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Abstract—This paper addresses the Optimal Transmission
Switching (OTS) problem in electricity networks, which aims
to find an optimal power grid topology that minimizes system
operation costs while satisfying physical and operational con-
straints. Existing methods typically convert the OTS problem into
a Mixed-Integer Linear Program (MILP) using big-M constants.
However, the computational performance of these approaches
relies significantly on the tightness of these big-Ms. In this
paper, we propose an iterative tightening strategy to strengthen
the big-Ms by efficiently solving a series of bounding problems
that account for the economics of the OTS objective function
through an upper-bound on the generating cost. We also discuss
how the performance of the proposed tightening strategy is
enhanced if reduced line capacities are considered. Using the 118-
bus test system we demonstrate that the proposed methodology
outperforms existing approaches, offering tighter bounds and
significantly reducing the computational burden of the OTS
problem.

Index Terms—Big-M tightening, Bounding problem, Mixed-
integer optimization, Optimal transmission switching, Topology
control.

I. INTRODUCTION

Traditionally, transmission lines in electricity networks have
been regarded as infrastructure devices that cannot be con-
trolled, except during instances of outages or maintenance.
More recently, the possibility of flexibly exploiting the topo-
logical configuration of the grid was first suggested in [1]
and later formalized in [2] into what we know today as
the Optimal Transmission Switching (OTS) problem. The
optimal transmission switching problem refers to the task of
determining the most efficient configuration of transmission
lines in a power system to achieve certain objectives. It
involves deciding which transmission lines should be open
or closed to optimize system performance in terms of factors
such as minimizing transmission losses, voltage deviations,
or congestion. Even if the power flow equations are simplified
using the well-known direct current (DC) linear approximation
of the power flow equations, the resulting formulation of the
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OTS problem, known as DC-OTS, takes the form of a mixed-
integer program, which has been proven to be NP-hard for
general network classes [3], [4].

Up until now, the resolution of the DC-OTS has been ad-
dressed using two different methodological approaches. These
approaches can be categorized as exact methods and heuristics.
The exact methods utilize techniques derived from mixed-
integer programming, such as bounding and generating valid
cuts. These methods aim to solve the DC-OTS with (certified)
global optimality, ensuring the best possible solution. On the
other hand, heuristics aim to rapidly identify good solutions
for the problem, potentially sacrificing optimality or even
suggesting infeasible grid configurations.

Several heuristic methods have been proposed in the techni-
cal literature to reduce the computational time in solving the
OTS problem. Some of these methods focus on decreasing
the number of lines that can be switched off [5]–[7]. Other
approaches maintain the original set of switchable lines but
determine their on/off status using greedy algorithms [8], [9].
In contrast, the authors of [10] propose a parallel approach
where heuristics generate promising candidate solutions to
expedite traditional MIP algorithms in solving the OTS prob-
lem. Furthermore, certain data-based heuristic methods utilize
information from past OTS problems to improve efficiency.
For example, the authors of [11], [12] employ a K-nearest
neighbor strategy to significantly reduce the search space
of the integer solution for the DC-OTS problem. Similarly,
references [13], [14] present more advanced methodologies
involving neural networks to learn the optimal status of
switchable lines.

Within the exact methods, notable contributions can be
found in references [3], [4], and [15]. In particular, the
authors of [3] present a cycle-based formulation for the DC-
OTS problem, which yields a mixed-integer linear program.
They also introduce sets of strong valid inequalities for a
relaxed version of their formulation that can be efficiently
separated. In [4], the authors focus on the mixed-integer linear
formulation of the DC-OTS, utilizing a big-M approach to
handle the disjunctive relationship between the power flow of
switchable lines and the voltage angle differences. They prove
the NP-hardness of determining valid big-Ms and propose a
methodology for setting the appropriate values. Lastly, the
authors of [15] develop a family of cutting planes specifically
tailored for the DC-OTS problem.

