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Abstract—This paper presents a new economic dispatch model
for the day-ahead scheduling of energy and reserves under
uncertainty. The proposed model considers a multistage stochas-
tic framework whereby scheduling decisions are dynamically
updated according to observed new information about uncertain
parameters such as nodal net injections. As a result, the proposed
model provides a one-hour-ahead implementable energy and
reserve schedule. Moreover, a particularization of this multistage
model is presented, namely a two-stage model, in which a single
generation and reserve schedule is provided for each hour of
the day. A recently developed regularized linear decision rules
framework is used to reduce the computational complexity of the
multistage stochastic linear problem at hand and to prevent the
in-sample overfitting issue and the threat of poor out-of-sample
performance. Numerical simulations based on the IEEE 300-bus
system demonstrate the effectiveness of the proposed approach, as
well as its economic and operational advantages over the widely
used two-stage model.

Index Terms—Linear decision rules, multistage day-ahead
economic dispatch, regularization, uncertainty.

NOMENCLATURE

Sets and Indices

B Set of bus indices b.
b+j Origin bus index of line j.
b−j Destination bus index of line j.

G Set of generating unit indices i.
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L Set of indices l of lags considered for the
realization of uncertainties.

L+
b , L

−
b Sets of transmission line indices j with origin

and destination bus b.
NΩ Number of scenario indices ω.
Ω Set of scenario indices ω.
T Set of time period indices t.
Ub Set of indices i of generators located at bus b.

Parameters

cδb Cost coefficient for the load shedding at bus b.
cdni , cupi Down- and up-spinning reserve cost rates of-

fered by generator i.
cgi Generation cost coefficient of unit i.
cγb Cost coefficient for the generation curtailment

at bus b.
dt,ω,b, d̂t,ω,b Observed and forecasted power demands at bus

b in period t and scenario ω.
εt,ω,b Stochastic error term of the autoregressive

model of order 1 for bus b.
Fj Capacity of line j.
ϕ0,b, ϕ1,b Parameters of the autoregressive model of or-

der 1 for bus b.
Ḡb Maximum generation at bus b.
Gi, Ḡi Lower and upper generation limits of unit i.
λ Regularization coefficient.
pω Probability of occurrence of scenario ω.
Rdn

i , Rup
i Maximum down- and up-spinning reserve con-

tributions of generator i.
RDi, RUi Ramp-down and ramp-up limits of generator i.
xj Reactance of line j.

Decision Variables

β
(dn)
t,i,0 , β

(dn)
t,i,b,l Down-spinning reserve LDR coefficients of

unit i in period t.
β
(g)
t,i,0, β

(g)
t,i,b,l Generation LDR coefficients of unit i in period

t.
β
(up)
t,i,0 , β

(up)
t,i,b,l Up-spinning reserve LDR coefficients of unit i

in period t.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



δt,ω,b, δ
RT
t,ω,b Load shedding at bus b in period t and scenario

ω in the forecasted and real-time operation.
∆t,ω,i Redispatch of generator i in period t and

scenario ω.
ft,ω,j , f

RT
t,ω,j Power flows on line j in period t and scenario

ω in the forecasted and real-time operation.
Φ

(dn)
t,i,b,l Down-spinning reserve regularization term for

generator i, period t, bus b, and lag l.
Φ

(g)
t,i,b,l Generation regularization term for generator i,

period t, bus b, and lag l.
Φ

(up)
t,i,b,l Up-spinning reserve regularization term for

generator i, period t, bus b, and lag l.
gt,ω,i Generation of unit i in period t and scenario

ω.
γt,ω,b, γ

RT
t,ω,b Generation curtailment at bus b in period t

and scenario ω in the forecasted and real-time
operation.

rdnt,ω,i, r
up
t,ω,i Down- and up-spinning reserve contributions

of generator i in period t and scenario ω.
θt,ω,b, θ

RT
t,ω,b Phase angles at bus b in period t and scenario

ω in the forecasted and real-time operation.

I. INTRODUCTION

The economic dispatch (ED) is one of the main tools used
by system operators to ex-ante schedule available generation
resources. The goal of this optimization problem is to deter-
mine the least-cost production of online generators so that the
future demand is met over a specific short-term time horizon
[1]. In addition to complying with generation- and network-
related operational constraints, security is also ensured by co-
optimizing energy and reserves [2], [3].

