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Abstract—We consider the frequency regulation problem for
a Virtual Power Plant (VPP) consisting of inverter-interfaced
distributed energy resources connected to a power grid, modelled
macroscopically, by a conventional generator connected to mul-
tiple time-varying loads. To improve the transient performance
(settling time, overshoot, etc.) of the frequency response under
load disturbances, we introduce a novel Droop Reset Integral
Control (DRIC) law that synergistically combines resetting in-
tegrators with integral droop controllers (also referred to as
proportional integral (PI) control in the literature). We prove
the stability of the proposed control scheme, and its robustness
to external disturbances, using conditions based on Linear matrix
inequalities (LMI) that can be numerically verified a priori.
Furthermore, we validate the proposed approach using both
learned voltage source inverter dynamics and a high-fidelity
Simscape model developed by Sandia National Laboratories. Our
results show that the DRIC algorithm is able to significantly
reduce overshoot, induce zero steady-state error, and decrease
settling times up to 7 times that of standard droop and PI
control. We also provide heuristic tuning guidelines for the
proposed controller, which can be particularly useful for system
operators whenever a detailed model of the virtual power plant
is unavailable.

Index Terms—Ancillary services, frequency control, hybrid
control, reset control, virtual power plant.

I. INTRODUCTION

Due to the volatile nature of the current global climate
conditions, there has been a steady rise in the adoption of
distributed energy resources (DERs) accompanied by a simul-
taneous departure from the use of fossil fuel technologies. As
a side effect, the modern power grid continues to experience
a decline in system inertia [1], a mechanism that aids in the
stability of power grids dominated by synchronous machines.
With reduced margins of stability and robustness, there is
a need to effectively coordinate the available DERs and to
provide ancillary services to the grid [2]. A potential solution
to this multi-agent coordination problem is the development
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and incorporation of the so called Virtual Power Plants (VPPs),
first introduced in [3]. VPPs can be envisioned as distributed
power plants primarily operating in a grid-tied mode. They
synergistically coordinate a collection of DERs (not necessar-
ily co-located) to emulate the behavior of a traditional power
plant. For a detailed survey of the various components of
VPPs and related feedback control schemes from a multi-
agent, cyber-physical systems perspective, we refer the reader
to the recent survey paper [4].

In this work, we address the frequency regulation problem
of VPPs. Traditionally, frequency regulation is addressed using
droop control, as discussed in [5]. In [6], the authors utilized
a synthetic inertia based approach within a cluster of inverter-
based resources to provide frequency regulation, compensating
for the loss of synchronous inertial response from conventional
generators. In [7] a dynamic variant of the classical droop
control was introduced to overcome the problem of unbounded
noise amplification in controllers with synthetic inertia in
the presence of measurement noise. However, these control
strategies are susceptible to non-zero steady-state errors due
to the lack of integral action. This deficiency can result in a
deviation of the grid frequency from the nominal 60 Hz at
steady state, as depicted in [8].

A natural solution to this problem is to augment the standard
droop controller with integral action, as demonstrated in [5],
leading to a PI (proportional plus integral) feedback structure.
In [9], the authors employed a variant of the droop controller
by dynamically updating the controller gains. While this
approach has been shown to improve transient and steady-
state performance compared to their static counterparts, it
does suffer from robustness issues in the presence of noisy
measurements. It is important to note that even though PI
controllers can result in zero steady-state error, standard linear
controllers are bound by fundamental limitations, as shown in
[10], which cannot be overcome without incorporating non-
linear or non-smooth control mechanisms.

On the other hand, nonlinear controllers, such as sliding
mode control (SMC) [11] and model predictive control (MPC)
[12], have also found applications in frequency regulation of
power systems. However, SMC suffers from the chattering
phenomenon occurring along the sliding surface, and MPC,
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while guaranteeing optimality, incurs high computational costs
which could be detrimental as the scale of the VPP grows.
Therefore, there is a pressing need for developing nonlinear
controllers capable of overcoming fundamental limitations of
linear controllers while simultaneously remaining computa-
tionally feasible and robust to noise. In this context, reset-
based controllers emerge as a promising option.

The concept of resetting integrators in dynamical system
was introduced by Clegg in [13]. The Clegg integrator is
a linear integrator that resets its output to zero when the
signs of its input and output differ. The advantages of this
component can be quantified through its describing function,
which exhibits the same magnitude plot as a regular integrator
but with a 51.9◦ smaller phase lag than its linear counterpart.
Clegg further showed that such a resetting mechanism could
systematically address fundamental limitations faced by linear
controllers. However, it wasn’t until the work presented in
[14] that a concrete example of an integrator plant overcom-
ing overshoot and rise time constraints, which could not be
satisfied by a standard linear controller, was demonstrated. A
necessary and sufficient condition for quadratic stability based
on the strict positive realness of transfer matrices was later
established in [15]. For a survey of early stability results on
reset control, we direct the reader to [16].

