (0,x(t)) ≥ 0. Hence, assessing the stability of a

configuration x(t) boils down to evaluating the polynomial
vd(0,x(t)), which can be done instantly.

V. CASE STUDY

In this section, we display and comment the results obtained
by running the codes presented in IV.

A. RoA of the Phase Locked Loop system

When called according to the instruction of Section IV
to assess the stability of the PLL model, SOStab returns
the approximate surface vol= λout

d of the computed RoA
estimate in the phase space, as well as two vectors vc and wc
consisting of the coefficients of polynomials voutd and wout

d

respectively. We run SOStab for the PLL system for various
values of d and compile the results in Tab. III. As λout

d is a
proxy for the size of the outer RoA estimate, the smaller it is,
the more accurate the approximation. Here one can observe
that as expected the accuracy increases with d at the price of
higher computational time. The CPU times were obtained on a
Macbook laptop with an Apple M2 chip and 16 GB of RAM.

d λout
d CPU time (s)

4 4.0000 2.8169
8 3.5892 4.6729

12 3.1284 14.5575
16 2.9346 45.2185

TABLE III
OUTPUTS OF SOSTAB DEPENDING ON PRECISION PARAMETER d

Once the optimization problem is solved, the following
command plots two-dimensional slices of the boundary

∂Rout
d = {x ∈ Rn : v(0,x) = 0}

PLL.plot_roa(1,2,’outer’);

where the first two arguments indicate the indices of the
represented variables (respectively in abscissa and ordinate), in
case there are more than two. The string ’outer’ indicates
that the toolbox plots an outer estimate of the RoA.

For inner RoA approximation [2], the commands are
[vol, vc, wc] = PLL.SoS_in(d, T, epsilon);
PLL.plot_roa(1, 2, ’inner’,1);

Here the last argument with value 1 is an optional argument
that asks SOStab to also represent the target set M in the
figure. The admissible set X is the whole plotting window, so
that it is always visualized. This yields the plot represented in
Fig. 4, which can be compared to [24, Fig. 10, Right].

It can also be interesting to display 3D-plots of polynomials
voutd and wout

d , which can be performed by the commands (see
Fig. 5: one retrieves the shape of the inner RoA estimate):

PLL.plot_v(1, 2, ’outer’);
PLL.plot_w(1, 2, ’outer’);

Of course, one can also represent the certificates vind and
win

d obtained in inner approximation, simply by setting the
last argument at ’inner’.
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Fig. 4. Inner and outer RoA approximations for the PLL system.

Fig. 5. Plot of win
d for the PLL system

Those 3D plots can be useful when the validity of the
RoA estimate is unclear. Indeed, although those estimate are
theoretically certified, SOStab can fail to compute an RoA
approximation, due to bad conditioning and numerical solver
inaccuracy; to detect such behaviour, one can plot the graph
of wd: if it is almost flat with values wd(x) ≃ 1 everywhere,
then the RoA estimation failed.

B. RoA of the single machine - infinite bus system

Instead of performing Taylor expansions as in the previous
section, it is also possible to directly tackle trigonomet-
ric functions, through the algebraic change of variables in
Eq. (10) [12].

After the commands displayed in Section IV, a user has
access to the description of the inner RoA estimate through the
polynomial vind (0,x). It is also possible to compute an inner
estimate and plot both on a 2D graph in the (θ, ω) coordinates
(see Fig. 6), with the following commands:

SMIB.plot_roa([1,2],3,’inner’,1);
SMIB.SoS_out(d, T, epsilon);
SMIB.plot_roa([1,2],3,’outer’,1);

Here the argument [1,2] means that the abscissa of the plot
should be the phase variable θ, which SOStab knows only
from its images x1 = sin θ and x2 = cos θ. More generally,
setting [i,j] in the coordinate arguments of SOStab results
in the abscissa of the plot being the phase variable θ such that
xi = sin θ and xj = cos θ.

The second argument 3 sets x3 = ω as the ordinate
of the plot. Another choice such as 6,3 (without brackets)
would result in plot coordinates (x6, x3) = (Pm, ω) as in
Fig. 7. Those figures are similar to the existing results [10,
Fig. 5.b-c]. For the degree 6 estimates of the SMIB model
RoA, the outer approximation took 49.085 seconds, while the
inner approximation (much more difficult in practice due to
conditioning technicalities) took approximately 2 hours.

Fig. 6. RoA approximation of the SMIB in the (δ, ω) coordinates.

Fig. 7. RoA approximation of the SMIB in the (Pm, ω) coordinates.