This paper introduces a new exact methodology to address
the DC-OTS problem, making significant contributions to
the existing state-of-the-art. Our approach determines suitable
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values for the big-M constants used in the mixed-integer re-
formulation of the DC-OTS by solving the so-called bounding
problems. To obtain tighter big-M values, we impose an upper-
bound on the generating cost in these bounding problems.
We also investigate the synergistic effect between the big-
M tightening and the reduction of the line capacities. The
performance of our methodology is then compared to the
approach proposed in [4] to determine big-M constants for
the 118-bus test system. In summary, the key contributions of
this work can be summarized as follows:

- We propose a set of bounding problems to efficiently
compute tight big-M values to be used in the optimal
transmission switching problem. Besides, we enhance the
performance of the bounding problems imposing a valid
upper-bound on the total generating cost.

- We extend the use of the bounding problem to also
compute the maximum feasible power flow through the
transmission lines. We demonstrate that using these re-
duced capacities decrease even further the big-M values.

- We use a 118-bus test system to prove that the proposed
bound tightening methodology clearly outperforms state-
of-the-art approaches and general purpose methods of
optimization solvers in terms of the computational burden
required to solve the OTS problem.

The remainder of this paper is structured as follows. Section
II introduces the original formulation of the DC-OTS problem,
its reformulation as a mixed-integer linear program, and the
existing methodologies to compute the required big-M con-
stants. The proposed cost-driven bound tightening approach is
presented in Section III, which concludes with the comparison
procedure used to assess its performance. Section IV discusses
the computational results obtained for the 118-bus test system.
Finally, conclusions are drawn in Section V.

II. OPTIMAL TRANSMISSION SWITCHING

In this section we introduce the standard and well-known
formulation of the Direct Current Optimal Transmission
Switching problem (DC-OTS) which has been considered
in [2]–[6], [8], [10]–[13], [15]–[17] among others. Readers
interested in exploring further details regarding the additional
complexity of the AC-OTS problem can refer to [7], [9], [18].

Consider a power network consisting of a set of nodes
N and transmission lines L. For simplicity, we assume that
there is one generator and one power load per node n ∈ N .
Let pn and dn denote the power dispatch of the generator
and the power consumed by the power load, respectively.
Each generator is characterized by a minimum and maximum
power output, p

n
and pn, and a marginal production cost cn.

We represent the power flow through the line (n,m) ∈ L
connecting nodes n and m by fnm. As customary, fnm > 0
represents a power flow from node n to node m, and fnm < 0
a power flow in the opposite direction. The maximum power
flow from node n to node m is denoted by Fnm, and the power
flow in the opposite direction is limited by Fmn. The max-
imum flow through a line is constrained by thermodynamics
limitations and therefore, physical line capacities are always

symmetric, i.e., Fnm = Fmn. However, depending on the
location of generators and loads in a network, the maximum
feasible flows through a line may be different in each direction,
which is the reason why we consider the more general case
of asymmetric line capacities. Besides, the set of transmission
lines that can be switched on/off is denoted by LS ⊆ L. If
the line (n,m) ∈ LS , the binary variable xnm determines
its status, being equal to 1 if the line is fully operational,
and 0 when disconnected. Using the DC approximation of the
network equations, the flow fnm through an operational line
is given by the product of the susceptance of the line, bnm,
and the difference of the voltage angles at nodes n and m, i.e.,
θn−θm. We use bold symbols to define the vectors of variables
p = [pn, n ∈ N ], θ = [θn, n ∈ N ], f = [fnm, (n,m) ∈ L],
and x = [xnm, (n,m) ∈ LS ]. With this notation in place, the
DC-OTS problem can be formulated as follows:

min
pn,fnm,θn,xnm

∑
n

cn pn (1a)

s.t. fnm = xnmbnm(θn − θm), ∀(n,m) ∈ LS (1b)
fnm = bnm(θn − θm), ∀(n,m) ∈ L \ LS (1c)∑

m:(n,m)∈L

fnm −
∑

m:(m,n)∈L

fmn = pn − dn, ∀n ∈ N (1d)

p
n
≤ pn ≤ pn, ∀n ∈ N (1e)

− xnmFmn ≤ fnm ≤ xnmFnm, ∀(n,m) ∈ LS (1f)
− Fmn ≤ fnm ≤ Fnm, ∀(n,m) ∈ L \ LS (1g)
θ1 = 0 (1h)
xnm ∈ {0, 1}, ∀(n,m) ∈ LS (1i)

