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Abstract—While distribution grids are often operated radially,
they are typically designed to be more redundant, so that each
load has multiple connections to the main grid. For complex
networks like these, the notion of treewidth can be used to
quantify their complexity. In this paper, we propose a new
conceptual framework and derive an exact formula for computing
treewidth with the help of our constructs. We argue that our
framework effectively captures complexities in the structure of
distribution grids and has a potential to simplify the calculation
of treewidth. After analysing our findings, we hypothesise that
the treewidth of distribution grids will typically be low implying
that some difficult power system problems can be solved on them
in parameterised polynomial time with dynamic programming.
We demonstrate this with an example problem of dividing a
distribution grid into tree-like operational subgraphs around the
primary substations so that no voltage violations occur.

Index Terms—distribution grid, dynamic programming, tree
decomposition, treewidth.

I. INTRODUCTION

Dynamic programming is an algorithm design paradigm that
has been successfully applied to many problems in power
systems such as, e.g. state estimation [1], [2], operational
topology estimation [3], or optimal dispatch [4], [5], [6], [7].
In cases where the power system graph is a tree, dynamic
programming algorithms can provide exact solutions to non-
convex optimal power flow formulations while showing linear
time complexity w. r. t. the size of the graph [5]. More complex
structure of the graph, however, can obstruct the straight-
forward application of dynamic programming. A pragmatic
approach in this case usually involves the development of
approximation schemes or heuristics [4], [8], [9]. These often
work well in practice but do not provide strong performance
guarantees.

Nevertheless, even for complex networks, dynamic pro-
gramming can retain its provable performance and practical
utility provided that both the underlying network and the
specific problem exhibit exploitable structural properties. One
such structural property discussed in this paper is treewidth.

This work has been funded by the DFG (German Research Foundation) within
the Research Training Group KRITIS.

Treewidth is an indicator that shows ‘how close’ a graph
is to being a tree, which is measured with the help of
tree decompositions. Tree decompositions embed the original
graph into a tree of subsets of its vertices that have certain
valuable properties. Treewidth shows how small the cardinality
of these subsets can be for the given graph. Over past decades,
many problems including some NP-hard problems have been
shown to be fixed-parameter tractable when parameterised by
treewidth [10]. This means that there exists an exact (dynamic
programming) algorithm that solves the problem for any graph
G in time O(f(t) · |G|d) where f(t) is a monotonic non-
decreasing function that only depends on the treewidth t of G,
|G| the size of graph G and d ∈ Z≥1 is a constant. Usually
f(t) ∈ Θ(ct) where c ∈ Z≥2 is a constant. If the graphs
one has to work with have a fixed treewidth or a universal
upper bound on their treewidth (say, some k), then such
algorithms achieve parameterised polynomial time complexity,
since f(t) in the asymptotic time estimation can be replaced
by its constant upper bound f(k). The smaller the value of
k is, the better theoretical performance such algorithms will
have.

When it comes to electricity networks, their treewidth has
been previously studied in [11] where a series of compu-
tational experiments showed that values can reach two-digit
numbers for transmission grids making dynamic programming
algorithms based on tree decompositions practically infeasible
due to a huge leading coefficient f(t) of the polynomial.
Besides this, in [12] it was argued that many electrical circuits
can be represented with series-parallel graphs, an important
class of graphs with bounded treewidth.

In this work we advance the knowledge about treewidth for
power systems in the following way:

1) We define a new conceptual framework that effectively
describes complexities in the topology of real distribution
grids on the medium- (MV) and low-voltage (LV) levels.

2) With the help of our notions, we derive a formula to com-
pute the exact value of the treewidth for any distribution
grid.

3) By analysing the derived formula, we hypothesise that
real distribution grids are likely to have low treewidth.

4) We showcase benefits of low treewidth with an example
problem of voltage control in distribution grids by explic-
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itly constructing a dynamic programming algorithm that
solves it in parametrised quadratic time.

Besides the algorithm shown in the paper, there are several
general schemes of designing dynamic programming algo-
rithms based on tree decompositions for certain important
classes of problems [13], [14].

