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Abstract—Alarm floods pose a challenge to the successful
operation of transmission and distribution systems because the
alarm rate is often higher than what operators can effectively
manage. Such a high volume of alarms can distract operators
from unrelated but relevant alarms that occurred during the
flood. To mitigate this situation, we propose a method to group
alarm floods into clusters and identify additional alarms that
might be lost in the flood and ignored by the operator. To
do so, three different clustering approaches are introduced and
tested using historical alarm data from a transmission system
operator (TSO). Importantly, the results are validated by the
end user highlighting the applicability of the proposed alarm
flood management tool in real world scenarios.

Index Terms—Alarm flood, control room, pattern mining,
power system operation, unsupervised learning

I. INTRODUCTION

Alarms play an important supportive role in preventing,
detecting, controlling, and mitigating the effects of abnormal
situations that require operator attention. Nevertheless, an
inefficient alarm system can distract operators from important
information and increase operator workload. For instance, the
transmission system operator (TSO) of Croatia shared that they
experienced over 100 alerts within 10-minute intervals during
a single month [1]. Meanwhile, the Portuguese distribution
system operator (DSO) E-REDES reported an average of
295,000 alarm occurrences per day, far exceeding the cognitive
limits of what humans can reasonably respond to [2].

The situation becomes worse when alarm floods occur. In an
alarm flood condition, the alarm rate is greater than an operator
can manage (e.g., more than 10 alarms per 10 minutes). This
causes a decline in situational awareness that might jeopardize
the normal operation of the various grid components or even
the stability of the power system. Hence, intelligent alarm
management is of utmost importance for ensuring the reliable
grid operation [3].

In this context, [4] is one of the first studies discussing the
importance of intelligent alarm processing in power systems,
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while [5] proposes an on-line fault diagnosis system based
on alarm messages. Reference [6] introduces a temporal con-
straint network to identify which events led to the recorded
alarms and spot alarms that failed to be activated. Similarly,
[7] employs Mixed Integer Linear Programming (MILP) to
determine incomplete or incorrect sensor alarms presented
to the system operator. The work of [2] introduces two
innovative data-driven applications using Supervisory Control
and Data Acquisition (SCADA) data: one for detecting unusual
performance in protection relays during circuit breaker alarms,
and the other for unsupervised clustering of similar events in
high voltage line panels and classifying new event logs based
on these clusters, including the identification of rare events.
Another two data-driven approaches to support operators were
introduced in [8]. The first one classifies the complexity of
short-circuit faults based on alarm events, and the second one
provides rapid guidance to operators on how to resolve these
faults by suggesting suitable sequences of switching actions.
However, these inspiring works focus on specific power system
faults/events, such as short-circuits and protection relays, while
a system operator may additionally receive communication,
market-related, or other less severe power system alarms, e.g.,
voltage violations, temperature indications in power lines, etc.
In addition, alarm floods in power systems seem to not have
received notable attention in the existing literature yet.

Intelligent alarm flood management is a rather unexplored
topic in power systems literature compared to its well-
established counterpart in the process industries. While the
topic of alarm flood management has been extensively studied
and refined within the context of process industries [9]–[17],
the existing methods and approaches developed for these
sectors cannot be readily applied to power systems. The funda-
mental reason behind this limitation lies in the stark disparity
of dynamics between the two domains. Power systems differ
from industrial plants in significant ways: they are more
complex, operate significantly faster, and are considerably
larger. These differences render the direct transfer of methods
questionable.

In a focus group session with members of a TSO, we
discovered that a major desire of operators was to have the
ability to group alarms or events that are linked together, which
helps organize the alarm feed, reducing the risk of alarm floods
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obscuring relevant items or accidental acknowledgements. To
this end, we introduce a two-stage data-driven method to help
operators tackle alarm flood situations. To accomplish this, the
proposed alarm flood management scheme compresses alarm
floods, identifies common alarm flood patterns among them,
and detects additional alarms that might be lost in the flood
and ignored by the operator. Those additional alarms are not
generated by the same cause that trigger the alarm flood but
rather, it happens to be raised at the same time period.