C. A curse of dimensionality

The above examples all include very simplified models
of power system devices, with a 2D 2OM PLL and a 5D
SMIB model. This is due to the fact that, for computational
times and numerical conditioning to be reasonable, the toolbox
currently works only with low-dimensional systems. Indeed,
SOStab is internally asked to solve LMIs of combinatorial
size

(
n+d+1

d

)
where n is the number of variables modelling

the system and d is the degree of the certificates vd and wd.
The current computational limits of a standard use of SoSP in
stability analysis were reached in [10], [13] and the 5D SMIB
model. A more promising approach for scaling the method
consists in splitting the considered problems into subproblems
of more modest size, based on the structure of the problem. For
instance, [18] exploits the algebraic notions of term sparsity
and chordal sparsity to handle up to 16 dynamical variables
while keeping convergence guarantees. More physics-oriented
are the methods in [16] (resp. [17]), where causality (resp.
time scale separation) is exploited to decompose the full
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problem into more tractable subproblems. Such ideas have
been successfully implemented in the simpler (because static)
AC-OPF problem setting, for which continental-scale systems
have been handled by SoSP methods [19], [20]. While very
promising, these methodologies pose significant challenges
when it comes to their automation into a Matlab toolbox, and
hence were not implemented in the current version of SOStab.
This, although out of the scope of the present article, will be
deeply investigated in future works.

VI. DISCUSSIONS AND CONCLUSIONS

This work presented a new Matlab Toolbox called SOStab,
which aims at helping a non-expert in polynomial optimization
to use the frameworks developed in [1], [2], [12] through a
plug-and-play interface. Such interface would greatly facilitate
the setup of new experiments to leverage the conditioning
issues; further, it could be included in future schemes aimed
at scaling the method to high dimensions.

A. Contribution highlights

In practice, [1], [2], [12] only provide a methodology for
RoA approximation. As detailed in those references as well
as Appendix A, the Moment-SoS hierarchy consists in solving
SoSP problems of increasing size, which requires to follow
a number of steps, related to real algebraic geometry and
optimization:

1) Defining the geometric characteristics of the problem
(polynomial dynamics f , time horizon T , admissible and
target sets X and M)

2) Defining an algebraic description of these geometric
characteristics: polynomials g ∈ R[x]m s.t. X = {x :
g(x) ≥ 0} and h ∈ R[x]ℓ s.t. M = {x : h(x) ≥ 0}

3) Coding a method to integrate polynomials over X (i.e.
computing the moments of the Lebesgue measure on X)

4) Writing the SoSP problems with explicit positivity con-
straints; this requires introducing internal SoS certificates
as decision variables

5) Recasting SoS constraints as LMIs, solving the resulting
SDP problem and converting the solution back to the
polynomial framework

6) Extracting the corresponding certificates vd, wd and using
them to characterize and plot relevant representations of
the computed RoA approximation.

Existing frameworks [21]–[23] have been designed to auto-
mate step 5 which appears in all instances of SoSP. As a
result, they are very flexible in their use, but they also require
their user to perform steps 1–4 and 6 by hand, which involves
solid knowledge in SoSP and may be time consuming and
prone to human errors (especially in step 4) ; hence their use
is usually not smooth, even for experts.

In contrast, with SOStab, only step 1 is left to the user, and
all the other operations are automatically performed. More
precisely, intrinsic properties of the dynamical system are
defined as presented in Section IV-C, and then settings for
finite horizon RoA are the input of methods SoS_in and
SoS_out; with this, steps 2–5 are performed through a call to

YALMIP, for inner and outer RoA approximation respectively,
and output an optimal value solution and the coefficients
of the optimal polynomials vd and wd.

The benefits of this contribution are the following:
(a) Knowledge on SoS programming becomes optional to use

the Lasserre hierarchy for RoA approximation.
(b) The user input is significantly reduced, limiting implemen-

tation efforts.
(c) The toolbox comes with a plug-and-play design that allows

one to repeat multiple experiments, reproduce existing
results from the literature and solve new problems.

B. Limitations and future works

However, some limitations remain to be leveraged. For
instance, while convex, SDP problems can be ill-conditioned,
which sometimes results in poor numerical behavior with
w⋆

d ≃ 1 and meaningless plots. It is possible to rescale SoS
constraints to mitigate that phenomenon, although finding the
appropriate rescalings is non-trivial.

Moreover, inner RoA approximation requires an algebraic
representation of the boundary ∂X of the admissible set X [2],
and while choosing a box is the most physically relevant
(and the easiest to integrate polynomials on), it induces some
numerical difficulties that would not arise if X were described
by a single polynomial. This can be solved either by changing
the description of ∂X, or by changing the admissible set X.

Last but not least, at a given number n of variables (such
that x ∈ Rn and given precision degree d, SOStab (and the
Lasserre hierarchy in general) requires to solve size

(
n+d+1

d

)
SDP problems, which quickly becomes intractable on any
computer. To tackle this issue, structure exploiting methods
have been developed in [15]–[20], which consist in splitting
the underlying SDP problems into problems of smaller size,
while keeping as much computing precision as possible; these
techniques bear the potential for scaling the hierarchy up to
more realistic power systems such as fully modelled power
converters or low order models of distributions network (which
exhibit a radial structure one can exploit in computations).