The objective function (1a) minimizes the total electricity
generation cost. The power flow through transmission lines
is defined in (1b) and (1c). In the case of a switchable line,
constraint (1b) includes the binary variable xnm to enforce
this relationship only when the line is in service. Naturally,
xnm = 0 implies that fnm = 0. The nodal power balance
equation is ensured by (1d), while constraints (1e) impose
that the power output of generating units must lie within the
interval [p

n
, pn]. Constraints (1f) and (1g) limit the maximum

power flow through switchable and non-switchable lines, re-
spectively. Equation (1h) arbitrarily sets one of the voltage
angles to zero, while the binary character of variables xnm is
imposed by constraint (1i).

Problem (1) is a mixed-integer nonlinear programming
problem due to the product xnm(θn−θm) in (1b). Even when
the power network includes a connected subgraph of non-
switchable lines, this problem has been proven to be NP-hard
[4]. However, constraint (1b) can be linearized by introducing
a pair of large enough constants Mnm, Mmn per switchable
line [16]. By doing so, equation (1b) can be replaced by the
two following inequalities:

fnm ≥ bnm(θn − θm)−Mnm(1− xnm) (2a)
fnm ≤ bnm(θn − θm) +Mmn(1− xnm) (2b)

where the large constants Mnm,Mmn are guaranteed to be
upper bounds of bnm(θn−θm) and bnm(θm−θn), respectively,
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when the line (n,m) is disconnected (xnm = 0). Under that
assumption, the DC-OTS is reformulated as the following
mixed-integer linear programming problem

min
pn,fnm,θn,xnm

∑
n

cn pn (3a)

s.t. (1c) − (1i), (2) (3b)

Although model (3) can be solved using off-the-shelf mixed-
integer optimization solvers, such as Gurobi [19], the choice
of the bounds Mnm,Mmn is of utmost importance. If these
bounds are too loose, the relaxations performed throughout the
branch-and-bound or branch-and-cut algorithms are too poor,
and the total computational burden is expected to increase
significantly. In all existing works that reformulate the DC-
OTS problem as a mixed-integer program, these large enough
constants are assumed to be symmetric, i.e., Mnm = Mmn.
The review paper [18] collects in Table 1 a summary of
all proposed symmetric big-M values used in the technical
literature. In particular, the authors of [17] propose a method
to compute big-M values based on the shortest and longest
paths between two nodes. This methodology has been recently
revisited in [4], where the authors argue that the lowest
possible value of these bounds denoted by MOPT

nm and MOPT
mn

can be obtained by solving the following bounding problems

MOPT
nm := bnm × max

(1b)−(1h) ∩Xnm

(θn − θm) (4a)

MOPT
mn := bnm × max

(1b)−(1h) ∩Xnm

(θm − θn) (4b)

where Xnm := {x ∈ B|LS | : xnm = 0} imposes that the
binary variable associated with the switchable line (n,m) is
equal to 0. As illustrated in [4], problem (4) can be unbounded
in power systems where switching off lines can result in
isolated subnetworks. However, due to reliability and security
standards, islanding in power grids is to be avoided in general
and therefore, we assume that the set of switchable lines LS
is such that the connectivity of the whole power network is
always guaranteed by means of a spanning subgraph. The
authors in [4] also show that, even when MOPT

nm is finite,
computing it is as hard as solving the original DC-OTS
problem. Therefore, they propose an efficient methodology to
find other valid bounds for (2) as follows:

(SP)

Mnm = bnm
∑

(i,j)∈SPnm

Fij

bij
, ∀(n,m) ∈ LS

Mmn = bnm
∑

(i,j)∈SPmn

Fij

bij
, ∀(n,m) ∈ LS

(5a)

(5b)

where SPnm is the shortest path from n to m, and SPmn the
shortest path from m to n. These shortest paths are determined
on a directed graph with edge costs cnm = Fnm/bnm and
cmn = Fmn/bnm for the lines that belong to the connected
spanning subgraph, and cnm = cmn = ∞ for the switchable
lines. These shortest paths can be efficiently computed using
Dijkstra’s algorithm [20]. In reference [4], line capacities are

assumed symmetric and therefore, the big-M values computed
by (5) are also symmetric, that is, Mnm = Mmn. For given
line capacities F, using equations (5) to obtain the bounds M
for all switchable lines is denoted as M = SP (F). Among
the references reviewed in [18], the methodology proposed in
[4] is the one that leads to tighter big-M values and therefore,
this approach is used here as a benchmark.