The ED problem constitutes a decision-making process
under uncertainty in which the decision for a given time period
affects the optimal decisions for the following periods. Despite
its dynamic nature, the ED problem is widely addressed
via a two-stage optimization framework that yields a single
generation and reserve schedule for the entire day ahead [3].

In real time, however, actual generation and load typically
deviate from what was scheduled in the previous day [4].
In addition, the presently large-scale integration of renewable
energy resources has led to a significant increase in the
intermittency of the available generation capacity, causing
large fluctuations in nodal net injections [5], [6]. Thus, intraday
markets become essential to complement and adjust the initial
schedule and enable market parties to minimize deviations
between schedules and final energy injections [3]. Moreover,
since the currently used two-stage model lacks flexibility with
respect to uncertainties, it may give rise to non-implementable
day-ahead dispatch decisions and over-scheduling of reserves
to guarantee that nodal demands are fully met.

The uncertainty in nodal net injections leads naturally to
considering ED models based on stochastic programming [5].
The solution to a stochastic program yields a policy, which
corresponds to a rule that specifies the decisions, based on
the information available at the current stage, for any possible
realization of the uncertainties present in the system [7].

This paper addresses the benefits of adopting a particular
class of stochastic programming, namely multistage stochastic
programming, for the day-ahead scheduling of energy and
reserves under uncertainty. Unlike the widely used, albeit
simpler, two-stage approaches, the decisions made at a given
time stage depend on the uncertainty realizations at the pre-
vious stage while being unique for all possible future realiza-
tions so that non-anticipativity is guaranteed. Thus, generation
schedules are dynamically updated according to observed new
information about uncertainty, thereby outperforming existing
ED approaches in terms of flexibility and adaptivity.

The predominant literature exploring multistage stochastic
models for practical decision making under uncertainty, like
the ED problem, customarily focuses on solution methods
such as sample average approximation (SAA) techniques, the
construction of scenario trees, and stochastic dual dynamic
programming (SDDP). However, due to the unavailability,
in general, of the probability distribution of the uncertain
parameters [8] and the curse of dimensionality featured by
existing methods, drastic simplifying assumptions are typically
made in order to achieve tractability. An alternative to deal
with the complexity of these problems is the linear decision
rules (LDR) technique [9]–[11], whose first application dates
back to the 50s [12].

The main idea of the LDR method is to restrict the func-
tional form of the policy by requiring that all decisions made
at each stage be a linear (or affine) function of the uncertainty
realizations up to the current stage. Hence, this technique
considers a sequential process in which decisions made at a
particular time solely depend on the history of uncertainty
realizations observed so far but not on future realizations [8].
As mentioned in [13], any convenient linear functional space
of interest mapping the set of uncertainty vectors onto the
set of states can be considered, and the problem linearity is
preserved.

It is important to highlight, as shown in [11], that using an
LDR approach allows the formulation of multistage stochastic
linear problems as two-stage stochastic linear models with
multiple periods. Thus, all properties, convergence results,
methods, and algorithms for two-stage stochastic models are
valid. Regarding its flexibility, it is possible to address mul-
tistage stochastic linear problems based on uncertainty pro-
cesses with any nonlinear time-dependency structure through
scenarios generated in an entirely exogenous fashion.

In the literature, different approaches have been proposed
to handle the ED problem under the uncertainties related to
renewable generation and demand [14]–[22]. In [14] and [15],
two-stage stochastic ED models are proposed to manage the
variability and uncertainty associated with wind power gener-
ation. In [16], a two-stage stochastic programming approach is
adopted to solve a multiperiod network-constrained ED model
with flexible demands. Recently, a two-stage stochastic ED
model was addressed in [17] by a hybrid affine decision rule.
Unfortunately, the two-stage stochastic optimization frame-
work applied in [14]–[17] relies on simplifying assumptions
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that may not fully capture the complexity of the ED problem,
thus leading to potentially suboptimal solutions.

In [18], a hybrid robust-stochastic approach is proposed
whereby stochastic scenarios are replaced with probability-
weighted flexibility envelopes. This approach, however, can
be considered a statistical scenario-reduction process wherein
each envelope encloses a corresponding percentage of scenar-
ios. Thus, a sufficiently large number of scenarios is required
to properly capture uncertainty over time. In [19], a stochastic
programming model is fed with scenarios drawn directly
from high-fidelity data sets, but an efficient scenario-selection
method is not prescribed.

