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Abstract—The application of digital twin (DT) on battery energy 

storage systems (BESS) has attracted increasing attention in the 

last decade. However, existing studies usually focus on building 

pre-calibrated DT for state estimation and prediction. These DTs 

lack the ability for dynamic adaptation to changes in battery 

aging and evolving operating environment, which thus limits 

their effectiveness in intelligent decision-making for system 

performance enhancement. Therefore, this work develops a self-

adaptive DT for battery monitoring and management system 

(DT-BMMS). The proposed self-adaptive algorithm ensures 

accurate long-term mapping between the physical entity and the 

digital model. Additionally, a model predictive control-based 

state-of-charge (SOC) balancing method is deployed. Simulation 

results demonstrate the capability of the developed DT-BMMS to 

adaptively adjust the DT as the system evolves, which allows the 

maintenance of SOC balancing under different scenarios. 

Index Terms—Battery SOC equalization, digital twin, equivalent 

circuit model, extended Kalman filter, model predictive control, 

self-adaptive modeling 

I. INTRODUCTION 

In the era of Industry 4.0, with the rise of technologies such 
as big data, Internet of Things, blockchain, and artificial 
intelligence, digital twin (DT) has gained increasing attention 
[1]. As a precise, self-adaptive, and dynamic digital duplication 
of the physical entities, DT integrates real-time data, digital 
model, and advanced management algorithms to improve the 
understanding and performance of the physical entity [2]. After 
being initially introduced by Grieves et al. in 2003 [3] and 
subsequently embraced by NASA [4], it has entered into a 
phase of rapid development, with applications extended to 
diverse domains, including power and energy systems. By 
combining real-time data with digital models, power and 
energy equipment can be better cooperated and controlled, 
resulting in higher efficiency and lower cost. 

Battery energy storage system (BESS) is an important part 
of modern power systems, not only powering electric vehicles 
(EVs), but also offering flexibility for the grid. As an iconic 
application, DT for battery monitoring and management system 
(DT-BMMS) has been proved to improve BESS performance 
through accurate state monitoring and intelligent decision-
making. Semeraro et al. [5] proposed guidelines for DT 

development, which capture the behavior and characteristics of 
the BESS to monitor and optimize the system behavior. Naguib 
et al. [6] reviewed the state-of-charge (SOC) estimation 
methods, where the battery equivalent circuit model (ECM) and 
extended Kalman filter (EKF) are discussed. Apart from that, 
authors of [7] utilized DT to monitor battery temperature and 
visualized the digital model with a user interface. To further 
enhance system operational performance, Qu et al. [8] 
developed a deep learning-based DT model for lithium-ion 
battery and applied long short-term memory to forecast battery 
performance degradation. Besides, advanced control and 
management methodologies were also used in DTs. To prolong 
the life of the battery, varieties of DT-based SOC balancing 
techniques were discussed in [9]. Authors of [10] explored the 
potential of applying model predictive control (MPC)-based 
battery DT in peak shaving scenario. And the authors of [11] 
reviewed the EV powering application, where advanced 
management methods, like battery passport, are integrated with 
DT to decrease the cost at the life-cycle level. To release the 
computation and data storage limitations of the onboard devices, 
cloud assisted technology was discussed in [12] and [13] to 
improve the performance of BESS through SOC balancing. In 
the studies mentioned above, a variety of advanced model-
based state monitoring and controlling methods were utilized. 
However, their accuracy is highly dependent on the DT models, 
where the pre-calibrated models exhibit limited accuracy in 
uncertain environment. 

Therefore, considering the challenge of DT inaccuracy,  
there is a need to find a self-adaptive modeling algorithm and 
an effective decision-making strategy for DT-BMMS [14]. This 
paper develops a self-adaptive battery DT to monitor the battery 
SOC, meanwhile maintain SOC balancing. Leveraging the 
system knowledge within the DT, MPC is selected as the real-
time controller with its ability to optimize system behavior over 
a predictive horizon under various constraints and 
environments [15-17]. In order to demonstrate the versatility of 
the developed DT-BMMS, two prevalent battery applications 
are considered: EV powering and power system peak shaving, 
which represent high-dynamic and low-dynamic BESS usage 
scenarios, respectively. Fig. 1 illustrates the overview of the 
DT-BMMS. The collected data from the physical space are 
utilized for DT modeling with the self-adaptive particle swarm 
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optimization (SaPSO) method, establishing the battery DT in 
the digital space. Additionally, the error integration method is 
employed to trigger the self-adaptation algorithm. The EKF is 
then employed to fuse data from both physical and virtual 
spaces, thus accurately monitoring the SOC of the battery. The 
ECM and estimated SOC are further utilized by MPC to 
generate optimal charging and discharging control signals for 
SOC balancing, thereby enhancing system performance. The 
robustness of the proposed SaPSO is proved through repeated 
simulations over different working conditions, and different 
battery packs of varying scales are tested to prove the scalability 
of the proposed method.  