Future works on the SOStab class will include:
(a) Running the toolbox on more sophisticated case studies

such as power converters
(b) Improving the inner approximation scheme to increase the

accuracy of each relaxation
(c) Supporting richer admissible X and target M sets, such as

ellipsoids, ℓp-balls, annuli...
(e) Supporting bases of polynomials other than monomials

(Chebyshev, Legendre, trigonometric polynomials)
(f) Exporting the toolbox to other softwares compatible with

existing SDP solvers, such as Julia or Python
(g) Adding structure exploiting methods to scale the method

to higher dimensional dynamical systems
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optimization and semidefinit programming”, Optimization Methods and
Software 24(4-5):761–779, 2009.

[23] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler,
P.A. Parrilo, M.M. Peet and D. Jagt, SOSTOOLS – Sum of Squares
Optimization Toolbox for MATLAB, published online in 2002.

[24] T.-C. Wang, S. Lall and T.-Y. Chiou, “Polynomial method for PLL
controller optimization”, Sensors 11:6575–6592, 2011.

[25] C. Zhang, M. Molinas, J. Lyu, H. Zong and X. Cai, “Understanding the
nonlinear behaviour and synchronizing stability of a grid-tied VSC under
grid voltage sags”, IEEE 8th Renewable Power Generation Conference
(RPG), Shanghai (China), 2019.

[26] C. Zhang, M. Molinas, Z. Li and X. Cai, “Synchronizing stability
analysis and region of attraction estimation of greed-feeding VSCs using
Sum-of-Squares programming”, Frontiers in Energy Research 8, article
56, 2020.

[27] MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual.
Version 10.0, 2022.

APPENDIX

A. Lasserre hierarchy for Region of attraction

In this section, the generic problem of computing the finite
time RoA of a given target set is presented, along with the
SoS framework to address it. Consider the system

ẋ = f(x) (12a)

with vector field f ∈ C∞(Rn)n and state constraint

x(t) ∈ X (12b)

for some subset X ⊂ Rn representing security constraints.

Definition 2. Given a time horizon T ∈ (0,∞] and a closed
target set M ⊂ X, the Region of Attraction (RoA) of M in
time T is defined as

RM
T :=

{
x(0) ∈ Rn :

∀t ∈ [0, T ), x(t) ∈ X
dist(x(t),M) −→

t→T
0

}
(13)

Remark 2. Definition 1 covers many frameworks, such as:
• Infinite time RoA (T = ∞, X = Rn, often M = {0})
• Maximal positively invariant set (T = ∞, M = X ⊊ Rn)
• Constrained finite time RoA (T < ∞, X compact)

We now introduce an infinite dimensional Linear Program-
ming (LP) problem that is related to the constrained finite
horizon RoA (see [1] for details):

W ⋆ := inf

∫
X
w(x) dx

s.t. v ∈ C∞(Rn+1), w ∈ C∞(Rn)

w ≥ 0 on X (14a)
w ≥ v(0, ·) + 1 on X (14b)

Lfv := ∂tv + f⊤∂xv ≤ 0 on
L

(14c)
v(T, ·) ≥ 0 on M (14d)

where
L
:= [0, T ]× X ⋐ Rn+1 denotes a time-state cylinder.

Proposition 1 ( [1]). Let (v, w) be feasible for (14). Then,

RM
T ⊂ {x ∈ Rn : v(0,x) ≥ 0} (15a)
⊂ {x ∈ Rn : w(x) ≥ 1} =: L(w ≥ 1) (15b)

With Proposition 1, constraint (14a) enforces w ≥ 1RM
T

,
where 1A denotes the boolean indicator function of A ⊂ Rn

(with value 1 in A and 0 elsewhere). Moreover, it is proven
in [1] that for any minimizing sequence (vd, wd)d∈N for (14),
one has wd −→

d→∞
1RM

T
in the sense of L1(X), so that the

volume of the approximation error L(wd ≥ 1)\RM
T converges

to 0.
The Moment-SoS hierarchy allows its user to compute such

a minimizing sequence, under the following assumptions.

Assumption 1. All considered inputs are polynomial:
1.1. f ∈ R[x]n, so that v ∈ R[t,x] =⇒ Lfv ∈ R[t,x]
1.2. X = ∩m

i=1L(gi ≥ 0) =: L(g ∈ Rm
+ ) with g ∈ R[x]m
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1.3. M = ∩ℓ
j=1L(hj ≥ 0) = L(h ∈ Rℓ

+) with h ∈ R[x]ℓ

where x (resp. t) denotes the dimension n (resp. 1) indeter-
minate (i.e. identity function, which can be evaluated in any
state x ∈ Rn, resp. time t ∈ R).