In [20], the authors propose a method to train policies for
energy and reserve scheduling that can be employed in real-
time operation. However, such a method relies on an offline
analysis. In [21], the ED problem arising in active distribu-
tion networks is addressed by an affinely adjustable robust
optimization approach, which may lead to over-conservative
solutions.

In [22], a multistage stochastic programming model is pro-
posed for the joint energy and reserve dispatch under uncertain
renewable generation. The proposed framework characterizes
the uncertainties over the multiple stages by a scenario tree
and uses SDDP to solve the model. It is worth noting that,
from a modeling perspective, the very restrictive hypotheses
of SDDP constitute a significant drawback of this framework.

Motivated by the findings of [9]–[12] and the limitations
of existing ED approaches [14]–[22], we propose an LDR-
based multistage stochastic model for the ED problem, which
provides a one-hour-ahead implementable energy and reserve
schedule. More specifically, we use the two-stage LDR ap-
proach recently presented in [11]. Due to the large number
of LDR coefficients that must be estimated, in-sample overfit
may arise, i.e., perfectly adjusting the model to a particular
set of scenarios does not guarantee an adequate performance
under unseen scenarios. Hence, to address the issue of poor
out-of-sample performance, we propose the application of the
novel regularization method described in [13].

The main contributions of this paper are twofold:

1) A more flexible and adaptive optimization model for
the ED problem under uncertainty that acknowledges the
dynamic nature of the joint scheduling of energy and re-
serves. The proposed model is formulated in a multistage
setting, thereby allowing the revision of decisions at each
time stage based on the uncertainty realized so far.

2) The application of the regularized LDR method that
reduces the computational burden to solve multistage
models while mitigating the well-known overfitting issue
and thus improving the out-of-sample performance.

To the best of our knowledge, the proposed application
of the novel regularized two-stage LDR approach to the
ED problem constitutes the first contribution in the literature
addressing the joint scheduling of energy and reserves under a
multistage stochastic programming framework without resort-
ing to exogenous reserve requirements.

The remainder of this paper is organized as follows. In
Section II, the proposed ED model is formulated. In Section
III, the regularization methodology is presented. In Section
IV, numerical results are provided and discussed. Finally,
conclusions are drawn in Section V.

II. PROBLEM FORMULATIONS

This section provides the formulation of the proposed model
for the multistage ED problem, cast as a linear program.
Subsequently, a description of how such a model allows
obtaining the currently used two-stage model is presented.

A. Multistage Model

The main goal of the proposed multistage formulation for
the ED problem is to estimate a dynamic policy to determine
the least-cost hourly schedule of both energy and reserves for
the day ahead. This approach is characterized by the following
optimization model:

min
(g,rup,rdn,∆)t,ω,i,

(f,fRT )t,ω,j ,

(β(g),β(up),β(dn))t,i,0,

(β(g),β(up),β(dn))t,i,b,l
(δ,δRT ,γ,γRT ,θ,θRT )t,ω,b

∑
ω∈Ω

pω
∑
t∈T

[∑
i∈G

(
cgi gt,ω,i

+ cupi rupt,ω,i + cdni rdnt,ω,i

)
+

∑
b∈B

(
cδb(δt,ω,b + δRT

t,ω,b)

+ cγb (γt,ω,b + γRT
t,ω,b)

)]
(1)

subject to:∑
i∈Ub

gt,ω,i +
∑
j∈L+

b

ft,ω,j −
∑
j∈L−

b

ft,ω,j

+ δt,ω,b − γt,ω,b = d̂t,ω,b; ∀t, ω, b (2)∑
i∈Ub

(gt,ω,i +∆t,ω,i) +
∑
j∈L+

b

fRT
t,ω,j −

∑
j∈L−

b

fRT
t,ω,j

+ δRT
t,ω,b − γRT

t,ω,b = dt,ω,b; ∀t, ω, b (3)

ft,ω,j =
θt,ω,b+j

− θt,ω,b−j

xj
; ∀t, ω, j (4)

fRT
t,ω,j =

θRT
t,ω,b+j

− θRT
t,ω,b−j

xj
; ∀t, ω, j (5)