The rest of the paper is structured as follows. In Section II,
we present our notation and review some previously known
definitions and results. Next, in Section III, we define our
novel concepts. Section IV contains rigorous proofs of all our
theoretical results that show how our concepts can be used
to compute the treewidth of distribution grids. In Section V,
we demonstrate how treewidth can be applied to an example
problem of voltage control in distribution grids. Finally, we
conclude in Section VI.

II. NOTATION & BACKGROUND

We begin by presenting essential definitions important for
the rest of the paper.

First and foremost, we stipulate that all graphs considered
in this work are finite, free of self-loops or parallel edges.
For any graph G, we denote the set of its vertices and edges
as V(G) and E(G) respectively. In the case of an undirected
graph G, we assume that E(G) contains doubleton subsets
(subsets of cardinality 2) of V(G). G[A], where A ⊆ V(G),
denotes a subgraph of G induced by the vertices in A.

Let us now define tree decompositions, the first important
construct of our work. The idea behind them is to represent
a complex network G as a tree T , each vertex b of which
corresponds to some subset Xb of vertices of G. The decom-
position is also structured in a way so that every edge in the
original graph is represented by at least one vertex in the tree.

Definition 1 (Tree decomposition). Let G be an undirected
graph. Tuple (T,X) with tree T and family X of subsets of
V(G) indexed by the vertices of T is a tree decomposition of
G if the following properties are satisfied:

•
⋃

b∈V(T ) Xb = V(G).
• For any e ∈ E(G) there exists b ∈ V(T ) such that e ⊆
Xb.

• For any v ∈ V(G) T [{b ∈ V(T )|v ∈ Xb}] is a tree.

For convenience, sets from X will be also called bags.

A tree decomposition exists for any graph G. For example,
it can be constructed for n ∈ Z≥1 by defining (T,X) with
V(T ) = {bi}ni=1, E(T ) = {{bi, bi+1}}n−1

i=1 and Xbi = V(G).
It is easy to check that the above (T,X) satisfies the require-
ments of Definition 1.

It is also clear from this example that tree decompositions
are not unique. In fact, since the value of n is unbounded, one
can construct an infinite number of tree decompositions for
any graph. A common way to measure the quality of a tree
decomposition is to compute its width.

Definition 2 (Width). Let G be an undirected graph and
(T,X) be its tree decomposition. Then the width of (T,X) is

w(T,X) = max
b∈V (T )

|Xb| − 1.

An example graph G together with its two different tree
decompositions can be found in Fig. 1.

1 2 3

4 5

6
1, 2, 3, 4, 5, 6

1, 2, 4

2, 4, 5

2, 3, 5

4, 5, 6

Fig. 1. An example graph and its possible tree decompositions of width 5
(upper) and of width 2 (lower).

Following the idea from Definition 2, we can define a
quality parameter for the graph itself.

Definition 3 (Treewidth). Let G be an undirected graph and
T be the set of all its tree decompositions. The treewidth of
G is then

tw(G) = min
(T,X)∈T

w(T,X).

Treewidth is always finite because the value tw(G) is
bounded by −1 from below and by |V(G)| − 1 from above.

Theorem 4 presents several well-known facts about
treewidth.

Theorem 4. Let G be an undirected graph. It is known that:
• tw(G) ≤ 0 if and only if G has no edges.
• tw(G) ≤ 1 if and only if G is a forest [15, Theorem 65].
• Deciding whether tw(G) ≤ k for k ∈ Z≥1 is NP-

complete [16, Theorem 3.3]1.
• For any fixed k ∈ Z≥1 there exists an algorithm with the

linear parameterised time complexity O(2k
3 · |G|) that

either constructs a tree decomposition of G of width k
or concludes that tw(G) > k [17, Theorem 1.1].

The first statement in Theorem 4 is trivial: if and only if
there are no edges, we can assign each vertex of G to its own
bag and Definition 1 will be satisfied.

Besides what is stated in Theorem 4, there is also a general
method to give a bound on the treewidth for an arbitrary graph.
This method focuses on analysing the minors of the given
graph.

Definition 5 (Minor). Let G be an undirected graph. A minor
of G is any graph that can be obtained from G by deleting
vertices, deleting edges, or contracting edges.

If M is a minor of G, we will to denote this as M ⊑ G.

Theorem 6 ([15, Lemma 16]). Let G be an undirected graph
and M ⊑ G. Then tw(G) ≥ tw(M).