In the next section we propose a novel methodology to
compute valid bounds that are tighter than those described
in [4] and therefore reduce the computational burden of solv-
ing model (3). Conversely to all existing methodologies, the
one we propose in this paper allows us to compute asymmetric
big-M values that yield tighter mixed-integer reformulations
of the DC-OTS problem. Following the assumption in [4], the
proposed tighter bounds are derived under the premise that
network connectivity is guaranteed by a set of non-switchable
lines forming a spanning subgraph. Interested readers are
referred to [21] to delve into how the complexity of the OTS
problem increases when all lines are switchable, and network
connectivity is enforced through additional constraints.

III. BOUND TIGHTENING METHODOLOGY

A. Big-M tightening

The methodology proposed in this paper to find the values
of the large constants Mnm,Mmn is based on the following
relaxations of problems (4)

Mnm = bnm × max
R(F,M)∩X 0

nm

(θn − θm) (6a)

Mmn = bnm × max
R(F,M)∩X 0

nm

(θm − θn) (6b)

where the feasible region defined by (1b)-(1h) is replaced
by the set R(F,M) := {(p, θ, f ,x) ∈ R2|N |+|L|+|LS | :
(1c) − (1h), (2)} based on the linearization (2). Note that the
feasible region R depends on the parameter vectors F =
[(Fnm, Fmn), (n,m) ∈ L] and M = [(Mnm,Mmn), (n,m) ∈
LS ]. Besides, the set X 0

nm := {x ∈ R|LS | : 0 ≤ x ≤
1, xnm = 0} is a relaxation of the set Xnm in which
variables x can take any continuous value between 0 and
1. Similar relaxed optimization problems have been used
in [22], [23] to screen out redundant constraints. For valid
bound values M, it is guaranteed that Xnm ⊂ X 0

nm and
therefore, Mnm ≥ MOPT

nm and Mmn ≥ MOPT
mn . Besides,

since optimization problems in (6) are linear, the proposed
methodology to find valid bounds for inequality constraints (2)
is computationally efficient. For the remaining of this paper,
we denote problems (6) as bounding problems [24].

Although bounding problems (6) are easy to solve, the
proposed relaxation can yield too loose bounds such that
Mnm ≫ MOPT

nm and/or Mmn ≫ MOPT
mn and therefore, the

computational burden of solving (3) using these bounds can
still be substantial. To avoid this issue, we include additional
constraints to the bounding problems (6) so that the obtained
big-M values are as tight as possible.

In reference [23] the authors use a constraint on the genera-
tion cost of the network-constrained unit commitment problem
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to efficiently remove inactive constraints of the optimization
model. Inspired by this idea, one may wonder whether it is
necessary to choose big-M values that guarantee the feasibility
of all integer solutions, or whether it could be more effective
if these bounds were tuned to also remove some feasible
but suboptimal integer solutions. For the sake of intuition,
let us assume that the solution of problem (4) for a given
switchable line indicates that the maximum angle difference
is reached when the most expensive generators are producing
at maximum capacity and the cheapest units are not generating
anything. Most likely, the dispatch that maximizes this angle
difference is much more expensive than that obtained by the
the DC-OTS problem and therefore, the actual angle difference
at the optimal solution of (3) is probably much lower than that
computed by (4). Accordingly, we define in this paper the set
C := {p ∈ R|N | :

∑
n cnpn ≤ C}, where C is an upper

bound on the optimal generation cost of the DC-OTS problem.
The bounding problems that consider an upper bound on the
production cost are then formulated as follows:

(BM)

Mnm = bnm × max
R(F,M)∩X 0

nm∩C
(θn − θm)