The main contributions of this work are summarized as 
follows:  

(1) DT-BMMS is developed within a comprehensive 
digital twin architecture, leveraging an emulated 
battery platform for simulation and analysis. 

(2) A SaPSO algorithm is incorporated into the modeling 
phase, ensuring long-term accurate mapping of the 
digital model to the physical entity. 

(3) MPC-based cell balancing strategy is applied, 
enhancing the performance of the system under both 
high-dynamic and low-dynamic operation scenarios. 

 

Fig. 1 Overview of the DT-BMMS. 

The rest of this paper is structured as follows. In Section Ⅱ, 
the comprehensive DT architecture is introduced, upon which 
the digital models, monitoring, and control algorithms used in 
DT-BMMS are given in detail. The test scenarios and analysis 
of the simulation are presented in Section Ⅲ, and finally, 
Section Ⅳ provides the conclusion. 

II. METHODOLOGY 

A. Digital twin architecture 

The development of DT assembles various modeling, 

monitoring and management algorithms with a specific target. 

The comprehensive architecture applied in this paper consists 

of several components: series-connected battery, self-adaptive 

DT modeling, DT model, and specific application. The 

overview of the architecture is shown in Fig. 1, where the 

battery entity is represented by ECM [18] and the dashed 

arrows indicate the data flow in digital space. The emulated 

battery functions as physical space, serving as the foundation 

upon which the DT is based, capturing the physical attributes, 

behaviors, and characteristics. The captured voltage and current 

data are used for self-adaptive DT modeling, enabling a 

dynamic and accurate digital representation. The digital space 

allows state monitoring, prediction and analysis in a controlled 

and risk-free environment. The generated current control signal 

is then fed back to the battery to improve its performance. In 

the following sections, the detailed ECM model, SaPSO 

method, SOC monitoring and balancing algorithms under 

different scenarios will be introduced. 

B. Battery model 

Currently, there are three mainstream approaches with 
respective advantages and limitations for battery modeling: 
electrochemical model, ECM, and data-driven model [19]. This 
study makes use of the ECM approach as Fig. 2 shows. ECM is 
a grey-box model utilizing a combination of resistor, capacitor 
and voltage source to characterize the dynamic response of the 
battery, and utilizing the collected data to tune the 
corresponding parameters. Due to the ease of parametrization 
and implementation, as well as the low computing cost and 
computational efficiency, it represents a trade-off between 
accuracy and real-time performance on mirroring a physical 
battery in digital space [20]. 

 

Fig. 2 Schematic of the battery ECM. (a) Factors affecting the battery 

dynamic response. (b) Circuit diagram of the ECM. 

The ECM has a simple mathematical expression, where the 

dynamics of the charging and discharging process are specified 

by the following equation set: 

𝑑𝑆𝑂𝐶𝑛

𝑑𝑡
= −𝜂

𝑖𝑛

𝐸𝑛 + 𝜔1 (1𝑎) 

𝑑𝑈𝑝
𝑛

𝑑𝑡
= −

𝑈𝑝
𝑛

𝑅𝑝
𝑛𝐶𝑝

𝑛 +
𝑖𝑛

𝐶𝑝
𝑛 + 𝜔2   (1𝑏) 

𝑈𝐿
𝑛 = 𝑈𝑜𝑐(𝑆𝑂𝐶𝑛) − 𝑈𝑝

𝑛 − 𝑖𝑛𝑅0
𝑛 + 𝛽 (1𝑐) 

Where the superscript 𝑛  denotes the 𝑛 th cell in the battery 

module, which consists of a total of 𝑁 cells; 𝜂 is the coulombic 

efficiency of the battery; 𝑖 is the current and 𝐸 is the battery 

capacity in Amp Hour; 𝑅0 is the internal resistance; 𝑅𝑝 and 𝐶𝑝 

are the polarization resistance and capacitance, respectively; 

𝑈𝑝 and 𝑈𝐿 are terminal voltage of the polarization capacitance 

and the battery cell, respectively; 𝜔1, and 𝜔2 are process noise, 

and 𝛽  is measurement noise; 𝑈𝑜𝑐  is the open circuit voltage 
Submitted to the 23rd Power Systems Computation Conference (PSCC 2024). 