1Note that in the mathematical literature the term ‘partial k-trees’ is
sometimes used to describe graphs of treewidth at most k.
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Theorem 7 ([15, Theorem 15]). Let C be a class of all graphs
with treewidth at most k. Then there exists a finite set Fk of
graphs such that G ∈ C if and only if M ̸⊑ G for all M ∈ Fk.

Such sets Fk are commonly called ‘sets of forbidden
minors’ or ‘obstruction sets’. Theorem 8 presents forbidden
minors for low values of k.

Theorem 8 ([15, Theorem 17]). Let Kn be a complete graph
(clique) with n ∈ Z≥1 vertices. Then:

• F1 = {K3}.
• F2 = {K4}.
• F3 = {K5, Y5,M8,K2,2,2} (see Fig. 2).

Fig. 2. The graphs from F3, left to right: K5, Y5, M8, K2,2,2.

The number of forbidden minors increases rapidly. While
the set F3 includes only 4 elements, F4 contains more than
70 different graphs [18].

III. DISTRIBUTION GRIDS AND DG-KERNELS

Let us now introduce the novel concept of DG-kernels
intended to model the principal (in a certain sense) structure
of distribution grids (hence the letters ‘DG’ in the name) on
the MV and LV levels.

Generally speaking, distribution grids can be seen as an
interconnected collection of buses representing nodes (i.e.
points where electricity is consumed or injected into the grid)
and primary or secondary substations. Each primary substation
has a link to the transmission grid. It is also connected via MV
feeders to a certain subset of secondary substations and/or MV
nodes. Secondary substations, in turn, are connected via LV
feeders to a certain subset of LV nodes.

In literature, 4 different structural configurations of feeders
in distribution grids are distinguished [19]:

• Radial configuration – feeder has a tree structure.
• Ring configuration without a counter substation – feeder

has both of its ends connected to the same substation.
• Ring configuration with a counter substation – feeder has

its ends connected to different substations.
• Meshed configuration – feeder has more complex struc-

ture.
When a feeder has a ring or meshed configuration, a switch

on at least one of its lines is usually opened during operation
to divide it into several radial feeders. This is done to simplify
power flow control and failure localisation.

We address this variety of topologies by defining a class of
F-graphs. F-graphs will be the first level of abstraction in our
framework that is intended to capture possible radial and ring
configurations of feeders (hence the letter ‘F’ in the name)
described above.

Definition 9 (F-graph). Let n ∈ Z≥1, L1, . . . , Ln be undi-
rected trees such that there are distinct vertices a1, a2 present
in all L1, . . . , Ln with the following properties:

• For any distinct i, j ∈ {1, . . . , n} V(Li) ∩ V(Lj) =
{a1, a2}.

• For any distinct i, j ∈ {1, . . . , n} E(Li) ∩ E(Lj) = ∅.
Then graph F = L1 ∪ · · · ∪ Ln is called an F-graph with
anchors A(F ) = {a1, a2}.

Remark 10. Any tree with at least 1 edge is an F-graph. Its
anchors can be any 2 vertices.

Let us also define different concepts relevant to F-graphs.

Definition 11 (Concepts relevant to F-graphs). Let F be an
F-graph with anchors A(F ) = {a1, a2}.

• Any path subgraph of F connecting anchors a1 and a2
is called a line.

• We define the set of waypoints of F as the set W(F ) of all
vertices lying on any path between a1 and a2 including
a1 and a2 themselves (these vertices are ‘on the way’
between the 2 anchors).

• For any w ∈ W(F ) we call a connected component of
F containing w that appears after removing all edges
connecting w to other waypoints the radial subnetwork of
w and denote it RS(F,w). RS(F,w) is called degenerate
if V(RS(F,w)) = {w}.

• An F-graph with 1 line is called radial.

F-graphs and their components can have different semantics
depending on the context. For example, an F-graph with 2 lines
can represent a ring feeder without a counter substation and,
at the same time, it can model 2 parallel feeders with the same
counter substation. Radial F-graphs can represent 1 or more
radial feeders connected to the same substation.

An example of an F-graph can be found in Fig. 3.

1 2

3 4 5

6 7

Fig. 3. An example F-graph F with anchors A(F ) = {1, 2}, way-
points W(F ) = {1, 2, 3, 4, 5, 6, 7} and 3 lines: (1, 3, 4, 5, 2), (1, 2) and
(1, 6, 7, 2). RS(F, 4) is degenerate and coloured green, RS(F, 6) is coloured
red.