− Fj ≤ ft,ω,j ≤ Fj , ∀t, ω, j (6)

− Fj ≤ fRT
t,ω,j ≤ Fj ; ∀t, ω, j (7)

Gi ≤ gt,ω,i ≤ Ḡi; ∀t, ω, i (8)
gt,ω,i + rupt,ω,i ≤ Ḡi; ∀t, ω, i (9)

gt,ω,i − rdnt,ω,i ≥ Gi; ∀t, ω, i (10)

−RDi ≤ gt,ω,i +∆t,ω,i − gt−1,ω,i

−∆t−1,ω,i ≤ RUi; ∀t, ω, i (11)

− rdnt,ω,i ≤ ∆t,ω,i ≤ rupt,ω,i; ∀t, ω, i (12)

0 ≤ rupt,ω,i ≤ Rup
i ; ∀t, ω, i (13)

0 ≤ rdnt,ω,i ≤ Rdn
i ; ∀t, ω, i (14)

0 ≤ δt,ω,b ≤ d̂t,ω,b; ∀t, ω, b (15)

0 ≤ δRT
t,ω,b ≤ dt,ω,b; ∀t, ω, b (16)
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0 ≤ γt,ω,b ≤ Ḡb; ∀t, ω, b (17)

0 ≤ γRT
t,ω,b ≤ Ḡb; ∀t, ω, b (18)

gt,ω,i = β
(g)
t,i,0 +

∑
b∈B

∑
l∈L

β
(g)
t,i,b,ldt−l,ω,b; ∀t, ω, i (19)

rupt,ω,i = β
(up)
t,i,0 +

∑
b∈B

∑
l∈L

β
(up)
t,i,b,ldt−l,ω,b; ∀t, ω, i (20)

rdnt,ω,i = β
(dn)
t,i,0 +

∑
b∈B

∑
l∈L

β
(dn)
t,i,b,ldt−l,ω,b; ∀t, ω, i (21)

The objective function minimized in (1) comprises the
expected costs of power generation and up- and down-spinning
reserve allocations, as well as the costs of load shedding
and generation curtailment. Using a dc power flow model,
constraints (2) and (3) impose the power balance at every
bus of the system for both the forecasted and the real-
time observed demands, respectively, whereas line flows are
characterized by the second Kirchhoff’s law in (4) and (5).

Line flows are bounded in (6) and (7) according to the
line rated capacities. Constraints (8)–(10) set the production
limits. Constraint (11) characterizes the up and down ramp
limits, whereas redispatch bounds are modeled in (12). In
(13) and (14), up- and down-spinning reserve contributions are
respectively limited. Constraints (15) and (16) set the bounds
for load-shedding variables, where the upper bounds are equal
to the forecasted and real-time observed demands, respectively.
Generation curtailment is modeled by non-negative variables
that are limited by the corresponding nodal maximum gener-
ation, as formulated in (17) and (18).

Finally, constraints (19)–(21) define the LDR expressions
relating energy and reserves to real-time demand. Constraint
(19) is associated with energy scheduling, while constraints
(20) and (21) characterize up- and down-spinning reserve
contributions, respectively. Note that with the resulting LDR
coefficients, given by the solution to problem (1)–(21), the
one-hour-ahead joint schedule of energy and reserves can be
dynamically determined for any hour of the next day according
to the demand information revealed by a given set of lags.

B. Two-Stage Model

The proposed multistage model can be simplified by keep-
ing the forecasted demand as deterministic and also setting
all LDR coefficients β

(g)
t,i,b,l, β

(up)
t,i,b,l, and β

(dn)
t,i,b,l to zero. In

the resulting optimization model, the schedule of energy and
reserves is static, i.e., it is the same for all scenarios, and is
obtained for each hour of the day ahead without updates as
the demand information is revealed.

This particularization of the multistage model yields the
two-stage optimization framework representing the state of the
art in the technical literature. It should be noted that, as a single
generation and reserve schedule is provided for each hour of
the day, this formulation lacks flexibility with respect to the
demand realizations.

Compared to the two-stage deterministic approach, which
corresponds to the current industry practice for solving the
ED problem, the standard two-stage stochastic model offers

greater flexibility in endogenously defining the optimal reserve
allocations and, thereby, the optimal level of reserves. This
avoids relying on exogenous reserve requirements and poten-
tially attaining suboptimal reserve allocations. Nevertheless,
both two-stage approaches are static as a single generation
and reserve scheduling profile is provided.