23rd Power Systems Computation Conference
     

Paris, France — June 4-7, 2024 

    PSCC 2024 

dependent on SOC, which is fitted by a fifth-order polynomial 

in this paper, resulting in (1c) being nonlinear. 

To better suit computer simulation and model-based 

predictive control, the continuous-time ECM is discretized 

with sampling time S, as the following equation shows: 

𝑆𝑂𝐶𝑘+1
𝑛 = 𝑆𝑂𝐶𝑘

𝑛 − 𝜂
𝑖𝑘

𝑛

𝐸𝑛 𝑆 + 𝜔1,𝑘 (2𝑎) 

𝑈𝑝,𝑘+1
𝑛 = 𝑈𝑝,𝑘

𝑛 𝑒
−

𝑆
𝑅𝑝

𝑛𝐶𝑝
𝑛

+ 𝑅𝑝
𝑛 (1 − 𝑒

−
𝑆

𝑅𝑝
𝑛𝐶𝑝

𝑛
) 𝑖𝑘

𝑛 + 𝜔2,𝑘 (2𝑎) 

𝑈𝐿,𝑘
𝑛 = 𝑈𝑜𝑐(𝑆𝑂𝐶𝑘

𝑛) − 𝑈𝑝,𝑘
𝑛 − 𝑖𝑘

𝑛𝑅0,𝑘
𝑛 + 𝛽𝑘 (2𝑐) 

C. Self-adaptive modeling 

The parameters of ECM are dynamically updated by the 

PSO-based system identification block that processes real-time 

measured data [21]. At the initial stage, parameter 

identification for the digital model is conducted using the 

measured battery current and voltage data within one hour. The 

identified parameters are then applied to the ECM in digital 

space. Subsequently, the digital space runs in parallel with the 

physical space. 

The  𝑅0, 𝑅𝑝 and 𝐶𝑝 of ECM are the parameters to be tuned 

by PSO, and the measured current from physical space is 

applied as input and the measured voltage is the target value. 

Therefore, a 3-dimensional search space is explored and the 

discretized ECM equation is used as the fitness function. The 

position of each particle is represented by 𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, 𝑝𝑖3)𝑇. 

At each iteration, each particle updates its position and records 

the best solution from all previous generations, denoted 

as 𝑃𝑏𝑒𝑠𝑡 . Meanwhile, the overall best solution, denoted as 𝐺𝑏𝑒𝑠𝑡, 

is also recorded. The iteration process is described by the 

following equations: 

𝑣𝑖+1 = 𝑤𝑣𝑖 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑖) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 − 𝑃𝑖) (3𝑎) 

𝑃𝑖+1 = 𝑃𝑖 + 𝑣𝑖+1 (3𝑏) 

Where 𝑣𝑖  represents the velocity of the ith particle, w is the 

inertia weighting factor,  𝑐1, 𝑐2 are learning rates and  𝑟1, 𝑟2 are 

random values between 0 and 1. 

The integral area error (IAE) of the difference between the 

voltage obtained through ECM and measurement is used as the 

fitness value, as the following equation shows: 

𝑀𝑖𝑛   𝐼𝐴𝐸𝑈 = ∫ |𝑈𝐸𝐶𝑀 − 𝑈𝑀𝐸𝐴|
𝑡2

𝑡1

𝑑𝑡 (4) 

Where 𝑡1  and 𝑡2  represent the start and end time of data 

measurement, respectively; 𝑈𝐸𝐶𝑀  and 𝑈𝑀𝐸𝐴  are voltage 

obtained through ECM and measurement, respectively; 𝑅0, 𝑅𝑝 

and 𝐶𝑝 obtained after the convergence of PSO is assigned to 

the ECM in the digital space, yielding the complete ECM 

model mirroring the battery in the physical space. 

The integrated voltage error is further utilized by SaPSO 

algorithm to dynamically update the parameters of ECM. 