Mmn = bnm × max
R(F,M)∩X 0

nm∩C
(θm − θn)

(7a)

(7b)

Since the feasible regions of bounding problems (7) are
contained in the feasible regions of (6), we can guarantee
that the obtained bounds are tighter than those determined
in (6). Besides, by setting a cap on the operational cost,
the big-M values derived from (7) become tighter, leveraging
the economic insights embedded in the maximum cost C.
Obviously, the tighter the value of the upper-bound cost
C, the smaller the feasible regions of problems (7). This
implies lower big-M values and the consequent reduction
of the computational burden of problem (3). For given line
capacities F, big-M values M and upper-bound cost C, using
the bounding problems (7) to update the big-M values for all
switchable lines is denoted as M = BM(F,M, C).

Importantly, while the bounds computed by (5) according to
the method proposed in [4] are symmetric, the big-M values
obtained by the bounding problems (7) are not symmetric in
general. Another relevant point to consider is that a decrease
of the big-M values associated with a specific switchable
line has an impact on the feasible region R of the bounding
problems related to the other switchable lines. As a result, it
may be necessary to solve the proposed bounding problems
multiple times for the entire set of switchable lines. This
approach ensures that with each iteration, the big-M values
will consistently decrease and lead to more refined solutions
through successive iterations.

B. Line capacity tightening

As discussed in Subsection III-A, the feasible region of
problems (7) is reduced by imposing an upper bound on the
optimal generation cost. Following this line of thought, the
feasible region R can also be shrunk by tightening the line
capacities F. For instance, let us consider a given transmission

line through which the power flow cannot exceed 100MW
due to thermal limitations. However, given the location and
capacity of the generating units, the demand location and
variability, the network topology and parameters, and an upper
bound on the generating cost, the power flow through that line
is guaranteed to be always below 80MW. In such a case, we
can tighten this line capacity with the following computational
advantages. By reducing the capacities of the lines in the con-
nected spanning subgraph, the big-Ms computed by (5) also
decrease. Besides, since constraint (1f) includes the product
xnmFnm, reducing the capacity of switchable lines also makes
model (3) tighter. For these reasons, we also propose in this
Section to compute the maximum feasible flows through all
transmission lines as follows:

(BL)
Fnm = bnm × max

R(F,M)∩X 1
nm∩C

(θn − θm)

Fmn = bnm × max
R(F,M)∩X 1

nm∩C
(θm − θn)

(8a)

(8b)

where X 1
nm := {x ∈ R|LS | : 0 ≤ x ≤ 1} if (n,m) ∈ L \ LS ,

and X 1
nm := {x ∈ R|LS | : 0 ≤ x ≤ 1, xnm = 1} if

(n,m) ∈ LS . Obviously, the maximum flows determined by
(8) are always lower than or equal to the original capaci-
ties determined by thermodynamic limitations. Updating the
maximum power flows through all lines in the network using
the bound problems (8) is denoted as F = BL(F,M, C).
Additionally, it is worth mentioning that the reduced line
capacities computed in (8) can also be used in (5) to get tighter
big-M values.

Algorithm 1 Cost-driven Bound Tightening Algorithm
Input: Original line capacities Fnm, Fmn, ∀(n,m) ∈ L, demands
dn, ∀n ∈ N , upper-bound cost C, and number of iterations K.
Initialization: Determine SPnm and SPmn ∀(n,m) ∈ LS . Set
k = 0, F0 = [(Fnm, Fmn), (n,m) ∈ L], and M0 = SP(F0).
1) Update k ← k + 1.
2) Depending on the method, update big-M values as

i) Mk ← SP(Fk−1)
ii) Mk ← BM(Fk−1,Mk−1, C)

3) Depending on the method, update line capacities as
i) Fk ← Fk−1

ii) Fk ← BL(Fk−1,Mk−1, C)

4) If k < K, go to step 1). Otherwise, stop.
Output: Bounds FK and MK .