We now define DG-kernels, the second level of abstrac-
tion in our framework, with the help of edge replacement
sequences.

Definition 12 (Edge replacement sequence). Let n ∈
Z≥1, G1, . . . , Gn be graphs, e1, . . . , en−1 be edges from
G1, . . . , Gn−1 respectively, P1, . . . , Pn−1 be graphs such that:

• For any i ∈ {1, . . . , n− 1} V(Pi) ∩V(Gi) = ei.
• For any i ∈ {1, . . . , n− 1} (E(Pi) ∩ E(Gi)) \ {ei} = ∅.

Then we say that

G1
e1,P1−−−→ G2

e2,P2−−−→ · · ·Gn−1
en−1,Pn−1−−−−−−−→ Gn
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is an edge replacement sequence if for each i ∈ {1, . . . , n−1}
Gi+1 can be obtained from Gi by replacing ei with Pi.

Definition 13 (DG-kernel). Let G, D be graphs. We say
that D is a DG-kernel of G if there is an edge replacement
sequence

(D = G1)
e1,F1−−−→ G2

e2,F2−−−→ · · ·Gn−1
en−1,Fn−1−−−−−−−→ (Gn = G)

where each Fi is an F-graph with A(Fi) = ei.

Remark 14. Each graph is its own DG-kernel.

Remark 15. If D is a DG-kernel of G and there is an
edge replacement sequence (D = G1)

e1,F1−−−→ G2
e2,F2−−−→

· · ·Gn−1
en−1,Fn−1−−−−−−−→ (Gn = G), then each intermediate Gi

is also a DG-kernel of G.

Any graph G has a minimum DG-kernel D∗. In general,
nothing guarantees the uniqueness of D∗: say, G is a tree
with |V(G)| > 2 and let v1, v2 ∈ V(G) be 2 distinct vertices.
By Definition 13, graph D∗ with V(D∗) = E(D∗) = {v1, v2}
is its DG-kernel. Note that there is no DG-kernel of G with
less than 2 vertices, since there should be a non-trivial edge
replacement sequence to construct G from such a kernel and,
hence, there should be at least 1 edge in it. Thus, D∗ is
minimum. However, the choice of v1 and v2 is arbitrary,
therefore, there will be multiple (isomorphic) minimum DG-
kernels in this case.

Examples of DG-kernels for SimBench test grid
1-MV-rural--0-sw2 can be found in Fig. 4.

Fig. 4. A minimum DG-kernel (top left) for SimBench test grid
1-MV-rural--0-sw (bottom right) and a corresponding edge replacement
sequence (top left → top right → bottom left → bottom right). The F-graph
that a black edge has to be replaced with is shown in grey next to it.

The concept of DG-kernel is defined based on the assump-
tion that F-graph-like structures with a relatively large number
of vertices are a recurring pattern in distribution grids. If this
assumption holds, it should be possible to find DG-kernels for
real distribution grids that are significantly smaller than the
original grids.

2https://simbench.de/en/

IV. MAIN THEORETICAL RESULTS

In Theorems 16 and 17 we present our theoretical findings
on the computation of treewidth using the framework we
have developed. Afterwards, we shortly discuss the results
and present our hypothesis about the treewidth of distribution
grids.

Theorem 16 (Treewidth of F-graphs). Let F be an F-graph.
Then tw(F ) = 1 if F is radial and tw(F ) = 2 otherwise.

Proof. In the case of a radial F-graph the statement is trivial:
F is a tree and, hence, due to Theorem 4, tw(F ) = 1.
Consider now the case when there is more than one line and
let L1 and L2 be then two different lines of F . It follows from
Definition 9 that C = L1∪L2 is a cycle subgraph of F . Every
subgraph of a graph is its minor because it can be obtained by
removing vertices and edges of the original graph, therefore,
C ⊑ F . After contracting an appropriate number of edges of
C one can see that K3 ⊑ C and, hence, K3 ⊑ F . Thanks to
Theorem 8, we conclude that tw(F ) ≥ 2.
We will now show that tw(F ) ≤ 2 by explicitly constructing
a tree decomposition (T,X) of F of width 2. Let A(F ) =
{a1, a2} and L1, . . . , Ln with n ∈ Z≥2 be the lines of
F such that every Li = (a1, wi,1, . . . , wi,mi , a2) for some
mi ∈ Z≥0. For each line Li construct (Ti, X