Based on current access rules for the European electricity 

market, 15 minutes was selected as the minimum servicing 

duration under the peak shaving scenario [22]. As a balance 

between adaptation frequency and output accuracy, 15 minutes 

is also choice as the length of error integration window. Once 

the integrated error between the physical and digital space 

feedback voltages exceeds a threshold, PSO is invoked again 

to perform adaptive update for the ECM. The detailed 

algorithm is given as follows, where the estimated voltage and 

measured voltage of the 𝑛th cell are separately represented by 

𝑈𝐿,𝐸𝐶𝑀
𝑛  and 𝑈𝐿,𝑀𝐸𝐴

𝑛 . The threshold is determined by the 

acceptable error range, which will be introduced in Section Ⅲ. 

Algorithm 1 Error integration-based SaPSO 

1: Initialization 

2: Parameter identification of ECM using PSO 

3: Continuous data collection 

4: 
Collecting the terminal voltage of 𝑛th battery module from 

both digital (𝑈𝐿,𝐸𝐶𝑀
𝑛 ) and physical (𝑈𝐿,𝑀𝐸𝐴

𝑛 ) spaces 

5: Self-adaptation 

6: Error integration in last 15 minutes with time steps of 1s 

7:     𝐸𝑛 = ∫ (𝑈𝐿,𝐸𝐶𝑀
𝑛 − 𝑈𝐿,𝑀𝐸𝐴

𝑛 )    𝑛 ∈ 𝑁, 𝑡 ≥ 15 𝑚𝑖𝑛
𝑡

𝑡−15
 

8: Trigger: 

9:     If 𝐸𝑛 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then 
10:         Keep running, and steps 4,7 and 9 are repeated 

11:     Else 

12:         Self-adaptation with PSO 

D. EKF-based state monitoring 

The EKF algorithm is an extension of Kalman filter [23] in 

nonlinear system. It fuses the measured and estimated data to 

provide reliable results. Compared to the widely used Ampere-

hour integration method for SOC calculation, EKF shows 

robustness against the unknown noise and uncertainties of the 

system, but relies on the precise system knowledge. Thus, the 

DT-BMMS provides the EKF with real-time measurements 

and a dynamically adapted battery model for SOC estimation. 

At each time step, the Taylor formula is used to linearize 

the discrete state space equation of the system. For the battery 

model shown in (2), it can be written in the form of (5), and the 

state transition matrix and observation matrix can be obtained 

through (6). 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝜔𝑘 (5𝑎) 

𝑦𝑘 = ℎ(𝑥𝑘 , 𝑢𝑘) + 𝛽𝑘 (5𝑏) 

�̂�𝑘 =
𝜕𝑓(𝑥𝑘 , 𝑢𝑘)

𝜕𝑥𝑘
|

𝑥𝑘=𝑥𝑘
+

  ,       �̂�𝑘 =
𝜕ℎ(𝑥𝑘 , 𝑢𝑘)

𝜕𝑥𝑘
|

𝑥𝑘=𝑥𝑘
−

 (6) 

Where 𝑢𝑘 = 𝑖𝑘
𝑛  is the input matrix; 𝑥𝑘 = [𝑆𝑂𝐶𝑘

𝑛, 𝑈𝑝,𝑘
𝑛 ]𝑇  and 

𝑦𝑘 = 𝑈𝐿,𝑘
𝑛  are the state matrix and result matrix; 𝜔𝑘~(0, 𝑄𝑘) and 

𝛽𝑘~(0, 𝑅𝑘) separately represent the independent, zero mean, 

Gaussian process noise and measurement noise with 

covariance matrices 𝑄𝑘 = 𝐸[𝜔𝑘 𝜔𝑘
𝑇]  and 𝑅𝑘 = 𝐸[𝛽𝑘 𝛽𝑘

𝑇] . 

Combining (2), (5) and (6), the final expression of the state 

transition matrix and observation matrix are as follows: 

�̂�𝑘 = [
1 0

0 𝑒
−

1
𝑅𝑝𝐶𝑝

]  ,       �̂�𝑘 = [
𝜕𝑈𝑜𝑐(𝑆𝑂𝐶)

𝜕𝑆𝑂𝐶
|
𝑆𝑂𝐶=𝑆𝑂�̂�𝑘

−
, 1] (7) 

The EKF algorithm for SOC estimation has two basic steps, 

namely the prediction step and the update step. Prior 

estimations are obtained based on the ECM in the prediction 

stage. In the update stage, the Kalman gain is updated based on 
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the ECM estimated value and real-time measurements, and 

then the posterior results are further calculated. For 

convenience, a summary of the EKF algorithm is given as 

follows, with the same symbols in (5), (6) and (7): 