C. Comparison procedure

In summary, the method we propose in this paper starts by
finding a tight upper-bound on the generating cost C. Then, the
big-M values and the line capacities are iteratively tightened
by solving the bounding problems (7) and (8), respectively.
Finally, the reduced bounds are used to solve the mixed-integer
formulation of the DC-OTS problem (3). Algorithm 1 sum-
marizes the main steps of the proposed methodology. In order
to investigate the improvements derived from the proposed
methodology, we compare the computational performance of
the following four variations of Algorithm 1:
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• Shortest-Path approach with Original line Capacities (SP-
OC). This is the benchmark strategy proposed in [4] and
only includes the initialization step of Algorithm 1. Thus,
model (3) is solved with F0 and M0.

• Shortest-Path approach with Reduced line Capacities (SP-
RC). This is an improvement of the method proposed in
[4] that uses the reduced line capacities obtained by the
bounding problems (8) and updates the big-M values using
(5). Thus, this approach runs steps 3ii) and 2i) in Algorithm
1, in that order, and ignores 2ii) and 3i).

• Bound Tightening approach with Original line Capacities
(BT-OC). In this strategy we propose the big-M values are
obtained by solving the bounding problems (7) with the
original line capacities in all iterations. Thus, this approach
runs steps 2ii) and 3i) in Algorithm 1, and ignores 2i) and
3ii).

• Bound Tightening approach with Reduced line Capacities
(BT-RC). This approach reduces the big-M values and the
line capacities by solving the bounding problems and then,
it is expected to yield the tightest bounds. This approach
runs steps 2ii) and 3ii) in Algorithm 1, and ignores 2i) and
3i).

Furthermore, in order to analyze the impact of the upper-
bound cost on the proposed tightening methodology, we com-
pare two different procedures to compute the maximum cost
C to be used in the bounding problems:

• Naive approach. This approach computes an upper bound
on the cost by satisfying the total demand with the most ex-
pensive generators. By disregarding the network constraints,
this cost is the solution to the linear problem:

C = max
pn

∑
n

cn pn (9a)

s.t.
∑
n

pn =
∑
n

dn (9b)

Obviously, this upper bound on the optimal generating
cost does not reduce the feasibility region of the bounding
problems and is just considered here for benchmarking
purposes. If model (9) is used to compute the upper-bound
cost, the method is denoted as XX-XX-N, where XX-XX
represents the bound tightening procedure SP-OC, SP-RC,
BT-OC or BT-RC.

• Heuristic approach. The technical literature also proposes
some heuristic approaches to solve the DC-OTS problem,
like the greedy algorithm described in [8]. At each step,
this algorithm disconnects one switchable line at a time,
computes the resulting operating cost by solving an OPF
linear problem, and fixes the status of the line that leads
to the lowest cost to 0. The algorithm continues until
disconnecting any remaining switchable line leads to a cost
increase. Although this procedure does not lead to the
optimal solution of the DC-OTS, its objective function can
be close enough depending on each particular case. If this
heuristic approach is used to compute the upper-bound cost,
the method is denoted as XX-XX-H.

Naturally, there are alternative strategies to compute an
upper bound on the operating cost other than the two discussed
above. For instance, the cost that is obtained by solving a DC-
OPF problem assuming that all switchable lines are connected
is also a valid bound. However, this cost lies in between those
computed by way of the naive and heuristic approaches. Con-
sequently, in the numerical experiments presented in Section
IV, we only test these two. Besides, in the procedure proposed
in this paper, we utilize a maximum cost constraint C as
we aim to determine the optimal topology for minimizing
the operational cost. Nevertheless, this methodology could be
adapted to address problems where line switching decisions
aim to optimize alternative objective functions, such as miti-
gating the risk of wildfires [25], [26].