On the other hand, the proposed multistage approach com-
bines the benefits of dynamically adjusting both reserve and
generation schedules one hour ahead with endogenously de-
fined reserve allocations. This change enables more efficient
utilization of resources and better adaptation to observed
system conditions. Table I summarizes the main features of
these models.

TABLE I
COMPARISON OF ED MODELS

Model Uncertainty
awareness

Generation
dispatch

Reserve
allocation Usage

Two-stage
deterministic No Static

Static with
exogenous

requirements

Current industry
practice

Two-stage
stochastic Yes Static

Static without
exogenous

requirements

State of the art
in the technical

literature

Multistage
stochastic Yes Dynamic

Dynamic without
exogenous

requirements

Proposed
model

III. REGULARIZATION

As is customary in stochastic programming, solution quality
for the proposed multistage model may be assessed by a
two-step estimation-simulation procedure. In the first step,
the LDR coefficients are estimated for a given set of in-
sample scenarios. In the second step, the main goal is to find
implementable decisions that follow as much as possible the
estimated LDR for a large set of out-of-sample scenarios [13].

The definition of a policy for a stochastic program, however,
requires the estimation of many coefficients under a limited
amount of data, and may perform poorly for unseen scenarios.
Moreover, in practical applications, the number of coefficients
to be estimated may be greater than the number of scenarios
[13]. For instance, in our proposed multistage ED model, a
huge number of coefficients is needed to account for each time
period, generating unit, bus with variable demand, and lags of
observed data in the decision rule. As a result, the adoption of
LDR may give rise to a certain degree of in-sample overfitting
and, consequently, poor out-of-sample performance.

Hence, to address the overfitting issue and improve the
quality of the proposed LDR-based multistage ED model, we
apply the AdaLASSO technique [13], in which the objective
function is penalized by the scaled l1-norm of the coefficient
vector, disregarding the intercept coefficients β

(g)
t,i,0, β

(up)
t,i,0 , and

β
(dn)
t,i,0 .
Thus, the regularized multistage model is given by the

following optimization problem:
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min
(g,rup,rdn,∆)t,ω,i,

(f,fRT )t,ω,j ,

(β(g),β(up),β(dn))t,i,0,

(β(g),β(up),β(dn))t,i,b,l
(δ,δRT ,γ,γRT ,θ,θRT )t,ω,b,

(Φ(g),Φ(up),Φ(dn))t,i,b,l

∑
ω∈Ω

pω
∑
t∈T

[∑
i∈G

(
cgi gt,ω,i

+ cupi rupt,ω,i + cdni rdnt,ω,i

)
+

∑
b∈B

(
cδb(δt,ω,b + δRT

t,ω,b)

+ cγb (γt,ω,b + γRT
t,ω,b)

)]
+ λ

∑
t∈T

∑
i∈G

∑
b∈B

∑
l∈L

(Φ
(g)
t,i,b,l +Φ

(up)
t,i,b,l +Φ

(dn)
t,i,b,l) (22)

subject to:
Constraints (2)–(21) (23)

Φ
(g)
t,i,b,l − β

(g)
t,i,b,l ≥ 0; ∀t, i, b, l (24)

Φ
(g)
t,i,b,l + β

(g)
t,i,b,l ≥ 0; ∀t, i, b, l (25)

Φ
(up)
t,i,b,l − β

(up)
t,i,b,l ≥ 0; ∀t, i, b, l (26)

Φ
(up)
t,i,b,l + β

(up)
t,i,b,l ≥ 0; ∀t, i, b, l (27)

Φ
(dn)
t,i,b,l − β

(dn)
t,i,b,l ≥ 0; ∀t, i, b, l (28)

Φ
(dn)
t,i,b,l + β

(dn)
t,i,b,l ≥ 0; ∀t, i, b, l (29)

Compared to the non-regularized model (1)–(21), the objec-
tive function (22) includes a new regularization term relying
on λ, which is a scalar reflecting the overall penalization level,
and auxiliary variables Φ

(g)
t,i,b,l,Φ

(up)
t,i,b,l, and Φ

(dn)
t,i,b,l. Moreover,

besides the original constraints (2)–(21) included in (23),
epigraph constraints (24)–(29) are added, according to [13].