Algorithm 2 Regression process of EKF in each step 

1: Initialization 

2: Initial state of battery 𝑥0 

3: Prediction step 

4: State estimation:  

5:      �̂�𝑘
− = 𝑓(�̂�𝑘−1

+ , 𝑢𝑘−1) 

6: Error covariance: 

7:      𝑃𝑘
− = �̂�𝑘−1𝑃𝑘−1

+ �̂�𝑘−1
𝑇 + 𝑄𝑘 

8: update step 

9: Kalman gain matrix update: 

10:      𝐾𝑘 = 𝑃𝑘
−�̂�𝑘

𝑇(�̂�𝑘𝑃𝑘
−�̂�𝑘

𝑇 + 𝑅𝑘) −1 

11: State estimation update: 

12:      �̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘(𝑦𝑘 − ℎ(�̂�𝑘
−, 𝑢𝑘)) 

13: Error covariance update 

14:      𝑃𝑘
+ = (𝐼 − 𝐾𝑘�̂�𝑘𝑃𝑘

−)𝑃𝑘
− 

E. MPC-based battery balancing 

As one of the most suitable optimal decision-making 
methods within the DT framework [24], MPC is employed in 
this study for SOC-based battery balancing, as illustrated in Fig. 
3. The optimization objective is to achieve SOC convergence 
among all series-connected batteries by adjusting the operation 
currents while satisfying operational requirements. An error 
band of ± 0.5% plus the average SOC is considered as the 
criterion for achieving equilibrium [12]. The corresponding 
optimization problem is described by the following equations: 

     𝑚𝑖𝑛         𝒥(𝑢𝑘) =  ∑ ∑(𝑆𝑂𝐶𝑘+𝑡
𝑛 |𝑘

𝑁

𝑛=1

𝑀

𝑡=1

−  𝑆𝑂𝐶𝑘)            (8𝑎) 

𝑠. 𝑡.      𝑥𝑘+𝑡+1
𝑛 |𝑘 = 𝑓𝑛(𝑥𝑘+𝑡

𝑛 |𝑘 ,     𝑢𝑘+𝑡
𝑛 |𝑘)     𝑡 ∈ 𝑀  (8𝑏) 

              𝑦𝑘+𝑡
𝑛 |𝑘 = ℎ𝑛(𝑥𝑘+𝑡

𝑛 |𝑘 ,     𝑢𝑘+𝑡
𝑛 |𝑘)          𝑡 ∈ 𝑀    (8𝑐) 

 𝑢≤ 𝑢𝑘+𝑡
𝑛 |𝑘 ≤ 𝑢                                       𝑡 ∈ 𝑀 (8𝑑) 

 𝑦 ≤ 𝑦𝑘+𝑡
𝑛 |𝑘 ≤ 𝑦                                     𝑡 ∈ 𝑀 (8𝑒) 

𝛥𝑢 ≤ 𝛥𝑢𝑘+𝑧
𝑛 |𝑘  ≤ 𝛥𝑢                            𝑧 ∈ 𝑍 (8𝑓) 

                    𝛥𝑢𝑘+𝑚
𝑛 |𝑘 = 0                                         𝑚 ∈ 𝑀 − 𝑍 (8𝑔) 

                𝐼𝑑𝑒𝑚𝑎𝑛𝑑 = ∑𝑢𝑘+𝑧
𝑛 |𝑘

𝑁

𝑛=1

                          𝑡 ∈ 𝑀       (8ℎ) 

Where 𝑆𝑂𝐶𝑘  is the average SOC at current time step  𝑘 , and 

𝐼𝑑𝑒𝑚𝑎𝑛𝑑  is the current demand in a specific scenario; 𝑢 and 𝑢 

separately denote the lower and upper limitations of the control 
variable, similar for system output 𝑦 and the changing rate of 
the control variable 𝛥𝑢 ; 𝑀  and 𝑍  represent the prediction 
horizon and control horizon, respectively. 

Equation (8) defines the objective function 𝒥  as the 

cumulative error of all battery cells deviating from the average 

SOC within the prediction horizon. Constraint (8b) to (8e) 

indicate that the evolution  prediction of 𝑛 th battery has to 

follow the ECM in the virtual space, meanwhile the control 

variable and the system output, i.e. the current and the SOC, 

should be within the specified range. Constraint (8f) and (8g) 

signify that the changing rate of the control variable should 

obey the limitations within the control horizon, while they 

remain unchanged to allow the system to evolve freely beyond 

that. Finally, constraint (8h) indicates that during the balancing 

process, the battery should always satisfy the energy demand.  

