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Abstract—This work examines two strategies for enhancing
the rational approximation of Frequency-Dependent Network
Equivalents (FDNE) using an 8-port FDNE featuring a frequency
response marked by numerous peaks and valleys. Firstly, we
employ Complex Vector Fitting (CVF), an alternative to the
Vector Fitting (VF). CVF eliminates the constraint of complex
conjugate pairs and was originally conceived for modeling base-
band equivalents through S-parameters. The implications of
CVF for Y-parameters have not yet been previously reported in
specialized literature. To enhance code performance and remove
dependence on commercial software such as MATLAB®, VF and
CVF were implemented in the C-language, utilizing a low-level
linear algebra package and exploiting parallelism. We evaluated
performance by varying the model order, number of ports, and
frequency samples. The results confirm the feasibility of our
approach, prompting a more in-depth exploration of the potential
benefits regarding FDNE realization.

Index Terms—Complex Vector Fitting; Electromagnetic tran-
sients; Frequency-domain realization; Vector Fitting; Paralleliza-
tion.

I. INTRODUCTION

Power systems are undergoing significant transformations,
marked by the increasing adoption of converter-based gener-
ation and HVDC technologies, alongside increasing environ-
mental constraints [1]. These transformations introduce new
network dynamics, emphasizing the necessity for a compre-
hensive network representation to ensure accurate modeling.
However, electromagnetic transient (EMT) phenomena may
have extensive frequency bandwidth. Thus, modeling an entire

Submitted to the 23nd Power Systems Computation Conference (PSCC 2024). 
This research was supported in part by Coordenação de Aperfeiçoamento de 
Pessoal de Nı́vel Superior (CAPES) under Grant 001, Conselho Nacional de 
Desenvolvimento Cientı́fico e Tecnológico (CNPq) under grants 404068/2020-
0, 400851/2021-0, Fundação de Amparo à Pesquisa do Estado de Minas Gerais 
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electric power system with such a detailed representation
greatly increases the model complexity. In addition, simulation
times can be impractical, especially for statistical cases and
sensitivity analysis [2].

Therefore, it is convenient to separate the electrical power
system into two subsystems [3]. The first one is the study
system, which is modeled in detail, including its nonlinearities.
The second subsystem, known as the external system, is
characterized by a Frequency-Dependent Network Equivalent
(FDNE). This system encompasses the remainder of the net-
work and has linear and time-invariant characteristics, tailored
for analyzing EMT phenomena. The buses connecting the
study and external systems are called boundary buses (or
equivalent ports). The selection of these ports considers the
interest area where an EMT phenomenon or equipment will
be analyzed.

Typically, the external area is represented by a simplified
short-circuit equivalent at grid frequency, preserving only the
fundamental frequency characteristics of the external area. On
the other hand, FDNEs maintain their characteristics across
a wide range of frequencies, offering higher accuracy [4].
Among the available methods for obtaining FDNEs, rational
models (RMs) have been extensively utilized for this purpose
and other important applications [5].

Another method for obtaining FDNEs involves solving a
system of differential-algebraic equations, typically derived
from a circuit model formulation. This approach yields a com-
plex equation set, often simplified using model order reduction
(MOR) techniques. The resulting equations can be directly
integrated into an EMT solver like ATP, EMTP or PSCAD,
or synthesized as an equivalent circuit. However, most com-
mercial programs lack external equation exporting capabilities.
As an alternative, frequency scan tools within these programs,
along with curve fitting methods, are commonly employed
to approximate the system frequency response and obtain an
FDNE [5].
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The RM employing curve fitting methods for realizing
FDNE has been under considerable investigation in recent
years. In addition to the pole-relocation algorithm, known as
Vector Fitting (VF) [6]–[8], the Frequency-partitioning Fitting
[3], [9], the Matrix Pencil Method [10] and the Loewner
Matrix [11] have been applied successfully to RM. Interested
readers should check [4], [12] for a detailed comparison
of these formulations. However, irrespective of the chosen
approach, there are two common challenges.

The first challenge regards the necessity for a post-
processing routine to enforce passivity [13]–[19]. The second
concern revolves around the significant decrease in numerical
performance as the number of ports increases. To address
the latter, [9] suggests two enhancements for the VF: a
stop criterion for iterative process and a modification that
leverages frequency partitioning and MOR, grounded in bal-
anced truncation [20]. Alternatively, to improve the numerical
performance, one may also consider a parallelization of the
VF algorithm [21].