[i]) as follows:
V(Ti) = {(i, j)}mi

j=1, E(Ti) = {{(i, j), (i, j + 1)}}mi−1
j=1 ,

X
[i]
(i,1) = {a1, a2, wi,1}, X

[i]
(i,j) = {a2, wi,j−1, wi,j} for j ∈

{2, . . . ,mi}.
Notice that RS(F, a1), RS(F, a2) and all RS(F,wi,j) are
trees, hence, due to Theorem 4, there exist corresponding
tree decompositions (H1, Y

[1]), (H2, Y
[2]) and (Hi,j , Y

[i,j])
for them of width at most 1. For each wi,j , choose b ∈
V(Hi,j) such that wi,j ∈ Y

[i,j]
b . Define then H∗

i,j by adding
(i, j) to Hi,j : V(H∗

i,j) = V(Hi,j) ∪ {(i, j)}, E(H∗
i,j) =

E(Hi,j) ∪ {{b, (i, j)}}. Radial subnetworks of a1 and a2 can
be processed similarly.
On the last stage, construct graph P : V(P ) = {(i, 1)}ni=1,
E(P ) = {{(i, 1), (i+ 1, 1)}}n−1

i=1 . Finally, define (T,X) as

T = P ∪

(
n⋃

i=1

Ti

)
∪

 n⋃
i=1

mi⋃
j=1

H∗
i,j

 ,

X =

(
n⊔

i=1

X [i]

)
⊔

 n⊔
i=1

mi⊔
j=1

Y [i,j]

 ⊔ Y [1] ⊔ Y [2].

Verification of Definiton 1 for (T,X) is purely technical.
Thus, we constructed a tree decomposition of F where each
bag contains at most 3 vertices of F , hence, by Definition 2,
w(T,X) = 2 and, therefore, tw(F ) ≤ 2. Knowing that
tw(F ) ≥ 2 and that tw(F ) ≤ 2, we conclude that tw(F ) =
2.

A tree decomposition constructed for the F-graph from
Fig. 3 with the method used in the proof of Theorem 16 can
be found in Fig. 5.
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P

T1

T2

T3

1, 2, 3 2, 3, 4 2, 4, 5

1, 2

1, 2, 6 2, 6, 7

H3,1 H3,2

Fig. 5. A tree decomposition of the F-graph from Fig. 3 of width 2 built
using the method from the proof of Theorem 16. Bags containing only 1
vertex as well as subtrees H3,1 and H3,2 corresponding respectively to the
decompositions of RS(F, 6) and RS(F, 7) are hidden.

Theorem 17 (Treewidth via DG-kernels). Let G be a graph
with DG-kernel D and edge relacement sequence (D =

G1)
e1,F1−−−→ G2

e2,F2−−−→ · · ·Gn−1
en−1,Fn−1−−−−−−−→ (Gn = G). Then

tw(G) = max{tw(D), z}

where z ∈ {1, 2} and z = 1 if and only if all F-graphs
F1, . . . , Fn−1 are radial.

Proof. First, note that any F-graph F can be reduced to a
graph with a single edge connecting A(F ) by a series of vertex
deletions, edge deletions and edge contractions. To see this, it
is sufficient to remove all radial subnetworks as well as all but
one of the lines of F . The edges of the remaining line can be
contracted into a single edge. Thus, D ⊑ G by construction
and tw(G) ≥ tw(D) by Theorem 6. By the same token, all
F1, . . . , Fn−1 are also minors of G, hence tw(D) ≥ tw(Fi)
for all i ∈ {1, . . . , n − 1}. Thanks to Theorem 16 we
conclude that tw(G) ≥ max{tw(D),max{tw(Fi)}n−1

i=1 } =
max{tw(D), z}. Construct now a tree decomposition of D
of width tw(D) and a tree decomposition of each Fi of
width tw(Fi). Again, it is purely technical to check that if
we merge these tree decompositions and add appropriate edges
between their bags, we get a tree decomposition of G of width
max{tw(D), z}, thus showing that tw(G) ≤ max{tw(D), z}.
Knowing that tw(G) ≥ max{tw(D), z} and that tw(G) ≤
max{tw(D), z}, we state that tw(G) = max{tw(D), z} and
the theorem is proven.