 

Fig. 3 Scheme of MPC for 𝒏th battery module at time point 𝒌. 

III. SIMULATION AND RESULTS 

To validate the effectiveness of the developed self-adaptive 

DT-BMMS, an emulated battery entity is developed in the 

Matlab/Simulink environment [18]. The collected current and 

voltage data are utilized for ECM parameter identification. An 

S-function is applied to simulate an increase in the battery 

inner resistance at 1800s, thereby simulating the changes in 

battery’s characteristics caused by the operational environment 

variations or inherent aging, and validating the effectiveness of 

the self-adaptation algorithm. It is worth noting that abrupt 

changes in internal resistance represent an extreme scenario, 

imposing the system with the highest level of stress. In reality, 

changes tend to be more gradual, which is considered to pose 

less of a challenge to system adaptation. 

In order to improve the robustness of the PSO, its 

parameters are carefully selected. From the previous heuristics 

found [25, 26], four parameters influence the robustness and 

convergence behavior of PSO, as shown in Table I. On the 

premise that it is enough to solve the problem, smaller swarm 

size brings less calculation burden, and proper weighting factor, 

velocity limitation and learning rate mitigates local optimal 

problem and accelerates convergence. Following these rules, 

the finally selected values, determined after trial and error, are 

provided in Table I. In addition to the appropriate parameters 

selection, a hundred repeated simulations are also conducted to 

demonstrate the robustness of the PSO. Randomly generated 

changes are introduced on internal resistance to activate the 

SaPSO, where the lower and upper limits are separately set as 

20% and 50% based on empirical value [27].  

TABLE I PARAMETER SELECTION FOR PSO 

Parameters Empirical values Selected values 

Swarm size [20,50] 20 

Inertia weighting factor [0.5,1] 0.8 

Velocity limitation position range dependent [-100,100] 

Learning rate less than 2 0.5 
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In practical allocations of BESS, tens or even hundreds of 

battery cells are connected together. To validate the 

effectiveness and scalability of the SOC balancing method 

based on MPC, two distinct cases are designed. For the first 

case, six 18650 cells, detailed parameters listed in Table II [28], 

are connected in series in the battery module to validate the 

effectiveness of the proposed method under both high-dynamic 

and low-dynamic scenarios. Different initial SOC deviations 

are tested, namely the 10% scenario (100%, 98%, 96%, 94%, 

92%, and 90%), and the 25% scenario (100%, 95%, 90%, 85%, 

80%, and 75%). Additionally, the inner resistance of each 

battery is increased by 10%, 20%, 30%, 40%, 50% and 60% 

respectively, at 1800s, to verify the ability of DT-BMMS to 

maintain battery equilibrium. For the second case, six modules, 

each with six cells, are tested to prove the scalability of the 

proposed method for larger-scale BESS. The modules are 

respectively set to the mean and standard deviation (SD) of the 

SOC value of 80% and 0.1, and the cell SOC fluctuates 

randomly by ±2.5% relative to the module average SOC. 

TABLE II PARAMETERS OF 18650 BATTERY 

Descriptions Values 

Nominal capacity (Ah) 2 

Nominal voltage (V) 3.7 
Cutoff charging voltage (V) 4.2 

Coulombic efficiency (%) 97 

Threshold of integrated voltage error (V/15mins) 16.65 

During high-dynamic service provision, the battery 

operates according to the Beijing Bus Dynamic Stress Test 

(BBDST) profile [29], with the current changing every few 

seconds, as shown in Table III. For low-dynamic service 

provision, the battery adjusts its operating current every 15 

minutes, following the profile of -3A, 3A, -6A, 6A in 1 hour. 

The demand power is proportionally increased in the second 

case. Fig. 4 depicts the relationship between open circuit 

voltage and SOC of the 18650-battery cell (left), and the 

voltage-current profile under BBDST conditions (right). Thus, 

the accuracy of the EKF algorithm is verified through the 

comparison between the estimated value and the actual value.  