The modern approach to modeling reset controllers lever-
ages tools from hybrid dynamical systems. First proposed
in [17], the first-order reset element (FORE) introduced an
additional tuning parameter for adjusting the overshoot re-
sponse while reducing to the standard Clegg integrator when
the parameter is set to zero. Furthermore, the FORE consti-
tutes a well-posed hybrid system, as defined in [18], which
offers several theoretical guarantees in terms of existence of
solutions, stability and robustness to measurement noise. A
comprehensive treatment of the stability properties of FOREs
can be found in [19].

In the context of frequency regulation, reset controllers
were studied in [20] to perform load frequency control of an
islanded microgrid. However, this approach considered fixed
pre-scheduled reset times rather than state-based resets. In
turn, fixed reset times require optimal tuning of the reset
frequency to induce a suitable transient performance. Such
optimal tuning is difficult to obtain whenever the underlying
dynamics of the system are unknown, as demonstrated in [19].
In [21], the authors also considered the frequency regulation
problem of an islanded microgrid in the presence of parametric
uncertainty. However, no theoretical guarantees on closed-loop
stability and robustness were provided. Indeed, to the best of
our knowledge, no previous work has addressed the frequency
regulation problem of VPPs using state-based reset laws while
simultaneously providing stability and robustness guarantees.

In this work, we propose an extension of the familiar droop-
based controllers and their variants by incorporating nonlinear
resetting integrators [22] to enhance transient performance
and overcome the fundamental limitations faced by smooth
linear controllers, as demonstrated in [14]. Additionally, we
provide theoretical guarantees for the proposed controller by

leveraging tools from hybrid control theory. Moreover, we
validate our approach on a high-fidelity model that demon-
strates significant improvements in overshoot and settling time
compared to standard controllers such as droop control and its
variants.

II. STATEMENT OF CONTRIBUTIONS

The following are the main contributions of this work:

1) First, and motivated by the fundamental limitations of
existing linear and smooth frequency controllers in terms
of transient performance, we introduce a novel reset-based
controller for frequency regulation in power systems. The
proposed controller, termed Droop Reset Integral Control
(DRIC), can be seen as a standard droop-integral controller
extended with an integrator that is reset to zero whenever a
suitable condition is satisfied by the frequency error. Such
resets can significantly improve the transient performance
of the system by removing, or significantly attenuating the
overshoot induced by the control system. Since the pro-
posed controller combines continuous-time dynamics (i.e.,
proportional integral action) and discrete-time dynamics
(i.e., integrator resets), we study the stability properties
of the closed-loop system and establish an Input-to-State
Stability result using tools from hybrid dynamical systems
theory [18].

2) To validate the performance of the proposed controller,
we test the algorithm in the high-fidelity non-linear Flex-
Power model [23], [6], developed by Sandia National
Laboratories, which models a VPP that incorporates wind
turbines (WT), photovoltaic cell systems (PVs), battery
energy storage systems (BESS), and dynamic loads. The
numerical results showed that DRIC can yield significant
improvements in terms of transient response in VPPs when
compared to conventional linear and smooth controllers,
such as droop control, its dynamic variants, and droop
integral control.

3) We further test the performance of the proposed algorithm
with respect to external disturbances acting on the power
system. We show that the DRIC method is able to recover
the nominal, steady-state frequency of the VPP from sud-
den load changes in the grid, without requiring parameter
re-tuning of the controllers. This inherent “adaptability”
feature, inherent to integral action, holds significant prac-
tical value for real-world applications.

4) Finally, we provide heuristic guidelines for the initial
tuning of the DRIC before it is subjected to multiple time-
varying load disturbances. These guidelines are particularly
useful for system operators in the absence of a detailed
VPP model. Typical values of the nominal reset gain are
given. Parameters that affect the influence of reset actions
when the frequency response is far away from the steady-
state are stated. Additionally, the effect of the reset gain
parameter on the trade-off between overshoot and settling
time is highlighted.
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The rest of the paper is organized as follows: In Section
III we introduce some mathematical preliminaries on hybrid
control systems that combine continuous-time and discrete-
time dynamics (complemented in the appendix). Section IV
formulates the frequency regulation problem, explains the
setup considered in the paper, and provides a brief overview
of our proposed controller. In section V, we describe the
dynamics of the individual DERs and the proposed con-
troller, verify sufficient conditions for closed-loop stability,
and robustness and apply said results on a learnt linearized
model of a VPP consisting of photovoltaic cells (PV), battery
energy storage systems (BESS), wind turbines (WT), and
a conventional generator (CG) in the presence of varying
loads. We numerically validate the proposed controller using
both the learnt linearized dynamics and the actual nonlinear
high-fidelity models of the FlexPower Plant. We also provide
the practitioner with heuristic rules for tuning the proposed
controller even in the absence of a plant model. Finally, in
Section VII we conclude and provide some potential directions
for future research.