In the next section, we compare the performance of the four
strategies described above for each upper-bound cost using
different metrics. For instance, for each switchable line we
compute the big-M range relative to that determined in [4] as
follows:

δMnm = 100
Mnm +Mmn

2M0
nm

(10)

where M0
nm are the big-M values computed by (5) with the

original capacities. For instance, in the SP-OC benchmark
approach, δMnm = 100% for all switchable lines. In the
remaining methods, δMnm = 80% means that the big-M range
has been reduced a 20% for that particular switchable line. We
can also compute an average value over all switchable lines
as

∆M =

∑
nm∈LS

δMnm
|LS |

(11)

Similarly, we can define the relative range of the power
flows through any transmission line as:

δLnm = 100
Fnm + Fmn

2F 0
nm

(12)

where F 0
nm is the original line capacity. The average value is

computed as

∆L =

∑
nm∈L δLnm
|L|

(13)

Apart from parameters ∆M and ∆L, we also compare the
four strategies in terms of the computational burden required
to solve model (3) using the bounds obtained by Algorithm 1.
Notice that the feasible region defined by the tighter bounds is
guaranteed to include the optimal solution and therefore, the
optimal decisions and objective function are the same for all
the methods that yield a solution in less than one hour.

IV. CASE STUDY

This section provides an overview of the computational
findings obtained from the various methodologies discussed
in Section III when applied to a practical network. Our focus
is on comparing the different approaches using a realistic
118-bus network, which consists of 186 lines as documented
in [27]. This network’s scale is significant enough to pose
challenges for current algorithms, yet it remains manageable
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in terms of computational complexity. Moreover, the 118-
bus system is the paradigmatic network commonly employed
in numerous studies on optimal transmission switching in
the technical literature [2]–[4], [8]–[11], [13], [15]. Since
the choice of the spanning subgraph can notably impact
the computational load of the resulting OTS problem, we
evaluate the performance of the proposed methodology for
100 instances with different subsets of switchable lines and
demand levels dn. More specifically, the spanning subgraph of
117 non-switchable lines is randomly chosen and therefore, the
69 switchable lines are different for each instance. Likewise,
the nodal demand is randomly sampled using independent
uniform distributions in the range [0.9d̂n, 1.1d̂n], where d̂n
is the baseline demand. In this way, we guarantee that the
results reported in what follows cover a range of OTS instances
of different complexity. All optimization problems have been
solved using GUROBI 9.1.2 [19] on a Linux-based server with
CPUs clocking at 2.6 GHz, 1 thread and 8 GB of RAM. In all
cases, the optimality gap has been set to 0.01% and the time
limit to 1 hour. We used the gurobipy API for Python to solve
the problems, with all Gurobi options set to default values.

Before presenting the computational results of this case
study we must clarify an implementation detail of Algorithm
1. In steps 2) and 3) of this algorithm the corresponding
bounding problems can be solved in parallel, then reducing the
final computational burden of the bound tightening procedure.
However, the results of this section are obtained by solving all
bounding problems sequentially and adding up the required
time to solve each linear optimization model. By doing so,
the comparison of the computational burden of the different
models is more informative, especially if the number of
iterations is high. Besides, this strategy allows a dynamic
update of the line capacities and the big-M values. That is,
the bounding problem corresponding to the k-th line can be
solved using the updated line capacities of the (k-1)-th line,
and so on.

After that clarification, we start this numerical analysis by
fixing the number of iterations (indicated in parenthesis for
each method) to 1 and comparing the four methodologies
described in Section III combined with the two strategies
to compute the upper-bound cost. Table I collects, for each
approach, the big-M and line capacity relative ranges and the
computational time averaged over the 100 random instances
considered including the time of solving all the bounding
problems sequentially (T bnd) and the time of solving the
resulting mixed-integer DC-OTS problem (T ots). This table
also includes the number of instances that are not solved to
optimality in less than one hour (#U ), and the maximum op-
timality gap among those unsolved instances. This optimality
gap is provided by the solver and computed as the relative
difference between the best known upper bound and the best
known lower bound on the optimal objective value of the
mixed-integer optimization problem.