Concerning passivity, the expected behavior from the re-
sulting RM implies that it must absorb active power under
any given set of applied voltages, regardless of frequency.
Thus, the passivity is essential to ensure stable time-domain
simulations [22]. This topic has received considerable attention
in the literature [23], [24].

Passivity violations of an RM might occur outside the
frequency range of interest, regardless of the accuracy of the
model. Furthermore, enforcing passivity might deteriorate the
overall quality of the RM. The specifics of when passivity
breaks down depend on the particular RM being analyzed. For
models with very low orders, this issue arises from insufficient
fitting precision, leading to eigenvalues of the RM that fail
to adequately approximate the original eigenvalues of the
frequency response. As a result, passivity violations can occur
at any point within the fitting range. Passivity violations in
models with very high orders often happen beyond the fitting
range, as they incorporate poles with resonant frequencies
outside this range, leading to uncontrolled responses beyond
it [25].

This study explores strategies to improve the performance
(speed and accuracy) of RMs by exploiting parallelization and
leveraging on the Complex Vector Fitting (CVF) [26]. While
both algorithms share a similar underlying framework, CVF
differs from VF in that it does not impose complex conjugacy
constraints on poles (and residues). The implications of apply-
ing CVF to Y-parameter systems will be investigated, given its
successful application in modeling baseband photonic systems
characterized by their S-parameters [26]–[28]. Furthermore,
while MATLAB® scripts for both VF [29] and CVF [27]
are freely available, they rely on commercial software for
implementation. To address this limitation, we implement par-
allelization techniques based on freely distributed C-language
libraries.

This paper is organized as follows. Section II shows the
theoretical groundwork for frequency-domain realization, in-
cluding the CVF method, passivity criteria and strategies for

parallelization. Following this, Section III delves into the
modeling of an 8-port FDNE used for results validation. In
Section IV, the numerical results and discussions regarding
the proposed approach are presented. Finally, the key insights
and conclusions are summarized in Section V.

II. MATHEMATICAL MODELING

A. Frequency-domain realization

The approximation of an NxN Multiple-Input Multiple-
Output Transfer Function (MIMO TF) Y(s) by an RM Y(s) is
given by

Y(s) ≈ Y(s) =

Np∑
n=1

Rn

s+ pn
+D+ sE, (1)

where s = jω ∈ C, ω is the angular frequency in rad/s,
Y(s) ∈ CN×N is the approximated (fitted) nodal admittance,
Np is the number of poles (model order), D ∈ RN×N and
E ∈ RN×N are positive definite matrices, pn is the n-th pole
and Rn ∈ CN×N is the associated n-th residues matrix.

The expression in (1) can be converted from the pole-residue
realization to a state-space formulation [30]–[33], such as

ẋ(t) = Ax(t) +Bu(t), (2)

y(t) = CTx(t) +Du(t) +Eu̇(t), (3)

where A ∈ CN ·Np×N ·Np is a diagonal matrix containing all
poles, N is the number of ports, x(t) ∈ CN is the state variable
vector, ẋ(t) is the time derivative of x(t), u(t) ∈ CN is the
input vector, B ∈ CN ·Np×N is a matrix with ones and zeros,
T corresponds to the transpose operator, C ∈ RN ·Np×N is a
matrix having all Rn and y(t) ∈ CN is the output vector.

Applying the Laplace transform to (2) and (3) yields

(sI−A)x(s) = Bu(s), (4)

y(s) = CTx(s) +Du(s) + sEu(s), (5)

where I ∈ ZN ·Np×N ·Np is the identity matrix.
Solving (4) for x(s), substituting in (5) and considering

that the input u(s) are the voltages at boundary buses and the
output y(s) are the currents injected in those buses, obtains
Y(s) as

Y(s) = C (sI−A)−1 B+D+ sE. (6)

Similarly, the pole-residue formulation can be obtained from
the state-space formulation as demonstrated in [33].