III. PRELIMINARIES

The proposed controller, termed Droop Reset Integral Con-
trol (DRIC), incorporates both continuous dynamics (i.e., inte-
gral action) and discrete time dynamics (i.e., integrator resets).
To study this class of systems, we make use of the framework
of hybrid dynamical systems [18]. For our purposes, it suffices
to define a hybrid system as a dynamical system with state
z ∈ Rn, disturbance d ∈ Rm, and the following dynamics:

z ∈ C, ż = f(z, d), (1a)

z ∈ D, z+ = g(z), (1b)

where the system evolves in accordance with the differential
equation with right hand side f when its state z is in the flow
set C, and “jumps” according to (1b) when z is in the jump set
D. In (1a), d can be seen as an external disturbance affecting
the continuous-time dynamics. System (1) can be represented
in compact form by the tuple H = (C, f,D, g). For the purpose
of analysis, solutions to (1) are parameterized by a continuous-
time index t, which increases continuously during flows (1a),
and a discrete-time index j that increases by one during jumps
(1b). Therefore, solutions to (1) are defined on hybrid time
domains which are special subsets of the Cartesian product
R≥0 ×N. For more details on the mathematical properties of
hybrid dynamical systems we refer the reader to the Appendix.

In this work, we are interested in designing hybrid con-
trollers that induce suitable closed-loop robust stability proper-
ties for the system. In particular, we are interested in achieving
asymptotic bounds of the form

|z(t, j)| ≤ me−lt|z(0, 0)|+ γ|d|∞, (2)

for all (t, j) ∈ dom(z), where m, ℓ, γ > 0, and |d|∞ is the
standard infinite-norm of d, which is assumed to be bounded.
Closed-loop systems that satisfy bounds of the form (2) for
all initial conditions are said to be finite gain exponentially

Fig. 1. Virtual power plant consisting of a grid (modelled by a synchronous
machine and time-varying loads), DERs : PV, BESS, WT and a control system
supplying active power reference signals for frequency regulation.

input-to-state stable (ISS) from d to z [19]. Our goal is to
achieve this property in a class of VPPs controlled via DRIC.

IV. PROBLEM FORMULATION

We consider a VPP that consists of PV, BESS, and WT sub-
systems. These DERs are in turn connected to the grid which
in our case, is modelled (macroscopically) by a conventional
generator operating at 60 Hz and a variety of electrical loads
that may be freely connected and disconnected in accordance
with the demands imposed on the grid, see Figure 1.

A. Overall Description of the VPP

The VPP under study is realized via a high-fidelity non-
linear Simscape model designed by Sandia National Labora-
tories (termed the FlexPower Plant [23]) wherein each DER
is equipped with a control loop that enables the tracking of
an active/reactive power reference within the ratings of the
individual devices. As a consequence, we may view each DER
as a “blackbox” power source, rendering the entirety of the
VPP amenable to a frequency domain representation via model
approximation. These representations may then be converted
to a more suitable form for purposes of analysis using tools
from hybrid control theory.

The PV and BESS components in the high-fidelity simulink-
based model each have a DC-side voltage source, an averaged
model of a voltage sourced inverter, a phase-locked loop, and
individual current and voltage controllers modelled in the dq
frame that provide droop and integral action coupled with
feed-forward compensation. The current control loops generate
input signals for the inverters. The Wind turbine subsystem
is modelled as a Type-4 WT, as detailed in [24], and it
is also equipped with a turbine model with both pitch and
torque control. The conventional generator (CG) consists of a
synchronous machine equipped with an exciter and a governor
that provides droop response. Lastly, in this work, all loads are
modelled as three-phase parallel RLC branches. For a detailed
description of the DER models, we refer the reader to [23] and
[25]. Figure 1 illustrates the scheme considered in the paper.

B. Overall Description of the Control Strategy

Within this setup, we solve the frequency regulation prob-
lem of driving the grid frequency to the nominal 60 Hz in the
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Fig. 2. The system identification process using instrumental variables (IV)
(left). Division of operating point (OP) into fringes (right).

presence of a varying load profile by synergistically controlling
the active power generated by the aforementioned DERs. In
the proposed approach, we augment the PI (droop with integral
action) controller with a first order reset element (FORE),
which is a first-order dynamical system that incorporates a
resetting integrator. As shown in the controls literature [26],
[19], [13], this resetting action can be used to overcome some
of the fundamental limitations, in terms of achievable transient
performance (e.g., overshoot, settling time, etc), of standard
linear controllers. In particular, an integrator with resets is
able to reduce the phase lag by 51.9◦ [13].

Based on this background, in this paper, we consider the
following research questions: 1) How to design a robust
frequency controller with integral and resetting action able
to guarantee closed-loop stability when interconnected with
the VPP? 2) How to guarantee that the proposed controller
successfully rejects time-varying loads, recovering the steady-
state operation of the plant with a minimal overshoot response
and a reduced settling time? We shall answer question 1 in the
affirmative via a theoretical guarantee in the next section and
provide sufficient evidence for question 2 in Section VI via
comprehensive numerical experiments.

V. FREQUENCY REGULATION VIA DROOP RESET
INTEGRAL CONTROL

In this section, we provide a detailed description of the
model of the VPP and the resetting controller employed for
the frequency regulation problem.