Determining the optimal regularization parameter λ requires
a line search procedure running the multistage optimization
problem for each point inspected. However, as mentioned in
[13], the best λ is, in general, stable across instances. Thus,
the calibration process of a given day may use the results from
previous days, and monitoring procedures can be implemented
to check the validity of the current penalty parameter.

IV. NUMERICAL RESULTS

In order to investigate the benefits of adopting a more
flexible and adaptive model for the ED problem, numerical
simulations were conducted using the IEEE 300-bus system.
This system comprises 300 buses, 69 generators, 411 branches,
and 191 loads. The methods described in [23] and [24] were
applied to obtain the generation and reserve cost data.

A day-ahead horizon of 24 hourly periods was considered.
The results from the regularized multistage model described
in Section III have been compared with those attained for the
state-of-the-art two-stage model. For quick reference, both for-
mulations are hereinafter denoted by MS and 2S, respectively.

For illustrative purposes, load uncertainty is assumed at
the six buses with the largest original demand values, as
reported in [23], which corresponds to approximately 20% of
the system total load. The other loads were kept constant for
the entire horizon and equal to their original demand values.

For the sake of simplicity, for both ED formulations, we
consider that the real-time observed demand at the afore-
mentioned buses follows an autoregressive model of order 1,
thereby incorporating uncertainty in the load:

dt,ω,b = ϕ0,b + ϕ1,bdt−1,ω,b + εt,ω,b; ∀t, ω, b (30)

On the other hand, the forecasted demand is simulated
differently for each dispatch model. For the multistage model,
it is assumed that the forecasted demand at a given time t
depends on the demand at time t−1, thus varying across both
time and scenarios:

d̂t,ω,b = ϕ0,b + ϕ1,bdt−1,ω,b; ∀t, ω, b (31)

By contrast, for the two-stage model, the forecasted demand
is assumed to be a deterministic value given by the average
real-time demand over the scenarios:

d̂t,ω,b =
1

NΩ

∑
ω∈Ω

dt,ω,b; ∀t, ω, b (32)

Hence, the forecasted demand solely varies across time, i.e.,
all scenarios feature the same demand vector.

For the in-sample and out-of-sample studies, 40 and 2, 000
demand scenarios were considered, respectively. For repro-
ducibility purposes, system data are available at [25]. All
simulations were run to optimality utilizing Julia and Gurobi
10.0.1 on an Intel Xeon E5-2680 processor at 2.50 GHz with
125 GB of RAM.

In order to evaluate the effect of the regularization method,
we compare the performances of the regularized policies for
different values of the regularization parameter λ, including
λ = 0, which yields the non-regularized LDR policy. Fig.
1 shows the resulting in-sample and out-of-sample expected
total costs. It is worth noting that if we “super regularize” the
model by choosing a large λ, the dynamics of generation and
reserves will be disregarded. Hence, since the load scenarios
vary over time, it will be necessary to shed load and/or curtail
generation, which leads to a great increase in the total costs.
As can be also observed in Fig. 1, the lowest out-of-sample
cost is found for λ = 1, 700. For such a value of λ, the best
regularization improves by 12.97% upon the non-regularized
policy identified for λ = 0.

Fig. 1. Expected total costs for the regularized multistage model.

Table II summarizes both the in-sample and out-of-sample
cost results for the solutions to the two-stage model and the
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TABLE II
COST RESULTS ($)

In-sample results Out-of-sample results
2S MS 2S MS

Generation 12,456,286.17 12,458,924.59 12,456,286.13 12,458,465.37
Up-spinning reserve 27,231.40 14,696.56 27,231.39 14,596.61

Down-spinning reserve 6,449.71 2,857.96 6,449.72 2,857.99
Load shedding 0.00 3.47 993,360.53 267,732.56

Real-time load shedding 0.00 3.30 425,180.26 394,027.00
Generation curtailment 0.00 0.78 1,160,996.19 242,866.62

Real-time generation curtailment 0.00 0.80 257,505.51 110,622.69
Total 12,489,967.28 12,476,487.45 15,327,009.74 13,491,168.84

Fig. 2. In-sample total power generation.