Theorem 17 carries several important practical implications.
To start, the proof of the theorem hints on a simple algorithm

for computing a minimum DG-kernel of any graph G. Recall
Definition 13 and Remark 15. From these statements, it is
clear that replacing any F-subgraph of G with a single edge
yields a DG-kernel of G. As the proof says, any F-subgraph
F of G can be reduced to a single edge by removing its radial
subnetworks and all but one lines, then gradually merging the
remaining vertices, except A(F ), with any vertex in A(F ).

By exhaustively applying this procedure, we can derive
a minimum DG-kernel of G. Algorithmically, this involves
iteratively removing vertices of degree 1 and merging vertices

of degree 2 with any of their neighbours until no such vertices
remain, or until we obtain a graph with a single edge. This
process necessitates at most O(|V(G)|2) iterations.

Besides this, let us examine the formula proven in The-
orem 17. When constructing a distribution grid, it is highly
likely that some redundancy exists in the structure. Therefore,
if the formula is applied to a distribution grid, the treewidth
can generally be expected to depend predominantly on the
treewidth of a DG-kernel. Recall Theorem 8 and in particular
the set F3. We argue that it is improbable for buses in a
distribution grid to be interconnected in more complex ways
than suggested by the forbidden minors in this set. Thus, we
hypothesise that the treewidth of distribution grids will be
generally low and probably bounded by 4 for many cases.

In order to provide a first basis for our claim, we tested
this hypothesis for MV distribution grids of 4 French cities3

with population between 200,000 and 500,000 people. Each
distribution grid was taken within the bounds defined by
a major ring road in the corresponding metropolitan area.
For each such grid G, where each vertex is a primary or a
secondary substation, we constructed its minimum DG-kernel
D∗ and used Theorem 17 to compute the treewidth of G. Our
results can be found in Table I. An example of a minimum
DG-kernel for one of the studied grids can be found in Fig. 6.

TABLE I
TREEWIDTH OF FRENCH DISTRIBUTION GRIDS.

Metropolitan area |V(G)| |V(D∗)| tw(G)

Bordeaux 3305 21 3

Rennes 1406 53 4

Nantes 2307 77 4

Toulouse 1723 10 3

Table I shows that even big cities can have distribution grids
with low treewidth. Furthermore, the size of D∗ for all cases
is notably smaller than that of the corresponding G (less than
4% of the original vertex count). Recall that the construction
of D∗ is polynomial-time feasible and, as per Theorem 4, de-
termining treewidth is NP-complete. Therefore, calculation of
tw(G) with a strategy involving constructing D∗, computing
tw(D∗) and then applying Theorem 17 can yield substantial
performance gains compared to direct computation of tw(G).

V. EXAMPLE

In this section, we show how tree decompositions can be
used in practice to construct efficient dynamic programming
algorithms for distribution grids with low treewidth. We also
evaluate their computational performance in comparison to a
mixed-integer linear programming (MILP) baseline.

A. Problem statement

The example problem we consider focuses on determining
an optimal operating state for a MV distribution grid. For

3Data provided by Enedis: https://data.enedis.fr/pages/cartographie-des-
reseaux-contenu/
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Fig. 6. The MV distribution grid of Toulouse (thin) with its minimum DG-
kernel (thick).

simplicity, we assume that the distribution grid is represented
by a graph denoted as G, which has a DG-kernel D′ and
an edge replacement sequence (D′ = G1)

e1,F1−−−→ G2
e2,F2−−−→

· · ·Gn−1
en−1,Fn−1−−−−−−−→ (Gn = G) with the following properties:

(P1) V(D′) is the set of all primary substations of G, (P2) all
ei in the edge replacement sequence belong to E(D′), (P3) all
radial subnetworks of G are degenerate.