A. Learnt voltage source inverter (VSI) dynamics

To account for the possibly non-linear dynamics of the
individual DERs and obtain a suitable approximation of the
system model, we impose a division of the range of available
active power into a number of operating points. Each operating
point is further divided into fringes which are meant to capture
deviation from said point and are represented as percentages
(see Figure 2). Each fringe contributes training data in the
form of a step response whose amplitude is equal to the fringe
percentage times the operating point to which it belongs. This
step signal/response (input/output) pair is fed to the system
identification toolbox of the Matlab programming environment
(see [27]) which, using the Instrumental Variables (IV) method
(see [28]), returns a stable transfer function representation

TABLE I
PARAMETERS FOR STABILITY ANALYSIS VIA LMIS

DER A B C

PV
[
−259.6460 −2.9029 · 104

1 0

] [
1
0

] [
1.3030

2.8979 · 104
]⊤

BESS
[
−258.5340 −3.0408 · 104

1 0

] [
1
0

] [
10.97

3.0392 · 104
]⊤

WT

−2.2250 −7704 −0.039
1 0 0
0 1 0

 10
0

 −0.1111
0.3630
0.0496

⊤

CG −0.1429 1 0.1429

of the DER dynamics at the particular fringe with a pre-
determined number of poles and zeros.

Using the training data from other fringes, the obtained
transfer function is validated. Among the different models, the
one that achieves best performance in terms of generalization
is selected to represent the dynamics of the DERs near that
operating point. Repeating this procedure on the remaining
operating points gives us a holistic representation of the DER
dynamics in the frequency domainunder step responses. To
obtain a single representation, we repeated the same general-
ization test on the set of learnt transfer functions.

B. State-Space Representation of the VPP

Since all our analyses are most conveniently performed in
the time-domain, we realize a state-space representation of
the dynamics of the individual DERs. The PV and the BESS
subsystems have states xpv, xbess ∈ R2 respectively while
the WT has state xwt ∈ R3. The conventional generator is
modelled as a synchronous machine via the swing equations as
in [29] and has state xgen ∈ R. Loads are modelled as external
disturbances d, and they enter the dynamics of the system only
via the conventional generator as seen in equation (3d). The
same equation also represents the cascade connection of the
DERs and the CG. Based on this representation, we model
the constituents of the VPPs as linear time-invariant systems
given by:

PV:

{
ẋpv = Apvxpv +Bpvu

ypv = Cpvxpv

(3a)

BESS:

{
ẋbess = Abessxbess +Bbessu

ybess = Cbessxbess

(3b)

WT:

{
ẋwt = Awtxwt +Bwtu

ywt = Cwtxwt

(3c)

Generator:

{
ẋgen = agenxgen + bgenyp + bdd

ygen = cgenxgen

(3d)

Plant output:
{
yp = ypv + ybess + ywt. (3e)

External disturbances affecting the DERs could also be
incorporated into our model by using additive vectors
dpv, dbess, dwt acting on the dynamics (3a)-(3c), similar to
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Fig. 3. Proposed control scheme: the standard droop with integral action
augmented with a first order resetting integrator and weight pr to ensure both
steady-state and transient performance.

(3d). Table I depicts the values of the parameters we shall
use for analysis in the following sections.

C. Droop Reset Integral Controller (DRIC)

Our Droop Reset Integral Control (DRIC) system, depicted
in Figure 3, is a combination of the standard droop con-
troller with integral action (PI), and a first-order reset element
(FORE) which is a dynamical system with a first-order transfer
function that additionally resets the integrator to zero whenever
an algebraic relationship between its input and output is
satisfied. The mathematical model of the DRIC has states
xi ∈ R for the integrator and xr ∈ R for the FORE. The
dynamics of the DRIC are described as follows:

If 2exr ≥ 0 or τ ≤ ρ:(
ẋi

ẋr

)
=

[
ai 0
0 ar

](
xi

xr

)
+

(
1
1

)
e (4a)

τ̇ = 1. (4b)

If 2exr ≤ 0 and τ ≥ ρ:(
x+
i

x+
r

)
=

[
1 0
0 0

](
xi

xr

)
(5a)

τ+ = 0. (5b)

The control signal acting on the VPP is then defined as:

u =

[
(1− pr) · kp

Ti

pr · kp
Ti

](
xi

xr

)
+ kpe. (6)

where Ti, kp > 0 are tunable gains, and pr ∈ [0, 1] is a tunable
parameter used to weight the action of the FORE and the
standard droop+integral control.

In the dynamics (4)-(5), the timer τ is used to preclude
the possibility of an infinite number of consecutive resets in a
compact time interval, i.e., the so-called Zeno behavior. This
type of temporal regularization is standard in the reset control
literature, see for example [17]. The variable e, which usually
models some form of tracking error, acts as the input to the
controller. Based on this, the flow condition is satisfied when
the input and the FORE state xr have the same signs or when
the timer has not yet crossed some threshold ρ. Similarly, the
controller exhibits the discrete-time dynamics (5) when the
input e and the state xr have different signs and at least ρ
units of time have passed since the last jump. During jumps,
the state of the standard integrator is kept constant while the
FORE state is reset to zero.