Fig. 3. In-sample total up-spinning reserve allocation.

Fig. 4. In-sample total down-spinning reserve allocation.

best instance of the proposed regularized model, i.e., for λ =
1, 700. It can be seen that the solution to the multistage model
significantly departs from the two-stage solution due to its
adaptive generation profile. As a consequence, the regularized
multistage model attains an overall 11.98% improvement upon
the two-stage model in the out-of-sample evaluation.

Furthermore, in Figs. 2–4, we compare the in-sample
scheduling results featured by the aforementioned solutions,
namely the hourly values of total power generation, total up-
spinning reserve, and total down-spinning reserve. Note that,
for the proposed multistage model, we depict the average
results over all scenarios.

Fig. 2 shows that the multistage model yields a generation
profile that is, on average, similar to that obtained for the
two-stage model. As for the total reserves shown in Figs.
3 and 4, since the multistage approach allows revising the
scheduling decisions at each stage, this method allocates only
59% and 55% of the two-stage total up- and down-spinning
reserve amounts, respectively. Not only does this result reduce
the associated costs, but it also facilitates the system operation
since coordinating large reserves across complex grids requires
sophisticated control and communication systems.

Regarding the computational effort, solving the two-stage
model took 156.54 s, whereas the running time required
to solve the best instance of the regularized multistage for-
mulation amounted to 3, 284.18 s, which is compliant with
practical time requirements. Moreover, we highlight that the
computational burden featured by the multistage model can be
significantly reduced by using efficient decomposition-based
approaches.

Finally, we also examine the impact of the choice for the
set of in-sample demand scenarios on the regularization of the
multistage model. To that end, ten different in-sample scenario
sets are used. As a result of this sensitivity analysis, the
values for the best λ range in the interval between 1, 000 and
1, 800, whereas the average and the relative standard deviation
of the corresponding out-of-sample total costs amount to
$13, 207, 012.47 and 1%, respectively.

V. CONCLUSION

This work has addressed the adoption of a more flexible and
adaptive model based on multistage stochastic programming
for the joint scheduling of energy and reserves within an
economic dispatch setting. The related literature has mainly
focused on approaches wherein this problem is formulated as a
two-stage model relying on both forecasts of the uncertain pa-
rameters and simplifying assumptions. Existing approaches are
thus prone to suboptimal solutions, such as non-implementable
dispatch decisions and over-scheduling of operating reserves.
Unlike the conventional two-stage framework, the proposed

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



multistage formulation allows the revision of scheduling deci-
sions at each time stage based on the uncertainty realized so
far.

Although the proposed multistage stochastic model offers
more flexibility for scheduling decisions, this benefit comes at
the expense of solving a much larger and complex optimization
problem. Due to the limitations featured by classical solution
methods for multistage stochastic programming, a recently de-
veloped two-stage linear decision rules framework is adopted.

Furthermore, a novel regularization method, based on the
AdaLASSO technique, is applied to prevent the threats of in-
sample overfitting and poor out-of-sample performance, both
due to the large number of coefficients that must be estimated
when using the linear decision rules framework.

Numerical simulations allow drawing four main conclu-
sions:

• The proposed multistage model provides more flexibility
in the generation schedule. Hence, when compared to the
two-stage model used for assessment purposes, smaller
amounts of reserves need to be allocated. Consequently,
the multistage framework achieved cost savings of up to
11.98% compared to the two-stage model.

• Since the two-stage model can be derived as a particular
case of the proposed multistage formulation, the latter is
the best model in terms of the in-sample total cost.

• The two-stage model, which is the state-of-the-art ap-
proach in the literature for solving the economic dispatch
problem, does not allow any flexibility with respect to
the demand realizations. With the increasing integration
of renewable energy resources, this might become a
challenge for system operators.

• In the out-of-sample evaluations, the regularized policy
achieved substantial cost savings, up to 12.97%, in com-
parison to the non-regularized multistage model.

Admittedly, the computational effort required to solve the
300-bus case study might indicate potential scalability dif-
ficulties for larger systems. As an alternative to the mono-
lithic solution applied here, it should be emphasized that the
proposed model is suitable for state-of-the-art decomposition
techniques such as Benders decomposition and progressive
hedging, which may significantly improve the computational
performance. The application of these decomposition methods
to the proposed model will be addressed in future research.
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