In the first stage, historical alarm data generated by a power
system control software are analyzed and the alarm floods
are identified. Next, each alarm flood is assigned to a cluster
with similar alarm flood properties (e.g., protection events
before the opening/closing of a circuit breaker, energy market
related alarms, etc.). To do so, three different approaches are
introduced, and four clustering algorithms of different notion
and complexity are tested. Once the flood clusters have been
formed, a general alarm flood pattern is extracted for each
cluster using a pattern mining technique.

In the second stage, additional alarms that are not part of
the flood, but they occur within the same time period, are
automatically detected and presented to the operator. For this
purpose, an alarm flood is first assigned to one of the flood
clusters derived in the first stage and then, it is compared to
the respective alarm flood pattern. The alarms of the flood
that are not part of the extracted cluster pattern are classified
as alarms that do not belong to the flood and are presented
separately to the operator. The rest of the alarms (part of the
flood) are compressed from the alarm list and are presented
as an individual entry. To evaluate the proposed methodology,
real alarm data generated within a period of 8 months in the
control room of a TSO are employed.

In summation, we contribute:

1) A first application of alarm flood clustering techniques
in the power system industry. Grouping similar alarm
floods in power systems is a uniquely rather challenging
task due to some inherent flood characteristics discussed
later in Section III-A.

2) We propose a method to increase the situational aware-
ness of the operator and thus, the reliability of the power
system, by identifying alarms that may be lost in the
flood due to the high volume of alarms happening at the
same time.

3) This work employs the full raw operational dataset of
control room alarms (power system, market, commu-
nication, test alarms) that the operator sees during the
daily operation and not a subset of it focusing on specific
types of faults.

4) We introduce a full data-driven approach that does not
require any information about the power system model
or topology.

5) Contrary to most of the works in the field of alarm
management, the proposed methodology was validated
by the end user (TSO).

II. DATA DESCRIPTION AND PREPROCESSING

Alarms floods are time intervals during which alarms are
raised at a high rate so that the operators may have difficulties
reacting to all of them in the right way. For the process
industry, there is a standard for alarm flood threshold which is
at least 10 alarms within 10 minutes, see e.g., [18]. However,
we realized with the dataset at hand that by applying these
thresholds, the system would be in flood state most of the
time. In order to extract alarm floods which are reasonable and
separated in time, we applied a stricter threshold of at least
20 alarms per minute and a total length of at least 10 alarms.
These parameters were chosen by manual tests; a constructive
method for determining such thresholds to facilitate flood
clustering would be subject to future work. Thus, all alarms in
time intervals that exceed these thresholds are extracted and
stored as alarm floods.

For this work, the event list of a TSO is used, which consists
of roughly 8.6 millions events, covering 8 consecutive months.
Note that not all those events are alarms. An event can be any
entry written in the SCADA database, while an alarm is what
the operator receives in the control room. From this event list,
a sublist of alarms was extracted based on their priority and
information provided by the TSO. As a result, a list of 1.5
million alarms was extracted.

The alarms have multiple fields containing different types
of information. For this work, the following fields are relevant:

• timestamp: the time at which the alarm is raised
• text: text description of the alarm
• station: name of the station, i.e., power system sub-

station from which the alarm is raised
• SCADA object ID: the alarm identifier which is con-

nected a to SCADA object e.g., sensor/device associated
with the alarm

Table I summarizes some properties of the extracted alarms
floods. It shows that a significant number of floods consist
only of alarms from one single SCADA object ID. The flood
lengths both in number of alarms and time duration show a
wide range.

For this work, the alarms floods consisting of only one
SCADA object ID are excluded, since clustering, pattern, and
outlier detection would not lead to any significant insights for
them. Instead, they may point to badly configured alarms that
should be fixed in order to improve the overall alarm system
performance.