The matrices in (6) are obtained with the VF (or CVF)
by solving an over-determined linear system. The dimensions
of this system are directly proportional to N · Np, and the
complexity of the VF algorithm is not less than O(N2) [21].
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B. Complex Vector Fitting

In contrast to the VF, the CVF accommodates the modeling
of non-physical systems, like those operating at baseband
frequencies, which lack Hermitian symmetry [26]. This flexi-
bility is achieved by relaxing the conjugacy constraint imposed
on VF, which forces poles with non-zero imaginary parts
(complex poles) to manifest as complex conjugate pairs. The
same considerations can be extended to the residues. Due to
the conjugacy constraint relaxation, baseband models achieved
with CVF are complex-valued, presenting complex impulse
responses even for real-valued inputs [34].

The CVF also integrates improvements from VF, including
the relaxation of the non-triviality constraint for enhanced con-
vergence [35] and QR decomposition for improved numerical
performance [8].

The baseband modeling may find application in electric
power systems within a framework known as Shifted Fre-
quency Analysis (SFA) [36]–[40] developed in [38]. In this
framework, voltages and currents in a power system are repre-
sented by frequency-shifted analytic signals. Such signals, akin
to an FDNE, are inherently band-limited, offering advantages
in accuracy and computational efficiency for simulations of
complex electrical systems within their frequency band of
interest [2]. While the usage of complex-valued arithmetic
increases computational and memory usage, the baseband
modeling diminishes the maximum frequency of interest,
allowing the usage of larger time steps without compromising
accuracy [38].

C. Passivity assessment

Given G(s) = R(Y(s)) ∈ RN×N , with eigenvalues λ(s) =
eig(G(s)), a system is passive if Gn(s) is positive definite,
that is λ(s) > 0 for all frequencies [15].

A straightforward method for evaluating passivity involves
frequency sweeping the singular values of Gn(s). However,
this approach is slow and also does not guarantee that the
sampling is fine enough to capture all regions where passivity
violations

(
λ(s) < 0

)
occur. Those regions indicate the

frequencies where the equivalent model will generate, instead
of consume, active power. This might lead to instability in
time-domain simulations, even if the RM only contains stable
poles

(
R(pn) < 0

)
[22].

Analytically, the passivity violation regions can be identified
through the cross-over frequencies, computed via singular
values (purely imaginary eigenvalues) of the Hamiltonian
matrix H ∈ C2N ·Np×2N ·Np [34], where

H =

[
A−B(D+Dh)−1C B(D+Dh)−1Bh

−Ch(D+Dh)−1C −Ah +Ch(D+Dh)−1Bh

]
,

(7)

where h corresponds to the complex conjugate transpose
operator.

The primary distinction between (7) and the Hamiltonian
matrix employed in VF [15] lies in the utilization of h instead
of T, attributed to the complex-valued nature of systems
without Hermitian symmetry [34]. Consequently, CVF cannot

exploit the efficient half-size singularity test used for passivity
assessment in VF [15], as it is designed only for real-valued
systems [26].

D. Parallelization

A multi-port structure can be conceptualized as a series
of interconnected yet distinct subsystems. Thus, it is feasible
to apply a parallelization algorithm, either VF or CVF, by
dividing the complete system into subsystems. By integrating
these subsystems into a comprehensive model, state-space
realizations with increased sparsity are achieved, facilitating
parallel execution.

VF and CVF algorithms are implemented in C-language us-
ing LAPACK linear algebra functions from the Intel® oneAPI
Math Kernel Library. This library is widely employed for
its high-performance numerical computing capabilities and is
conveniently freely accessible at [41].

To enhance performance, the parallelism strategy outlined
in [21] is adopted, which highlighted the QR decomposition as
the most computationally intensive step of the VF algorithm
in terms of number of floating-point operations accounting for
over 95% of the VF execution time in virtually all analyzed
cases. The same consideration can be extended to the CVF.

Given the nearly diagonal block structure of the matrix
employed for system pole identification, it becomes feasible to
execute the QR decomposition in parallel for each block [8].
OpenMP directives preceding relevant for-loops are employed
for parallelization, requiring minimal alterations to the original
code structure. This approach ensures an efficient parallel
implementation of the VF and CVF algorithms.

III. ELECTRICAL SYSTEM UNDER CONSIDERATION

The electrical network under analysis is referred to as the
Test-system and it is depicted in Fig. 1, where the external
area, study area and boundary buses are delineated in black,
blue and red, respectively. The Test-system includes 107 buses,
104 transmission lines, 9 shunt branches (either capacitor or
reactor banks), 67 transformers, 1 static compensator, 39 loads
and 24 synchronous generators [9].