TABLE III BEIJING BUS DYNAMIC STRESS TEST 

Step Current (A) 
Step 

time (s) 
Total time (s) 

Working 

conditions 

1 -3.4 21 21 Start 

2 -6.5 12 33 Accelerate 

3 -0.4 16 49 Sliding 
4 1.3 6 55 Brake 

5 -3.4 21 76 Accelerate 

6 -0.4 16 92 Sliding 
7 1.3 6 98 Brake 

8 -6.5 9 107 Accelerate 

9 -8.3 6 113 Rapid accelerate 
10 -3.4 21 134 Accelerate 

11 -0.4 16 150 Sliding 

12 1.3 6 156 Brake 
13 -6.5 9 165 Accelerate 

14 -8.3 6 171 Rapid accelerate 

15 -3.4 21 192 Accelerate 
16 -0.4 16 208 Sliding 

17 3.1 9 217 Brake 

18 1.3 6 229 Brake 
19 -0.4 71 300 Parking 

 
Fig. 4 Left: Voc-SOC curve. Right: U-I profile under BBDST condition. 

Following formula gives the optimization problem of MPC: 

 𝑚𝑖𝑛         𝒥 = ∫ (𝑋𝑇𝛳𝑋 + 𝛥𝑢𝑇𝛷𝛥𝑢
𝑇

𝑡=0

)𝑑𝑡 (9) 

Where 𝑋 is the SOC deviation and 𝛥𝑢 is the current change of 

each cell; 𝛳 and 𝛷 are diagonal matrices, tuned to penalize the 

SOC deviation and the magnitude of current change. 

Additionally, the prediction horizon M and control horizon Z 

are carefully considered to balance the efficiency and 

effectiveness. The selected parameters are listed in Table IV. 

TABLE IV PARAMETERS SETTING FOR MPC 

Descriptions Symbols Values 

Sampling time (s) S 1 

Prediction horizon M 50 

Control horizon Z 20 

States weights 𝛳 5 

Input weights 𝛷 0.1 

Limiation on SOC (%) 𝑦 / 𝑦 [0, 100] 

Limiation on current (A) 𝑢 / 𝑢 ±2 

Limiation on current changing rate (A/s) 𝛥𝑢 / 𝛥𝑢 ±2 

A. Results of self-adaptive modeling 

The output voltage generated by both physical and digital 

spaces under the applied BBDST condition is depicted in the 

former 1800s in Fig. 5. To simulate changes in battery 

characteristics [30], the inner resistance of the emulated battery 

entity is increased by 50% at 1800s, and the simulation results 

are shown in the latter 1800s of Fig. 5.  

 
Fig. 5 Voltage output (upper) and absolute error between DT and physical 

entity (lower) with inner resistance increases at 1800s. 
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It can be observed that before the change in inner 

resistance, the ECM identified based on PSO exhibits high 

accuracy, with voltage errors remaining within 0.5% most of 

the time. As shown in (10), the threshold for the integrated 

voltage error over the last 15 minutes is determined based on 

this value. Where 3.7V  is the nominal voltage, 900s  is the 

length of integration range. 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.5% ∗ 3.7 ∗ 900 = 16.65 (𝑉/15𝑚𝑖𝑛) (10) 

After the change in inner resistance at 1800s, the digital 

space outputs mismatched with the physical space outputs. 

This is evident in Fig. 6, where two cases are tested. After the 

inner resistance increased by 20% at 1800s, the integrated 

voltage error gradually increases. After 800 seconds, it reaches 

the threshold and triggers the self-adaptation algorithm. In the 

scenario where the inner resistance increased by 50%, the 

larger error leads to the integrated error surpassing the 

threshold more rapidly, in about 300 seconds. Additionally, 

both the integrated error within 15 minutes and the real-time 

absolute error are higher. However, in both scenarios, the ECM 

in digital space dynamically self-adapts and once again 

matches the physical entity with the assistance of SaPSO 

algorithm. This is also evident in the lower subplot of Fig. 6, 

where the voltage error in both scenarios returns to within 

0.5%. This demonstrates the ability of SaPSO algorithm to 

maintain accurate mapping between DT and the physical entity 

over long-term periods, even against dynamic operational 

conditions and the battery's inherent aging. 

 
Fig. 6 Integrated voltage error in last 15 mins (upper) and the percentage 

voltage error between DT and physical entity with self-adaptation (lower). 

Fig. 7 displays the validation results of one hundred 

repeated simulations for SaPSO robustness. It can be observed 

that after the change in internal resistance, SaPSO is activated 

within 900s, and the accuracy of the recalibrated DT model 

consistently falls within an acceptable range, despite variations 

in accuracy across each simulation. 

 
Fig. 7 Robustness analysis result of the propsoed SaPSO method. The black 

curves represent the average integrated voltage error (upper) and the 

percentage error (lower), and the shaded region illustrates the standard 
deviationof integrated error across 100 simulations. 