In this scenario, we aim (1) to select switches along the
feeders whose opening divides the network into a set of trees,
each tree containing exactly one primary substation. Given
the active and reactive power injections at the secondary
substations and the line characteristics, we also aim (2) to
ensure that the voltage remains within the acceptable limits
of 1 ± 0.1 pu at all locations. To this end, we assume that
the supply transformers at all primary substations have 21 tap
positions from {−10, . . . , 10}, where each tap position v(w) ∈
{−10, . . . , 10} sets the base voltage of w to 1+0.01v(w) pu.
To ensure the maximum reliability of the discovered operating
state, we aim (3) to provide as many options as possible for
adjusting each tap in either direction. Formally, we can define
our objective as the minimisation of maxw∈V(D′) |v(w)|.

To calculate voltage drops, we use the common LinDistFlow
model [20]. Namely, if s1, s2 ∈ V(G) are adjacent substations
in some grid G after the selected switches are opened, r, x are
the resistance and reactance of the connection between them,
fa, fr are the active and reactive power flows from s1 to s2,
then given the voltage u(s1) we compute the voltage u(s2) as
u2(s2) = u2(s1)− r · fa + x · fr.

For convenience, we will further address this problem as
SWITCHSELECTION. Its summary can be found in Table II.

SWITCHSELECTION is a non-trivial, discrete optimisation
problem, as illustrated for a minimal distribution grid in Fig. 7.

B. Dynamic programming algorithm

We approach SWITCHSELECTION using a classical method
of dynamic programming with memoisation, which allows
us to recover a solution (or enumerate all solutions) to the
problem with the help of simple backtracking.

TABLE II
SWITCHSELECTION PROBLEM.

Input • G – a MV distribution grid with DG-kernel D′ that
satisfies properties (P1), (P2) and (P3).

• p : V(G)\V(D′) → Q – active power at each secondary
substation.

• q : V(G) \ V(D′) → Q – reactive power at each
secondary substation.

• r : E(G) → Q – resistance of each edge.
• x : E(G) → Q – reactance of each edge.

Output • v : V(D′) → {−10, . . . , 10} – an optimal tap position
for each primary substation.

• S ⊆ E(G) – set of edges where switches should be
opened.

0.28 0.05

–0.17 –0.05

A B

Fig. 7. Minimal example instance of the SWITCHSELECTION problem. Two
primary substations (red circles) supply four secondary substations (black
circles) with active power in-feeds shown alongside. For simplicity, reactive
powers are set to 0 and all line segments are assumed to have a resistance
of 1 pu. The trivial division of the feeders in the middle (blue switches) is
infeasible. In contrast, the optimal split (green switches) requires tap positions
v(A) = 10 and v(B) = −10.

Given the input grid G, our algorithm starts by constructing
D′ and generating a directed tree decomposition (T,X) for
it. One can use any existing tree decomposition algorithm to
generate an undirected tree decomposition as in Definition 1
and then select any of its vertices as the root.

After constructing (T,X), we start a bottom-up traversal of
V(T ) in a depth-first search post-ordering. For each b ∈ V(T ),
we use brute force to find locally feasible tap positions for
all primary substations contained in Xb, i.e. we find all
combinations of tap positions of Xb for which there is at
least one edge on each feeder connected to any two primary
substations from Xb where a switch can be opened to keep
all voltages on the feeder within the limits of 1± 0.1 pu.

Each b ∈ V(T ) stores a memo in which we record all locally
feasible tap positions for b, and the minimum of the maximum
value of |v(w)| we have discovered so far for each set of
locally feasible tap positions. We require that if b has a child
b′, then any locally feasible set of tap positions for b stored in
its memo must have at least one corresponding locally feasible
set of tap positions for b′ stored in its memo, such that the tap
positions for primary substations from Xb ∩Xb′ coincide.

We then backtrack the vertices of T in a breadth-first search
pre-ordering and use the stored memos to construct an optimal
solution to the problem.

C. Theoretical evaluation

Let us assess the complexity of the given approach. In terms
of the time complexity, the algorithm has to construct DG-
kernel D′, which can be done in O(|V(G)|2), then it has
to build a tree decomposition of D′, which can be done in
O(2tw(G)3 · |V(G)|) due to Theorem 4, and then it has to
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traverse O(|V(G)|) bags of the tree decomposition, where
each bag is processed in O(21tw(G)+1 · |E(G)|) time. Thus,
the total time complexity is O(21tw(G)+1 · |E(G)| · |V(G)|),
which is parameterised quadratic in the size of the graph. As
for the space complexity, in addition to the input data, the
algorithm has to store the tree decomposition and a memo for
each bag. The tree decomposition has O(|V(G)|) bags, each
containing at most tw(G)+1 vertices. Each memo has at most
21tw(G)+1 entries with at most tw(G) + 1 tap positions each.
Thus, the algorithm requires O(21tw(G)+1 · tw(G) · |V(G)|)
of additional space, which is parameterised linear.