0 10 20 30 40 50 60

Time [s]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

30 50Time [s]
0.9

1.0

1.1

No resets

Resets with ar = −1

Resets with ar = −10

Resets with ar = −50

Fig. 4. Design imposed overshoot vs settling time trade off on the plant
P (s) = (s + 1)/s(s + 0.2) via reset action from FORE.

Finally, to illustrate the role of the parameter pr ∈ [0, 1]
in (6), we consider the two extreme cases. When pr = 0,
the DRIC degenerates into the standard droop controller with
integral action realized by the proportional gain kp and integral
time constant Ti. On the other hand, when pr = 1 we
realize a droop controller with resets. Both of these cases
have their individual shortcomings: the standard PI controller
suffers from fundamental phase limitations inherent to linear
controllers, while in the other case the absence of an integral
action may lead to non-zero steady-state errors. Therefore, the
term pr ∈ (0, 1) allows us to combine both control actions into
the control signal u. Lastly, the negative terms ai and ar may
be suitably tuned to achieve favorable transient performance
(by shaping the overshoot response, see Figure 4) and to
simplify the stability analysis.

D. Heuristic for Dynamic Control Allocation

In addition to the DRIC dynamics elucidated by equations
(4)-(6), it is desirable in practical applications to include an
additional mechanism that dynamically updates the reset ratio
pr to further improve the transient performance of the system.
One such mechanism, commonly cited in the literature, uses
the following update law for pr [30, Ch. 5]:

pr(t) = p̄r − tD
deF
dt

, (7)

where eF is the tracking error passed through a low-pass filter
so as to avoid the amplification of noise due to the derivative
action. Intuitively, the update law (7) uses the predictive nature
of the derivative term to increase the reset ratio while the
error variable e is far away from its steady-state value. The
parameter tD is used to tune how strongly (weakly) the reset
mechanism acts on the transient (steady-state) response.

VI. RESULTS AND SIMULATIONS

In this section, we show that the proposed controller in-
terconnected with the VPP achieves the stability property
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(2), and also improves the transient performance by reducing
the overshoot and the settling time. We implement the con-
trol scheme in MATLAB/Simulink [31] and performed EMT
(Electromagnetic Transient) simulations with a sampling time
of 10−5 s.

A. Closed-Loop Model of the System

For the proposed controller, we can use the theoretical
tools of [32] to study the stability properties of the closed-
loop system. In particular, using the interconnection condition
e = −y, our reset controller interconnected with the VPP
model leads to the following closed-loop dynamical system:

τ̇ = 1

ẋ = Ax+Bdd

}
, if x⊤Mx ≥ 0 or τ ≤ ρ, (8a)

τ+ = 0

x+ = Arx,

}
if x⊤Mx ≤ 0 and τ ≥ ρ, (8b)

y = Cx (8c)

which has the form of (1). In particular, z = (τ, x), where
x ∈ R10, and x = (xpv, xbess, xwt, xgen, xi, xr), where the
matrix A given by

A =

 Ap Bp[
−Cp

−Cp

]
Λr

 .

This matrix captures the plant dynamics

Ap =


Apv O2×2 O2×3 −kpBpvcgen
O2×2 Abess O2×3 −kpBbesscgen
O3×2 O3×2 Awt −kpBwtcgen

bgenCpv bgenCbess bgenCwt agen

 ,

the input interconnection

Bp =


((1 − pr)/Ti) · kpBpv (pr/Ti) · kpBpv

((1 − pr)/Ti) · kpBbess (pr/Ti) · kpBbess

((1 − pr)/Ti) · kpBwt (pr/Ti) · kpBwt

0 0

 ,

the output interconnection

Cp =
[
O7×1 −cgen

]
,

and the continuous time dynamics of the DRIC in

Λr =

[
ai 0
0 ar

]
.

Since the DRIC requires only the output of the conventional
generator, the output matrix C takes the form

C =
[
Cp O1×2

]
.

For simplicity, we only consider disturbances acting on the
conventional generator. As a result, the disturbance-to-state
matrix has the form

Bd =
[
O7×1 1 O2×1

]⊤
.

During jumps, we reset the state of the FORE and keep
constant the remaining components of the state via the jump
matrix

Ar =

[
I9×9 O9×1

O1×9 O1×1

]
.

Lastly, the sign-indefinite matrix M that describes the jump
and flow sets is given by

M =

[
O9×9 −C⊤

p

−Cp O1×1

]
.

As shown in [26], in order to study the stability properties
of systems of the form (8), it suffices to verify a family of
Linear Matrix Inequalities (LMIs). The following proposition
provides sufficient conditions for the stability and robustness
of system (8).

Proposition 1. If the following two linear matrix inequalities
(LMIs) on the variables P = P⊤ > 0, τF , τR ≥ 0, γ > 0 are
feasible: A⊤P + PA+ τFM PBd C⊤

∗ −γI 0
∗ ∗ −γI

 < 0, (9a)

A⊤
r PAr − P − τRM ≤ 0, (9b)

then, there exists ρ∗ > 0 such that for any fixed ρ ∈ (0, ρ∗),
the reset control system (6) interconnected with the plant is
finite gain exponentially ISS from d to x.