TABLE I: Statistics about extracted alarm floods: number of
floods, their number of alarms and time duration. Mid: all
floods; right: without floods with only one SCADA object ID.

all floods w/o single IDs
# floods 5827 4526
min # alarms in flood 11 11
median # alarms in flood 18 33
max # alarms in flood 1896 1896
min flood duration in s 0.2 0.2
median flood duration in s 2 1
max flood duration in s 208 208
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III. PROPOSED METHOD

The new alarm flood management method for power sys-
tems consists of multiple steps as shown in Fig. 1. First, the
alarm floods are extracted based on the thresholds described
above and then, they are grouped based on one of the three
proposed approaches (Section III-A). As a next step, a flood
pattern is extracted for each cluster using alarm set operations
(Section III-B). As a final step, each flood is compared to
the respective cluster pattern and the flood alarms that are not
included in the pattern are classified as outliers (do not belong
to the flood).

A. Alarm Flood Clustering

This is the most challenging step as each alarm flood may
highly vary on the total number alarms included and the lack
of specific alarm sequence in similar alarm floods. The latter
originates from the fact that the power grid is characterized
by fast system dynamics and the recorded alarm timestamp
corresponds to the time instance that the alarm was written in
the SCADA database and not to the time that the alarm was
raised by the remote terminal unit (RTU).

After the alarm floods have been extracted as described in
Section II, a feature matrix X is computed, where the rows
correspond to the floods and the columns to the respective
features.

Three different types of features are proposed:

1) TF-IDF (Term Frequency-Inverse Document Fre-
quency): In this method, we calculate the TF-IDF scores
using all SCADA object IDs as vocabulary and the
floods as documents [19]:
For each SCADA object ID id:

Historic data

Alarm list

Flood extraction

Flood clustering

Pattern extraction

Outlier detection

Alarm floods

Flood clusters

Flood patterns

Part of the flood Flood outliers

Fig. 1: Flow diagram of the overall method.

Xflood,id = TF(flood, id) · IDF(flood, id), (1)

where

TF(flood, id) =
count of id in flood

number of alarms in flood
(2)

is the document frequency of the SCADA object ID id
in the alarm flood flood and

IDF(flood, id) = log

(
M

DF(id)

)
, (3)

where M is the total number of alarm floods and DF(id)
is the occurrence of id in all floods. To compute the
TF-IDF scores, we used the Python package scikit-learn
[20].

2) Occurrence matrix: In this case, the feature matrix X is
compiled by binary entries as:

Xflood,id =

{
1, if id ∈ flood
0, if id /∈ flood

(4)

In this approach, the feature matrix X has so many
columns as the total number of alarms included in the
floods.

3) Language model: In this approach the feature matrix
contains sentence embeddings of the floods’ SCADA
object IDs as:

Xflood = encode(“id1 id2 ... idNflood
”), (5)

where the encode function can represent any pre-trained
sentence transformer and Nflood denotes the index of the
last alarm in the flood sequence. Sentence embeddings
have been developed to derive a numeric representation
of semantic information in natural language processing.
Embeddings are basically an encoding of a natural lan-
guage sentence to numerical values. As similar natural
language sentences produce identical embeddings, simi-
lar alarm floods expressed in text sequences of SCADA
object IDs might yield also similar embeddings. It is
worth mentioning that the SCADA object IDs are not
natural language. However, the sentence embeddings can
help to derive common combinations which appear in
the floods and thus, enable clustering. For this approach,
we use the recent BERT (Bidirectional Encoder Repre-
sentations from Transformers) model [21]. Note that this
is a pre-trained language model and no hyperparameter
tuning is required.

Based on the feature matrix X , the alarm floods are then
clustered using a clustering algorithm. For this, we have
implemented the options of k-means, agglomerative hierar-
chical, spectral clustering and DBSCAN. For all the clustering
algorithms, we use the Python package scikit-learn [20]. As
a result of each clustering algorithm, a set of C flood clusters
is obtained, each of them containing a set of the previously
extracted alarm floods. Note that each alarm flood is mapped
to exactly one flood cluster.
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B. Pattern Detection

For each alarm flood cluster, a common pattern is deter-
mined. Initially, a set of the included SCADA object IDs is
created for each alarm flood as Fj = {id1, id2, ..., idNj

},
where j denote the flood index and Nj is the total number of
unique alarms included in the j-th flood. Next, the intersection
of the flood sets belonging to each cluster is calculated as:

Dc = F1 ∩ ...Fj ∩ ... ∩ FMc
, (6)

where c is the cluster index and Mc is the total number of
floods included in the c-th cluster. As a next step, the flood set
with the lowest cardinality, i.e., minimum number of unique
alarms, is found as:

Sc = min (|F1| , ..., |FMc |) . (7)

Finally, the flood pattern of a cluster c is determined by the
union of the two derived sets as:

Pc = Dc ∪ Sc. (8)

This combination of sets has been empirically proved to
be yielding the most representative pattern results, since it
contains all the common alarms that are present in the floods
and a few more that might be present in most of the floods.