Then, it is possible to work with polynomial Sums-of-
Squares (SoS), with the following definitions.

Definition 3. Let p ∈ R[x]. Then, considering g0 := 1,
• p is SoS iff p = q21 + . . .+ q2N , q1, . . . , qN ∈ R[x]
• p ∈ Q(g) iff p = s0 g0 + . . .+ sm gm, s0, . . . , sm SoS
• p ∈ Qd(g) iff p ∈ Q(g) with max(deg si gi) ≤ d

Since SoS polynomials are nonnegative by design, it is
clear from Definition 3 that any p ∈ Qd(g) (resp. Qd(h))
is nonnegative on X (resp. M), which gives access to a
strenghtening of problem (14):

W ⋆
d := inf

∫
X
w(x) dx

s.t. v ∈ R[t,x], w ∈ R[x]
w ∈ Qd(g) (16a)
w − v(0,x)− 1 ∈ Qd(g) (16b)
− Lfv ∈ Qd(g, (T − t) t) (16c)
v(T,x) ∈ Qd(h) (16d)

where
L
= L((T −t) t ≥ 0)×X = L((g, (T −t) t) ∈ Rm+1

+ ).
Problem (16) consists in looking for feasible (v, w) for (14)
under the form of polynomials, restricting inequality constraint
(14x) into SoS constraint (16x), x=a–d. The advantage of
this new problem is that the decision variables are now finite
dimensional vectors of coefficients, and the SoS constraints
can be recast as LMIs [6]. Thus, assuming knowledge of the
moments of the Lebesgue measure on X (i.e. being able to
integrate polynomials on X, e.g. if X is a ball or a box), one
is able to solve (16) on a standard computer, provided that n
and d are small enough to make the LMIs tractable.

As the new feasible space is strictly included in the former,
there is a relaxation gap: ∀d ∈ 2N, W ⋆ < W ⋆

d . However,
it is proved in [1] that, if X and M are bounded, W ⋆

d −→
d→∞

W ⋆. Thus, solving instances of (16) gives access to converging
outer approximations of the RoA.

B. A standard polynomial system

To further illustrate how SOStab is able to reproduce
existing results in SoSP for stability analysis, one can consider
a reversed-time Van der Pol oscillator, as in [2]:(

ẋ1

ẋ2

)
=

(
−2x2

0.8x1 + 10(x2
1 − 0.21)x2

)
(17)

The dynamics are polynomial and the stable equilibrium x⋆

of the system is at the origin, so that it takes very few lines
of code to get interesting results:
VdP = SOStab([0;0], [1.1;1.1]);
VdP.dynamics= [-2*VdP.x(2); 0.8*VdP.x(1)
+ 10*(VdP.x(1)ˆ2 - 0.21)*VdP.x(2)];
d = 12; T = 1; epsilon = 0.5;

[vol, vc, wc] = VdP.SoS_out(d, T, epsilon);
VdP.plot_roa(1, 2, ’outer’);
[vol, vc, wc] = VdP.SoS_in(d, T, epsilon);
VdP.plot_roa(1, 2, ’inner’,1);

This gives the plot represented in Fig. 8, which reproduces
results presented in [1, Figure 2] and [2, Figure 3].
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Fig. 8. Inner and outer RoA approximations for the Vanderpol system.

C. Code for the SMIB RoA dynamics

Td = 9.67; xd = 2.38; xpd = 0.336;
xq = 1.21; H = 3; r = 0.002; w = 1;
R = 0.01; X = 1.185; V = 1; Ta = 1;
Ka = 70; Tg = 0.4; Kg = 0.5; P = 0.7;

iq = ((X+xpd)*V*SMIB.x(1) - (R+r)*...
(V*SMIB.x(2)-SMIB.x(4)))/...
((R+r)ˆ2 + (X+xpd)*(X+xq));

id = (X+xq)/(R+r)*iq - 1/(R+r)*V*SMIB.x(1);
vd = xq*iq - r*id;
vq = R*iq + X*id + V*SMIB.x(2);
Vt = vdˆ2+vqˆ2;

SMIB.dynamics = [(SMIB.x(3)-weq)*...
SMIB.x(2); (weq-SMIB.x(3))*SMIB.x(1);...
(SMIB.x(6) - vd*id - vq*iq - r*idˆ2...
- r*iqˆ2)/(2*H);...

(SMIB.x(5) - SMIB.x(4) + (xpd-xd)*id)/Td;...
(Ka*(V-Vt) - SMIB.x(5))/Ta ;...
(P - SMIB.x(6) + Kg*(w-SMIB.x(3)))];
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