We will use conditions (9) to numerically test the stability
properties of the proposed DRIC controller interconnected
with the VPP.

B. Stability Results for DRIC

To study the stability properties of the DRIC, we first con-
sider the closed-loop system depicted in Figure 1 consisting
only of the PV and the BESS DERs. To verify stability, the
LMIs (9) were implemented on the YALMIP optimization
toolbox [33] using the parameter values supplied in Table I
with the terms corresponding to the WT removed. In addition,
the values of the gains of the integrators were set to ai =
−0.01 and ar = −100. MOSEK [34] reported that the LMIs
were feasible with the following values: τR = 0.0223 ≥ 0,
τF = 2.196 ≥ 0 and γ = 114.19 > 0. The matrix P was
found to be symmetric and positive definite.

Next, the WT was added to the VPP and the finite-gain
exponential stability of the resulting closed-loop system was
checked using the LMI conditions (9) and the parameters from
Table I. The solver returned a feasible solution whose values
were: τR = 0.0212 ≥ 0, τF = 2.1209 ≥ 0, γ = 105.07 > 0.
The matrix P was indeed symmetric and positive-definite.

The above results allow us to conclude that in both sce-
narios, the proposed DRIC renders the closed-loop system
exponentially stable and ISS with respect to the disturbance
d. In particular, the bound (2) holds for the overall state x of
the system. Moreover, by well-posedness of the hybrid model
(1), we can also guarantee the existence of positive margins
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Fig. 5. DIC controller vs DRIC on learned VSI dynamics.

of robustness with respect to arbitrarily small additive distur-
bances acting on all the states and dynamics of the system
[18, Thm. 7.21]. Such a robustness result is fundamental for
practical applications where measurement noise and external
perturbations are unavoidable.

C. Numerical Comparison between Droop, DIC and DRIC

The prime efficacy of DRIC is in reducing the overshoot
response generated by more traditional controllers like droop
and PI. In practice, the “base” PI controller is usually first
tuned using standard tools and then it is augmented with the
proposed reset scheme. If the well-tuned PI controller does
not have a suitable transient response, one can deliberately
detune it to achieve a faster response (at the cost of increased
overshoot) and then use the reset scheme to remove or reduce
the overshoot response [30]. Our first set of simulation results
demonstrate this scenario on the learned models. First, we
implement the VPP consisting of PV, BESS, WT and CG both
using the learned VSI dynamics (see subsection V-A) and the
high-fidelity Simscape model referenced in Section IV. Figure
5 shows the response of the DRIC implemented on learned
VSI dynamics to a time-varying load profile. It can be seen that
upon the connection of a load, while the initial response of the
DRIC is similar to the DIC, there is a considerable reduction
in overshoot in the ensuing transient response. Indeed, there
is a reduction of 0.35Hz, 0.15Hz, and 0.35Hz respectively in
the three load disturbances shown. Moreover, the settling time
has also been drastically reduced from 15 seconds (DIC) to 3
seconds (DRIC) for all three load disturbances. This illustrates
that the mere introduction of resets to a base linear controller
is capable of significantly improving transient performance.

Next, we consider the scenario where a well-tuned PI con-
troller is augmented with the reset scheme. We also compare
standard linear controllers to our proposed scheme on the high-
fidelity model. Figure 6 compares standard linear controllers
used for frequency regulation such as droop control and its
integral variant (DIC) versus the proposed DRIC. As the inset
shows, the droop controller suffers from non-zero steady-

Fig. 6. Well-tuned standard linear controllers vs DRIC on VPP consisting of
DERs: PV and BESS.

Fig. 7. Active power injection into CG from VPP consisting of PV and BESS
in response to a time-varying load profile.

state error, eventually building up to a significant 2.5Hz by
the end of the run. This behavior is expected due to a lack
of integral action. Clearly, subsequent load disturbances will
result in instability as the droop controller is unable to keep the
frequency within acceptable bounds. When augmented with in-
tegral action, the steady-state performance improves by 2.5Hz,
successfully regulating the frequency to the nominal 60Hz
well before the connection of subsequent loads. However,
even a well-tuned DIC results in appreciable overshoot with
the peak overshoot, ignoring the initial disturbance response,
being 0.2Hz, 0.1Hz and just over 0.2Hz respectively, for
the three disturbances. In stark contrast, the DRIC retains
the steady-state performance of the DIC (with an error of
0.0Hz) and improves the transient performance. Once the
initial disturbance is suppressed, the DRIC reduces overshoot
by 0.2Hz, 0.1Hz, and 0.2Hz respectively in the three load
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Fig. 8. DIC vs DRIC on learnt VSI dynamics for VPPs consisting of 5 DERS
(top) and 10 DERS (bottom).

connections. Moreover, the nadir (lowest point of frequency)
is reduced by 0.05Hz, 0.1Hz, and 0.25Hz respectively. The
DRIC also results in a reduction of settling time by just over
1 second in the first load disturbance. In this scenario, the
variable reset heuristic was incorporated to further improve
the transient performance. This simulation shows that our
proposed controller can outperform classic linear controllers
by simply incorporating a resetting action into the integrator.
It can be observed from the inset of Figure 7 that the power
injection obtained when implementing the DRIC exhibits less
oscillations compared to the power injection obtained under a
traditional DIC (droop + integral controller) algorithm. Indeed,
the power injection from the DIC suffers from the classic
oscillations induced by integral actions in proportional-integral
controllers. This behavior is aligned with the one observed in
the frequency response of the conventional generator in Figure
6.