The external area is modeled using an 8-port FDNE, cov-
ering a frequency range from 10 Hz to 2 kHz with sampling
intervals of 1 Hz. The model encompasses 36 scalar MIMO
TFs of Y(s), with 15 of them being null. This reduces the
problem to 21 unique frequency responses, akin to a 6-port
FDNE (N = 6), as the number of distinct transfer functions
NDTF is

NDTF = N(N + 1)/2. (8)

IV. NUMERICAL RESULTS AND DISCUSSION

This paper adopts Root Mean Square Error (RMSE) and
Relative Root Mean Square Error (RRMSE) metrics for eval-
uating the fitting accuracy of Y(s), as shown in (9) and
(10), respectively. The former quantifies the average magnitude
of errors between fitted and measured values, providing a
straightforward measure of model fitting. In contrast, the
RRMSE scales the RMSE with the RMS of the observed data,
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Fig. 1. Single-line diagram of the Test-system.

providing a normalization and facilitating more meaningful
comparisons of errors across datasets.

RMSE(i) =

√√√√∑N
q=1

∑N
m=1

∑NS

k=1 |Y
(i)

qm(s)−Yqm(s)|2

NTFNS
,

(9)
where RMSE(i) is the RMSE at the i-th iteration, Ns is the
number of frequency samples and NTF is the number of scalar
TF. Yqm(s) and Yqm(s) are the fitted and frequency response
data admittance, respectively, between ports q and m.

RRMSE(i) =

√√√√∑N
q=1

∑N
m=1

∑NS

k=1 |Y
(i)

qm(s)−Yqm(s)|2∑N
q=1

∑N
m=1

∑NS

k=1 |Yqm(s)|2
,

(10)
where RRMSE(i) is the RRMSE at the i-th iteration.

The computational efficiency is also meticulously scruti-
nized. For a fair comparison, we employ for VF and CVF the
same number of iterations (10), model order (Np = 100) and

initial set of linear-spaced complex-conjugated poles, unless
specified otherwise. The RMs are strictly proper (D ̸= 0
and E = 0). Numerical computations were executed on an
8-core Ryzen 7 5800X @ 3.80 GHz, with 16 GB of RAM
and MATLAB® R2019b.

A. Fitting accuracy

The magnitude of the frequency responses of VF and CVF
are depicted in Fig. 2 and Fig. 3, respectively. Those illustra-
tions depict that the error associated with VF is approximately
two orders of magnitude greater than that obtained using
CVF, across the specified frequency range. Quantitatively, the
accuracy metrics presented in Table I validate the observed
disparity in error discrepancy between both techniques. Specif-
ically, the RRMSE of the CVF indicates that for Np = 100, the
error is nearly negligible, suggesting that the model order can
be further reduced while maintaining satisfactory accuracy.

The behavior of RMSEs concerning model order is illus-
trated in Fig. 4, where 25 ≤ Np ≤ 500, in increments
of 25. This depiction shows that RMSEs associated with
VF are noticeably superior to those attained with CVF for
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Fig. 2. Magnitude of frequency response, using VF.

Fig. 3. Magnitude of frequency response, using CVF.

TABLE I
COMPARISON PERFORMANCE BETWEEN VF AND THE CVF

Method Np RMSE RRMSE Relative CPU
(pu) (%) time

VF 100 0.2127 0.5319 1.00
CVF 100 0.0015 0.0037 2.18

25 ≤ Np ≤ 300. Both methodologies show similar RMSE
for Np ≥ 325. The same conclusions can be extended for the
RRMSE as both techniques share the same Y(s) as input.

The resulting poles placement for VF and CVF are illus-
trated in Fig. 5. As anticipated, the poles of the former exhibit
symmetry around the imaginary axis, whereas those of the
latter do not.

B. Computational performance

1) Vector Fitting vs Complex Vector fitting: From the
optimization standpoint, relaxing the complex conjugate con-
straint streamlines the optimization problem by increasing the
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Fig. 4. RMSE vs model order for VF and CVF.
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Fig. 5. Poles of the VF (top) and CVF (bottom).

solution search space. The effective number of variables for
the VF (NV V F ) is

NV V F = NRP +NCP/2, (11)

where NRP and NCP are the number of real and complex
conjugate poles, respectively.