B. Results of monitoring and management 

Fig. 8 presents the estimated battery SOC using both the 

EKF and Ampere-hour integration methods. The lower subplot 

illustrates the absolute errors of the two methods. From the 

upper plot, it is evident that the EKF algorithm, which fuses 

data from both physical and digital spaces, exhibits higher 

accuracy. This is further supported by the absolute errors 

shown in the lower subplot. Additionally, the EKF method 

demonstrates a smaller root mean square error (0.41%) 

compared to the Ampere-hour integration method (1.24%). 

 
Fig. 8 Estimated SOC (upper) and estimation error (lower) using EKF and 

Ampere-hour integration methods. 

The testing results for the first case, as depicted in the 

former 1800s in Fig. 9, illustrate that in the scenarios where 

there is a 10% initial SOC deviation, all the cells reach SOC 

equilibrium at 1150 seconds (high-dynamic) and 1166 seconds 

(low-dynamic), respectively. While the adjustment duration is 
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prolonged to 1410 seconds (high-dynamic) and 1421 seconds 

(low-dynamic) when confronted with a larger initial SOC 

deviation. Fundamentally, the employed MPC demonstrates 

similar performance in both high-dynamic and low-dynamic 

scenarios. However, a larger initial SOC deviation requires a 

longer adjustment period. 

While facing the change of inner resistance at 1800s, 

scenarios A and C in Fig. 9 indicate that, the absence of self-

adaptive algorithm causes a mismatch between physical entity 

and digital model. As a result, the control strategy provided by 

MPC loses effectiveness, resulting in an imbalance in battery 

SOC. In scenarios B and D, with the progression of charge and 

discharge processes, this imbalance is further intensified. With 

the implementation of the adaptive algorithm, SaPSO 

dynamically identifies the model parameters, enabling MPC to 

generate optimal control signals. Following a brief period of 

imbalance, the system gradually returns to equilibrium. The 

self-adaptation process, along with the comparison between 

scenarios with and without SaPSO, is clearly evident in the 

SOC variation subplots across various scenarios. 

 
Fig. 9 Results of MPC-based SOC balancing for 6 batteries (represented by 

six distinct colors) connected in series  under A: BBDST scenario with initial 

10% SOC deviation, B: peak shaving scenario with initial 10% SOC  

deviation, C: BBDST scenario with initial 25% SOC deviation, D: peak 

shaving scenario with initial 25% SOC deviation. 

Fig. 10 illustrates the results of extending the proposed 

SOC balancing strategy to the second case, totally 36 battery 

cells under both BBDST and peak-shaving scenarios. The 

black curves are the average SOC and the shaded area shows 

the SD of SOC deviation. The decrease in shadow indicates a 

reduction in SOC variance among battery cells. The SOC 

reaches equilibrium before 1800s, demonstrating the 

scalability of the proposed MPC-based SOC balancing method. 

 

 
Fig. 10 SOC balancing results for larger-scaled battery pack. 

IV. CONCLUSION 

This paper presents the development of a self-adaptive DT-

BMMS. In order to ensure the continuous matching between 

the digital model and the physical entity, a SaPSO-based 

parameter identification method is proposed in the modeling 

phase. Additionally, EKF is employed to accurately estimate 

the SOC of the battery, and MPC is applied to keep SOC 

balancing, enabling bi-directional information flow between 

the physical and digital spaces, thereby enhancing the overall 

performance of the battery system.  

By introducing SaPSO, the long-term accurate mapping of 

the digital model to the physical entity is assured. Even facing 

changes in battery characteristic parameters due to aging or 

operating environment uncertainty, the adaptive algorithm can 

adjust model parameters in a short time. EKF provides users 

with accurate SOC monitoring information, demonstrating 

smaller root mean square error than the Ampere-hour 

integration method. Finally, MPC-based battery balancing 

management ensures SOC equalization for battery packs in 

both high-dynamic and low-dynamic scenarios in 

approximately 2 minutes. The proposed DT-BMMS addresses 

the challenge of the inability of MPC to provide optimal 

control signals when the battery model does not match the 

physical entity. It ensures that in uncertain environments, DT-

BMMS can consistently and accurately monitor battery states 

and maintain battery SOC equilibrium. 

For future work, the developed DT-BMMS will be 

calibrated in a laboratory setting, where a real battery system 

will replace the emulated battery to provide current and voltage 

measurement.  
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