Figure 8 shows a comparison of DIC vs DRIC schemes for
VPPs with a varying number of DERs in the VPP. In the first
scenario (top), the VPP consists of three PV generators and
two storage systems. It can be seen that DRIC outperforms
the DIC in terms of overshoot response. Indeed, the reduction
in overshoot is 0.4Hz, 0.2Hz, and 0.45Hz respectively for the
three load disturbances. In addition, we also see an improve-
ment in settling time by 2 seconds in the first load disturbance
of 10MW. Of course, the DRIC retains the zero steady-state
error of the DIC. It can also be seen that there is a reduction
in the nadir with the most significant one being 0.4Hz in
the 15MW load disturbance response. In the second scenario
(bottom), the VPP consists of 10 DERs, six of them being PV
and four of them BESS. A similar response to the previous
scenario is seen. However, this time, the overshoot generated
by the DIC has reduced. Still, the DRIC further reduces said
overshoot by 0.2Hz, 0.1Hz, and 0.2Hz respectively for the
three load disturbances. The settling times remain relatively
the same.

Fig. 9. Well-tuned DIC vs DRIC on the high-fidelity model consisting of
DERs: PV, BESS, and WT.

Next, we test the DRIC in the high-fidelity non-linear
FlexPower Model. Figure 9 shows a comparison between
the results obtained with the proposed DRIC and the linear
DIC (PI). In this case, after a initial transient, the frequency
settles at 60 Hz until a disturbance of 10 MW is introduced
at 10 seconds. The initial response matches that of the DIC
controller but the disturbance is attenuated more effectively
by DRIC. Moreover, DRIC achieves a steady-state condition
at approximately 5 seconds before its linear counterpart. A
similar response is evident in the disconnection of the load
at 40 seconds. These numerical results on the high-fidelity
model of the VPP showcase the potential improvements,
in terms of transient performance, that can be achieved in
frequency control by incorporating resetting actions. To the
best of our knowledge, this is the first work that validates such
approaches, analytically and numerically, for the frequency
control of VPPs.

D. Tuning guidelines for the system operator

In this section, we provide some heuristic tuning rules for
implementing DRIC in practical applications without prior
knowledge of the system model. We assume that the base
linear controller, droop with integral action (DIC), in this case,
has already been tuned via standard PI tuning algorithms, e.g.,
[22]. That is, values for kp and Ti are known. Based on this,
the following guidelines are in order:
(a) Since the overarching goal is to have strong reset action

over transients, and weak resets near steady-state, the
parameter p̄r is typically tuned to have a small contri-
bution when the derivative of the filtered error has small
magnitude, i.e., near steady-state. A typical range for the
nominal reset parameter is p̄r ∈ [0.05, 0.25] with smaller
values used when weaker reset action is desired.

(b) The parameter ρ affects how many jumps take place in a
given interval of time. Higher values of ρ limit the number
of possible resets while offering little safeguard against
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Zeno behavior. In the presence of a plant model, the value
of ρ can be selected so as to satisfy the LMIs in equation
(9). When no plant model is at hand, typical values of
the parameter are ρ ∈ [0.1, 0.5]. This range was found to
allow a sufficient number of jumps for the reset action to
be effective, while avoiding Zeno behavior.

(c) The parameter tD affects the reset action influence when
the response is away from the steady-state. Large values of
tD imply a higher variability in the resetting action away
from the steady-state. Smaller values of td are used when a
uniform resetting action is desired. As such the parameter
tD may be picked from a large range of [5, 200] depending
on the application.

(d) As mentioned earlier, in applications where the improve-
ment in transient performance due to the resetting action
is not substantial, the base controller may be detuned to
increase its speed of response at the cost of increased
overshoot. This overshoot can then be curtailed by tuning
the FORE parameter ar. As is evident from Figure 4, large
negative values of ar suppress all of the overshoot at the
cost of causing a delay in the settling time while smaller
values trade off overshoot for reducing the settling time.

VII. CONCLUSIONS

We introduced a novel frequency control architecture for
virtual power plants: Droop Reset Integral Control (DRIC).
The proposed controller is designed to improve the transient
performance of the system by reducing the overshoot and
improving the settling time. To achieve these goals, the con-
troller incorporates resetting integrators, which are triggered
by suitable algebraic conditions on the inputs and outputs of
the controller. While the area of reset control is fairly mature
from the theoretical standpoint, its applications in power
systems had remained mostly unexplored. Yet, as shown in
this paper, reset control is a technology that can be an effective
alternative to improve transient performance in power systems
that coordinate multiple DERs. Moreover, as also shown in this
work, the stability properties of the system can be studied in
linearized models using LMIs that can be numerically verified.
Numerical validations were also performed on a high-fidelity
non-linear model of a VPP (the FlexPower Plant) developed
by the Sandia National Laboratories, as well as on models
learned via model approximation from data generated by the
VPP. It was observed that DRIC provides a substantial increase
in transient performance.