For the VF, the NCP is divided by the factor of two in (11),
as the poles must come as complex conjugate pairs. In contrast,
the effective number of variables for the CVF (NV CV F ) is

NV CV F = NRP +NCP = Np. (12)

Fig. 6 illustrates that the CPU time required for both tech-
niques increases with Np. Additionally, CVF was consistently
slower than VF, for the same Np. This discrepancy arises due
to NV CV F > NV V F when complex poles are employed.

2) Model order reduction: The NV V F and NV CV F are
52 (NRP = 4 and NCP = 96) and 100 (NRP = 0 and
NCP = 100) , respectively. To simplify the mathematical
model, while preserving its core characteristics, a model order
reduction (MOR) is applied to the CVF, reducing Np from 100
to 52, as NRP = 4. Theoretically, the maximum achievable
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MOR using CVF is 50%, when the RM contains only complex
poles. The results in Table II highlight that even with a reduced
order, CVF has comparable performance to VF with a higher
order.

TABLE II
COMPARISON BETWEEN VF AND THE CVF WITH MODEL ORDER

REDUCTION

Method Np RMSE RRMSE Relative CPU
(pu) (%) time

VF 100 0.2127 0.5319 1.00
CVF 52 0.2106 0.5338 1.06

The results depicted in Fig. 7 contrasts the magnitude of
frequency response of Y1,1(s) using VF (Np = 100) and
CVF (Np = 52). Notably, despite a reduction of 48 poles in
CVF, the congruence between both fittings remains consistent
across the considered frequency range.

10 500 1000 1500 2000

Frequency [Hz]

10
-6

10
-4

10
-2

10
0

10
2

10
3

M
ag

n
it

u
d
e 

[p
u
]

Fig. 7. Magnitude of frequency response for the element Y 1,1 using different
number of poles for VF and CVF.

3) Parallelism: The CVF implementation introduces a
trade-off: while it enhances accuracy, it makes the fitting
process slower. To overcome this issue, Parallel Vector Fitting
(PVF) and Parallel Complex Vector Fitting (PCVF) were

implemented in C-language using the methodology described
in Section II-D.

Eighteen cases based on the Test-system were employed to
investigate the scalability of the proposed methodology across
various scenarios. These cases were generated by altering the
number of poles (100 ≤ Np ≤ 300), the effective number of
ports (2 ≤ N ≤ 6) and the frequency samples (1991 ≤ Ns ≤
19991).

The performance results between the MATLAB® scripts
(VF [29] and CVF [27]) and the proposed implementation
(PVF and PCVF) are summarized in Table III. It is noteworthy
that linear algebra and numerical functions such as eig, svd,
and sort have been natively multi-threaded in MATLAB®

since version R2008a [42].
Three main observations emerge upon analyzing the effects

of individually increasing Np, N or Ns at Table III.
Firstly, CPU times grew alongside these variables. This

behavior is expected as the computational complexity scales
quadratically with the number of poles and linearly with the
number of MIMO TFs (8), frequency samples and iterations
[21].

Secondly, the speed-up observed for most PVF and PCVF
cases was more pronounced for smaller Np, N or Ns. For
instance, when comparing Case 1 with Case 3 (where N
increases from 2 to 6), the speed-up (VF/PVF) decreases from
3.00 to 1.78, respectively. Similarly, comparing Case 5 with
Case 14 (where Ns increases from 1991 to 19991), the speed-
up (CVF/PCVF) decreases from 1.74 to 1.44, respectively.
Also, when comparing Case 1 with Case 7 (where Np in-
creases from 100 to 300), the speed-up (VF/PVF) decreases
from 3.00 to 1.83. In such instances, more mathematical
operations are needed. Thus, the communication overhead
between parallel processes can cause dependency bottlenecks
that limit parallelization efficiency.

Lastly, parallelization consistently reduced CPU times
across all cases. In worst-case scenarios, Case 14 and Case 18,
speed-up reached 1.54 (VF/PVF) and 1.32 (CVF/PCVF), re-
spectively. Conversely, the best-case scenario (Case 1) yielded
speed-up values of 3.00 (VF/PVF) and 1.87 (CVF/PCVF).

Overall, the proposed implementation offered a straight-
forward and effective solution to enhance the computational
performance of FDNE realization.