These observations allow us to conclude that, at some
point, this algorithm can be expected to outperform traditional
combinatorial methods for solving the discrete optimisation
problems, which are essentially exponential in their time
complexity.

D. Computational evaluation

We now evaluate our proposed algorithm on generated MV
distribution grids of treewidth 2, comparing the computation
time and solution quality to a MILP.

1) Random test grid generation: Test grids of treewidth
2 are generated in two steps: (1) the generation of a DG-
kernel and (2) the generation of feeders. DG-kernel D′ with n
vertices is constructed using the following procedure: a) Define
D′ ← K3. b) Add a new vertex to D′ and connect it with
edges to any existing pair of adjacent vertices. c) Repeat step
b) until |V(D′)| = n. d) Take any connected subgraph of D′

containing at least one cycle. Graph D′ produced with these
steps is guaranteed to have treewidth 2 [15]. After constructing
the DG-kernel, we replace each edge of it with an F-graph.
The number of lines for each F-graph is chosen randomly
from {2, . . . , 5}. The number of secondary substations on
each line is chosen randomly from {5, . . . , 10}. Finally, each
secondary substation and each edge of the resulting grid is
randomly assigned corresponding power injections, each from
[−0.5, 0.5), and line characteristics, each from [0.01, 0.05).
All distributions are uniform.

2) Baseline & implementation: As a baseline, we formulate
the SWITCHSELECTION in the form of a MILP and solve it
using CPLEX™ version 22.1.1 with the default configuration.
The details of this are found together with the implementation
of our algorithm in our public repository4.

All random values are generated using the xoroshiro128++
pseudorandom number generator [21] with the seed value of
13374. Tree decompositions are constructed with the algorithm
by Tamaki [22].

3) Execution environment: Our algorithm (hereafter re-
ferred to as TreeDecompositionSolver) and the baseline algo-
rithm (hereafter referred to as CPLEXSolver) were both run on
an Intel® Core™ i7-10750H CPU @ 2.60GHz with 6 physical
and 12 logical cores. Both algorithms used a maximum of 12
threads during their execution.

4https://github.com/EINS-TUDa/PSCC2024-SwitchSelection

4) Results: The TreeDecompositionSolver yields the opti-
mal switch locations for the instance in Fig. 7 and the same
objective and feasibility value as CPLEXSolver for all the
tested instances.

In Fig. 8, we examine the running time of both algorithms
for increasing size of the graphs.

Fig. 8. The average running time in seconds over 20 random instances of
SWITCHSELECTION for each |V(D′)|. Transparent shapes show the intervals
between the minimum and the maximum observed computation time.

The plot shows that for all test instances, the TreeDecompo-
sitionSolver had a better performance than the CPLEXSolver.
However, it must be noted that the absolute differences are
modest for the given size of distribution grids. For larger grids,
the variance of the computation times for the CPLEXSolver
visibly increases, whereas the variance for the TreeDecompo-
sitionSolver remains virtually constant. A linear fit of a power
function a|V(D′)|b to the timing results of the TreeDecom-
positionSolver yields values a = 0.008 and b = 0.991. This
indicates a linear growth on the given sample size, which is
below the theoretical limit.

VI. CONCLUSION

In this work, we introduced the novel conceptual framework
featuring F-graphs and DG-kernels, studied their properties
and argued that they can be used to analyse the topology of
distribution grids, in particular their treewidth and tree decom-
positions. We demonstrated that minimum DG-kernels can be
built in polynomial time. Our hypothesis that the treewidth of
distribution grids tends to be low lays the foundation for the
development of efficient dynamic programming algorithms for
many applications, an example of which was presented.

Looking ahead, it is pivotal to test our hypothesis on a
broader spectrum of distribution grids. Moreover, we encour-
age further exploration into the application of tree decomposi-
tions and, more generally, dynamic programming to a broader
array of combinatorial problems arising in power systems.
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