It has to be emphasized that the pattern is considered as
a set, i.e. the sequence does not matter. This is due to the
fact that power systems alarms can be raised at very high
frequency and the timestamps cannot be reliably associated
with propagation of events through the system.

C. Outlier Detection

In this step, alarms that are contained in the floods but do
not appear in the respective flood cluster pattern are detected.
It is likely that those alarms do not belong to a flood, yet
they are raised during the same time period rendering their
detection by the operator challenging. These alarms should be
individually displayed to the operator, whereas the rest of the
flood alarms can be suppressed and displayed to the operator
as a single entry.

To be precise, an alarm is classified as an outlier if it is
not included in the flood pattern. This can be mathematically
written as:

Oj = Fj \ Pc, (9)

where Oj represents a set of outliers for the j-th flood which
has been assigned to the c-th flood cluster.

The outlier detection results are further refined by excluding
the alarms that were raised in stations already included in the
flood pattern. This is based on the assumption that if an alarm
is raised in a station where a flood occurs, it is very likely that
this alarm is also part of the flood.

TABLE II: Silhouette index for different clustering approaches
and algorithms.

Occurrence matrix TF-IDF Language model
k-means 0.456 0.455 0.343

Hierarchical 0.381 0.392 0.347
Spectral 0.134 0.436 0.363

DBSCAN 0.428 0.494 0.363

IV. RESULTS

A. Alarm Flood Clustering Results

To evaluate the performance of the three proposed alarm
flood clustering approaches, i.e., TF-IDF, occurrence matrix,
and language model, we employ the average Silhouette index
[22]. Silhouette index may range from -1 (worse) to 1 (best),
while values close to 0 suggest clusters that overlap. Negative
values imply that a sample has been erroneously assigned to a
cluster whereas positive values indicate the opposite. Table II
shows how the three proposed approaches performed using
four different clustering algorithms of different notion and
complexity. Overall, TF-IDF yielded the best clustering results
regardless of the clustering algorithm. Occurrence matrix
seems to be also a reliable approach, if it is combined with
k-means or DBSCAN, whereas the deployed language model
generated moderately worse yet consistent results across all
algorithms. This decay in performance can be attributed to
the fact that language models are usually trained using nat-
ural language and not coded tags like SCADA object IDs.
Nevertheless, this language model could generate acceptable
clustering results as validated by the authors by observing the
individual flood clusters and the alarms therein. As for the
total number of clusters, the well-established elbow method
was employed [23].

It is worth pointing out the alarm flood clustering can be
deployed as a standalone application, as also indicated in
[11], [12], [16], [17], [24], [25]. Alarm engineers, managers,
operators, and data analysts can leverage alarm flood clusters
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Fig. 2: Cluster 4: Heatmap of the pairwise Jaccard distances
between the floods.
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Fig. 3: Cluster 14: Heatmap of the pairwise Jaccard distances
between the floods.

to identify error-prone equipment in the system, extract pat-
terns for alarm suppression, perform root cause analysis, and
support operators on their daily work [16].

In this context, Fig. 2 and 3 show the distance matrices of
two indicative clusters generated using the TF-IDF approach
and the DBSCAN algorithm. Each pixel corresponds to the
Jaccard distance JD between the different pairs of floods
(Fi,Fj), which can be calculated as:

JD(Fi,Fj) = 1− Fi ∩ Fj

Fi ∪ Fj
. (10)

If two floods are identical (their intersection and union are
similar), then the second term of (10) will be close to 1 and
thus, the Jaccard distance will be close to 0. If two floods have
no alarm in common, then the Jaccard distance will be 1. In
Fig. 2 and 3, darker pixels imply high similarity (low Jaccard
distance) between the alarm flood patterns. As illustrated
in those figures, the clustering results exhibit remarkable
uniformity (Jaccard distance lower than 0.07), reflecting a
high degree of accuracy in the grouping of the various alarm
floods. This uniformity within each cluster further supports the
efficacy of the clustering, as it displays consistent similarity
patterns among cluster members.