C. Passivity

As mentioned in Section II, passivity violations, if present,
can be identified by the singular values of H or by conducting
a frequency sweep on the eigenvalues λ(s) of G(s). Figs. 8
and 9 illustrate the passivity violations (λ(s) < 0) for VF and
CVF, respectively, using a frequency sweep from 10 Hz to
2 kHz, with a resolution of 0.2 Hz. To enhance clarity and
avoid using a negative log scale, the y-axis was truncated at
-400 pu. The synthesized RM is non-passive across the entire
frequency range of interest.

Although both techniques yield non-passive models, they
do not necessarily exhibit the same passivity characteristics.
To illustrate this point, we developed three passivity metrics
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TABLE III
SUMMARY OF THE COMPUTATIONAL PERFORMANCE FOR VF, PVF, CVF AND PCVF, CONSIDERING ONE ITERATION.

Case Np N Ns VF1 (s) PVF2 (s) Speed-up3 CVF1 (s) PCVF2 (s) Speed-up4

1 100 2 1991 0.18 0.06 3.00 0.28 0.15 1.87
2 100 4 1991 0.28 0.17 1.65 0.80 0.46 1.74
3 100 6 1991 0.64 0.36 1.78 1.52 0.91 1.67
4 200 2 1991 0.32 0.16 2.00 0.77 0.43 1.79
5 200 4 1991 0.81 0.45 1.80 2.28 1.31 1.74
6 200 6 1991 1.68 0.93 1.81 4.51 2.68 1.68
7 300 2 1991 0.55 0.30 1.83 1.51 0.87 1.74
8 300 4 1991 1.58 0.88 1.80 4.52 2.77 1.63
9 300 6 1991 2.94 1.75 1.68 8.98 5.70 1.58

10 100 2 19991 1.20 0.50 2.40 2.41 1.39 1.73
11 100 4 19991 2.52 1.40 1.80 6.74 4.85 1.39
12 100 6 19991 4.92 2.97 1.66 13.40 8.65 1.55
13 200 2 19991 2.70 1.43 1.89 8.10 4.82 1.68
14 200 4 19991 6.70 4.36 1.54 21.54 14.95 1.44
15 200 6 19991 13.58 8.78 1.55 43.65 30.50 1.43
16 300 2 19991 5.55 2.97 1.87 16.22 10.61 1.53
17 300 4 19991 13.86 8.77 1.58 45.58 32.17 1.42
18 300 6 19991 29.89 17.90 1.67 90.68 68.75 1.32

1MATLAB® implementation. 2Proposed implementation. 3Computed by VF/PVF. 4Computed by CVF/PCVF.

(
Min. λ(s), Mean. λ(s) and Count λ(s) < 0

)
using the

previously computed λ(s) The first metric indicates the most
significant passivity violation. The second metric represents
the average values of passivity violations. Finally, the last
metric denotes the number of passivity violations. Table IV
presents these passivity metrics for both VF and CVF, with
the latter showing smaller yet noticeable passivity differences
compared to the former across all metrics provided.

Frequency [Hz]

Fig. 8. Passivity of G(s) using VF.

TABLE IV
PASSIVITY VIOLATIONS METRICS

Method Min. λ(s) Mean λ(s) < 0 Count λ(s) < 0

VF -2914.4 -39.656 25501
CVF -2889.6 -39.650 25524

V. CONCLUSIONS

This paper shows that Complex Vector Fitting (CVF) con-
sistently outperforms Vector Fitting (VF) in terms of accu-
racy in the rational model synthesis of a Nodal Admittance
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Fig. 9. Passivity violations of G(s) using CVF.

Multiple-input Multiple-output Y(s) for the same number
of poles (Np). However, CVF increases the computational
burden due to the increased number of variables for the
same Np and it leads to complex impulse responses. CVF
shows promise in reducing model order (up to 50 %), while
achieving performance comparable to VF with fewer poles.
Our results demonstrate that even with a 48% reduction in
model order, the CVF maintains fitting accuracy and compu-
tational performance similar to VF. Additionally, differences
in passivity characteristics can be observed when comparing
VF and CVF. Finally, the parallel implementations of VF and
CVF (PVF and PCVF) in C-language using LAPACK and
OpenMP directives are straightforward and further enhance
computational efficiency, eliminating the need for reliance on
commercial software like MATLAB®. For future work, the
authors intend to incorporate additional techniques for FDNE
rational modeling and compare their performance against the
CVF method.
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