Future research directions will focus on extending the
proposed scheme to equip each DER with its own individual
DRIC block. This distributed, asynchronous implementation
could be suitable for large-scale systems that incorporate a
large number of DERs. In this case, coordinating the resets of
the controllers is imperative in order to achieve a suitable tran-
sient performance. Such decentralized coordination techniques
are the subject of ongoing research. Other future research
directions of interest include studying the performance of the
proposed controller in networked VPPs in a power system with

transmission lines, e.g., in an IEEE testing system. Addition-
ally, the development of adaptive self-tuning mechanisms for
the parameters of the controller is also an interesting future
research direction.
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[12] T. Dragičević, “Model predictive control of power converters for robust
and fast operation of AC microgrids,” IEEE Transactions on Power
Electronics, vol. 33, no. 7, pp. 6304–6317, 2017.

[13] J. C. Clegg, “A nonlinear integrator for servomechanisms,” Transactions
of the American Institute of Electrical Engineers, Part II: Applications
and Industry, vol. 77, no. 1, pp. 41–42, 1958.

[14] O. Beker, C. V. Hollot, and Y. Chait, “Plant with integrator: an
example of reset control overcoming limitations of linear feedback,”
IEEE Transactions on Automatic Control, vol. 46, no. 11, pp. 1797–
1799, 2001.

[15] O. Beker, C. Hollot, Y. Chait, and H. Han, “Fundamental properties of
reset control systems,” Automatica, vol. 40, no. 6, pp. 905–915, 2004.

[16] Y. Chait and C. Hollot, “On Horowitz’s contributions to reset control,”
International Journal of Robust and Nonlinear Control, vol. 12, pp. 335
– 355, 04 2002.
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Aparicio, “A resource aware droop control strategy for a PV, Wind,
and Energy Storage Flexible Power (Flexpower) Plant,” in 2022 IEEE
Kansas Power and Energy Conference (KPEC). IEEE, 2022, pp. 1–5.

[24] K. Clark, N. W. Miller, and J. J. Sanchez-Gasca, “Modeling of GE wind
turbine-generators for grid studies,” GE energy, vol. 4, pp. 0885–8950,
2010.

[25] T. Haines, R. Darbali-Zamora, M. Jiménez-Aparicio, and F. Wilches-
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APPENDIX A
HYBRID DYNAMICAL SYSTEMS

We present here some essential mathematical notions on
hybrid dynamical systems of the form (1). Solutions to hybrid
dynamical systems of the form (1) evolve on hybrid time
domains which are special subsets of R≥0 × N.

Definition 1. (Hybrid time domain). A subset E ⊂ R≥0 × N
is a compact hybrid time domain if

E =

J−1⋃
j=0

([tj , tj+1, j])

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ .
It is a hybrid time domain if for all (T, J) ∈ E, E ∩ ([0, T ]×
{0, 1, . . . , J}) is a compact hybrid time domain.

Definition 2. (Hybrid arc). A function z : E → Rn is a hybrid
arc if E is a hybrid time domain and if for each j ∈ N, the
function t 7→ z(t, j) is locally absolutely continuous on the
interval Ij := {t : (t, j) ∈ E}.

A hybrid arc is a solution to a hybrid dynamical system
(with inputs) if it satisfies two key properties which we
mention below.

Definition 3. (Solution of a hybrid dynamical system). A
hybrid arc z is a solution to the hybrid dynamical system
(C, f,D, g) given by (1) if z(0, 0) ∈ C̄ ∪D, and
(S1) for all j ∈ N such that Ij has non-empty interior

z(t, j) ∈ C for all t ∈ int Ij ,

ż(t, j) = f(z(t, j), d(t)) for almost all t ∈ Ij ;

(S2) for all (t, j) ∈ domϕ such that (t, j + 1) ∈ domz,

z(t, j) ∈ D,

z(t, j + 1) = g(z(t, j)).

Trajectories of hybrid systems often converge to sets rather
than equilibrium points (e.g., when periodic timers are part
of the state z). Given a vector z ∈ Rn and a compact set
A ⊂ Rn, the distance of z to A is denoted |z|A and is defined
by |z|A := miny∈A|z − y|. To guarantee well-posedness, in
this work we consider hybrid dynamical systems that satisfy
certain regularity properties.

Definition 4. (Hybrid basic conditions). The hybrid system (1)
is said to satisfy the Basic Conditions if:

• The sets C and D are closed subsets of Rn.
• The function f : Rn × Rm → Rn is continuous.
• The function g : Rn → Rn is continuous.

For a complete treatment of general hybrid systems, their
solutions properties, stability notions and analysis tools, we
refer the reader to [4], [18].
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