B. Pattern and Outlier Detection Results

Once the flood clusters have been formed, a general flood
pattern is determined for each cluster as described in the
previous section. Based on this pattern, the alarms that do not
belong to the flood (outliers), but they occured during the same
time period, are identified and are presented separately to the
operator. Since there is no ground truth to quantify the outlier
detection rate, we developed a binary grid for each alarm flood
cluster in order to visually inspect the output results. Due to
confidentiality reasons, each alarm is represented by its index.

Fig. 4 is an representative example of the aforementioned
binary grid of Cluster 8. Due to lack of space, we present only
the first 20 alarm floods. Each alarm flood corresponds to a
different horizontal line whereas each vertical line corresponds

to a different alarm. The alarms are sorted based on their total
contribution to the floods found in the cluster. For instance, the
alarms that appear almost in every flood are placed on the left
side of the grid, whereas the most rare ones can be found on
the right side. This sorting enables the identification of alarms
that do not belong to the flood and it is used to validate the
outlier detection results as yielded by the proposed method.

In this regard, the alarms marked by the green rectangle
indicate the alarm flood pattern since they appear almost in
each flood or they were raised in the same substation as the
other alarms of the pattern. On the contrary, the alarms marked
by the red rectangles appeared only once and thus, it is very
likely that they are not part of a flood. It is worth pointing out
that a false classification of an alarm as an outlier would not
have any severe consequence to the power system operation
since outliers are presented separately to the operators. On
the contrary, the false classification of an outlier as part of
the flood might have the opposite effect. Therefore, operators
should be cautious when suppressing alarm floods.

V. USER STUDY

A user study was conducted to understand the qualitative
impact of our alarm flood management tool. We recruited four
expert users from a TSO. The participants were recruited using
an inter-company agreement to share resources to develop
experimental alarm management algorithms. Their roles along
with their participant IDs are summarized in Table III.

We showed users a low fidelity excel based prototype that
displayed the outputs of our clustering algorithm, and then
conducted an outlier membership assessment activity, followed
by a semi-structured interview [26]. The excel based prototype
was created by running our algorithm on the user’s own alarm
system data. A single sheet was an alarm cluster. The sheet
displayed alarm data in two columns: one column showed
the common pattern shared by all alarms, the second column
showed outliers that may or may not be a part of the flood. We
showed users three flood clusters during each session. Flood
clusters were selected using the following principles: Cluster 1
(C1) had a balanced number of outliers and common patterns,
Cluster 2 (C2) had more common patterns than outliers, and
Cluster 3 (C3) had more outliers than common patterns. To
select a cluster, a single researcher randomly sampled flood
clusters until it met one of the criteria for C1, C2, or C3. We
conclude our user study by summarizing our interviews and

TABLE III: Expert users and their roles recruited in our user
study.

Participant ID Role

P1 Head of System Data Operations Team
P2 Market Operator
P3 IT Manager
P4 Realtime Systems Engineer
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Fig. 4: Cluster 8: Binary grid illustrating the alarms that belong or do not belong to an alarm flood. Black pixels denote that
an alarm is present in a flood whereas white pixels indicate the opposite. Each horizontal line corresponds to a different flood
while the each vertical line corresponds to a specific alarm.

relating them to our research questions. Our research questions
were specifically as follows:

1) RQ1 - CLUSTER MEANING: How meaningful are the
clusters to end users in being able to understand the state
of the power system?

2) RQ2 - OUTLIER ACCURACY: How should the relation-
ship between outliers and common patterns be presented
to end users?

3) RQ3 - EXPERT IMPROVEMENT: How can future ver-
sions of the flood clustering algorithm be improved?

A. Outlier Membership Assessment

We asked participants to sort outliers for all alarms based
off whether they thought they truly belonged to the alarm
flood, or if they were erroneously classified. Participants were
given the option of saying “belongs”, “does not belong”, or
“do not know”. In total, participants sorted 26% of outliers
as definitely belonging to the flood cluster. P4 said that given
more context, he could have seen additional alarms as possibly
belonging to the flood. With these alarms included, 37% would
have then been perceived as belonging. Participants further
ranked 29% of alarms as not belonging to the flood. The
remaining 45%-34% was unknown.

B. User Interview

Here our interview questions are iterated and responses
summarized. We link to our research questions to interview
responses the following section.

1) Q1 Do you have an intuition as to the cause of this
flood?: The goal of our evaluation was not to determine if
their rationalizations were correct, but rather if the floods were
sufficiently meaningful to users to rationalize about potential

flood causes. P2 and P4 were able to rationalize about the
presented alarm flood clusters, and determine possible causes
of floods. For instance, they indicated topology change and
DC cable switching as possible causes of some floods. In
contrast, P1 and P3 were not able to rationalize about the flood
clusters and chose to abstain from answering the question. The
distinction between these two user groups was that P2 and P4
had direct operations experience, where P1 and P3 were both
managers and more removed from daily alarm list activities.
This implies that the clusters have more utility to operators
than managers.

2) Q2 Can you imagine a time when you would do the
same action on all of these alarms? (e.g. block, acknowledge,
etc.): P1 and P2 recognized that the alarms we presented were
the responsibility of a specific organizational unit within the
TSO, and identified a particular control center to call with
the presented clusters. P4, whose responsibilities were directly
relevant with the presented alarms, noted that often times
the causes of a flood can be complex, and that an operator
would need to investigate the substations and connective
neighbourhood to truly understand which actions to take.

3) Q3 When it comes to flood clusters such as these, could
you see yourself using them in your day to day activities?:
P4 responded positively to the flood clustering functionality,
particularly about the promise in it reducing the length of the
alarm list:

“Yes...we receive a lot of alarms and if you can
combine [them] into one item, that gives a better
overview of what’s going on and then you don’t
miss other important items...if you have a long list
that then you are a little bit lost. ” –P4
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P2 required more transparent information about what princi-
ples were used to create alarm clusters (i.e. distance measures)
before they were comfortable adopting it in their everyday
practice. The other two participants abstained from comment-
ing.

4) Q4 What are some principles you may find useful
to group alarms?: All participants mentioned geographic
location as a major principle to group alarms. P4 further
offered geographic location as a heuristic to sort outliers as
belonging or not belonging. Some more grouping heuristics
discussed were: alarm type, priority, a priori groups, and
electric connectivity.

C. Relating User Findings to Research Questions

We understand the interviews as answering RQ1 - CLUS-
TER MEANING as follows: the clusters are most meaningful
to operators and those that need to handle alarms on an every
day basis. They provide a sufficient platform to hypothesize on
possible root causes of floods, but do not tell the whole story.
Further investigation is required by operators to ultimately
determine what actions to take; the main perceived benefit
of the clusters is in helping operators organize their alarm list
view as to manage cognitive load.

We answer RQ2 - OUTLIER ACCURACY through the
findings of our Outlier Membership Assessment Task (Sec-
tion V-A). Outliers were perceived as being uniformly split
between being true flood members (26%−37%), not members
(29%), or unknown (45%−34%). When displaying the outputs
of our flood clustering technique, it is therefore important to
also represent the outliers, and not hide them. The full outlier
list should be shown so that the users can determine belonging
on their own. The outlier list should also incorporate visual
design choices that demonstrate uncertainty, such that there is
a 1/3rd chance that an item in the list is a true member of
the alarm flood.

We relate interview responses to RQ3 - EXPERT IM-
PROVEMENT in the following ways: location information
can further be incorporated into the system to aid operators
since much attention when rationalizing groups was spent on
geographic location. Using geographic labels for clusters may
be an intuitive way to describe clusters to end users since they
often describe floods in location-based terms themselves.

VI. CONCLUSION AND FUTURE WORK

Traditional flood management approaches are likely to fail
in the power system context since they are faster, span vast
geographical areas, and have more complex dynamics. To this
end, we introduced a method that supports the operator in
processing high volumes of alarms.

We evaluated our algorithm using real alarm data obtained
from a period of 8 months from a TSO control room. The
proposed approach was able to distinguish different flood
patterns and group similar alarms floods in the same cluster.
Specifically, we demonstrated a uniform pairwise similarity
between alarm floods using the Jaccard distance metric, and
assessed overall clustering performance using the Silhouette

coefficient. The TF-IDF approach showed consistent clustering
performance and its combination with the DBSCAN produced
the best clustering results.

Furthermore, our user study discovered that our flood clus-
ters had utility in giving operators a basis to hypothesize about
potential flood causes, and showed the most promise as a tool
to better organizing the alarm feed, thereby reducing cognitive
load. As for the outlier detection, the proposed method was
able to identify some alarms that were indeed not part of the
floods leading to an increase in situational awareness, as the
risk of missing important alarms that may be lost in the flood is
decreased. Nevertheless, robust outlier detection would ideally
need operators annotating the dataset.

Future work will focus on incorporating the outcome of
the user study and integrate it into the development of the
proposed alarm flood management tool.

REFERENCES

[1] N. Baranovic, P. Andersson, I. Ivankovic, K. Zubrinic-Kostovic, D. Pe-
harda, and J. E. Larsson, “Experiences from intelligent alarm processing
and decision support tools in smart grid transmission control centers,”
in Cigre Session, vol. 46, 2016, pp. 21–26.

[2] J. R. Andrade, C. Rocha, R. Silva, J. Viana, R. J. Bessa, C. Gouveia,
B. Almeida, R. Santos, M. Louro, P. Santos et al., “Data-driven anomaly
detection and event log profiling of SCADA alarms,” IEEE Access,
vol. 10, pp. 73 758–73 773, 2022.

[3] L. Wei, W. Guo, F. Wen, G. Ledwich, Z. Liao, and J. Xin, “An
online intelligent alarm-processing system for digital substations,” IEEE
transactions on Power Delivery, vol. 26, no. 3, pp. 1615–1624, 2011.

[4] D. S. Kirschen and B. F. Wollenberg, “Intelligent alarm processing in
power systems,” Proceedings of the IEEE, vol. 80, no. 5, pp. 663–672,
1992.

[5] H. Miao, M. Sforna, and C.-C. Liu, “A new logic-based alarm analyzer
for on-line operational environment,” IEEE Transactions on Power
Systems, vol. 11, no. 3, pp. 1600–1606, 1996.

[6] W. Guo, F. Wen, Z. Liao, L. Wei, and J. Xin, “An analytic model-
based approach for power system alarm processing employing temporal
constraint network,” IEEE Transactions on Power Delivery, vol. 25,
no. 4, pp. 2435–2447, 2009.

[7] Y. Jiang and A. K. Srivastava, “Data-driven event diagnosis in trans-
mission systems with incomplete and conflicting alarms given sensor
malfunctions,” IEEE Transactions on Power Delivery, vol. 35, no. 1,
pp. 214–225, 2019.

[8] V. Campos, J. R. Andrad, R. J. Bessa, and C. Gouveia, “ML-assistant
for human operators to solve faults and classify events complexity in
electrical grids,” in 13th Mediterranean Conference on Power Genera-
tion, Transmission, Distribution and Energy Conversion (MEDPOWER
2022), vol. 2022, 2022, pp. 336–341.

[9] B. Zhou, W. Hu, K. Brown, and T. Chen, “Generalized pattern matching
of industrial alarm flood sequences via word processing and sequence
alignment,” IEEE Transactions on Industrial Electronics, vol. 68, no. 10,
pp. 10 171–10 179, 2020.

[10] M. Lucke, M. Chioua, C. Grimholt, M. Hollender, and N. F. Thornhill,
“Advances in alarm data analysis with a practical application to online
alarm flood classification,” Journal of Process Control, vol. 79, pp. 56–
71, 2019.
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