If we compare the benchmark SP-OC with BT-OC-N(1), we
observe that the big-M values are significantly tightened, the
average time is reduced by 12%, and the number of unsolved

Method ∆M ∆L T bnd T ots #U Max gap

SP-OC 100% 100% - 672s 14 0.69%

BT-OC-N(1) 68% 100% 0s 589s 12 1.69%

SP-RC-N(1) 86% 77% 1s 480s 9 0.69%

BT-RC-N(1) 68% 74% 1s 486s 8 1.04%

BT-OC-H(1) 64% 100% 2s 298s 5 0.20%

SP-RC-H(1) 83% 73% 3s 234s 2 0.47%

BT-RC-H(1) 64% 68% 3s 167s 1 0.03%

TABLE I
IMPACT OF UPPER-BOUND COST ON BOUND TIGHTENING PERFORMANCE

problems is also lower. On the contrary, the maximum gap
increases from 0.69% to 1.69%. If the line capacities are
reduced using the bounding problems, approaches SP-RC-
N(1) and BT-RC-N(1) also involve computational savings
that amount to 28% approximately. In any case, it seems
that using the naive upper-bound cost leads to quite modest
computational improvements.

In order to improve the performance of the bound tightening
proposed in this paper, the last three rows of Table I provide
the results if the upper-bound cost is obtained by the heuristic
approach described in [8]. For the 100 instances of this case
study, the average and maximum error incurred by this greedy
approach amounts to 2% and 11%, respectively. Consequently,
despite the valuable insights into generating costs provided by
this heuristic procedure, the obtained solutions still exhibit a
significant degree of suboptimality. By analyzing these results,
we realize that using a tighter upper-bound on the operating
cost has a more notable impact on the computational burden of
the DC-OTS problem. For instance, even if the original line
capacities are considered, the approach BT-OC-H(1) is able
to halve the computational time and the number of unsolved
instances yielded by SP-OC. Besides, even with one iteration,
the approach BT-RC-H(1) strengthens both the line capacities
and big-M values by solving the proposed bounding problems
and consequently reduces the computational time by 75% and
only reports one unsolved instance.

We continue this case study by analyzing the impact of
the number of iterations through a comparison of the results
collected in Table II. Naturally, increasing the iterations leads
to tighter bounds. However, the bound values seem to stabilize
after three or four iterations. It is also relevant to highlight that,
for the same number of iterations, BT-RC always outperforms
SP-RC, which clearly indicates that the big-M values obtained
by the bounding problems (7) are tighter than those computed
by (5), even if the line capacities are adjusted to more realistic
values. In fact, the approach BT-RC-H with one iteration
yields better computational results than SP-RC-H with four
iterations. It is also worth mentioning that although SP-
RC-H(2) has tighter bounds than SP-RC-H(1), the former
involves longer computational times and a higher number of
unsolved problems. This counterintuitive result is attributed
to the presolving and heuristic routines integrated into the
optimization solver. Finally, it is shown that the best results
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Method ∆M ∆L T bnd T ots #U Max gap

SP-OC 100% 100% - 672s 14 0.69%

SP-RC-H(1) 83% 73% 3s 234s 2 0.47%

SP-RC-H(2) 77% 69% 4s 337s 5 0.37%

SP-RC-H(3) 76% 68% 5s 266s 4 0.54%

SP-RC-H(4) 75% 68% 6s 206s 2 0.25%

BT-RC-H(1) 64% 68% 3s 167s 1 0.03%

BT-RC-H(2) 56% 63% 5s 82s 0 -

BT-RC-H(3) 52% 61% 7s 74s 0 -

BT-RC-H(4) 50% 59% 8s 72s 0 -

TABLE II
IMPACT OF ITERATIONS ON BOUND TIGHTENING PERFORMANCE

are provided by BT-RC-H(4), an approach that achieves a time
reduction of 88% and is able to solve all instances in less than
one hour.

To conclude this case study, Figure 1 illustrates the number
of instances solved as a function of the computational time
for the following three approaches:

- Proposed: This is the cost-driven bound tightening ap-
proach proposed in this paper. Among all investigated
methods, we choose BT-RC-H(4) since it is the one that
presents the best performance in the previous analysis.

- Fattahi: This methodology proposed by Fattahi et al. in
[4] is based on determining the shortest-path through
the spanning subgraph that connects the two nodes of
every switchable line. This is the benchmark approach
SP-OC that represents the state-of-the-art in the technical
literature.

- Gurobi: This strategy consists in solving the nonlinear
OTS problem (1) directly with Gurobi. Gurobi is able to
handle the product of binary and continuous products by
using a big-M linearization with bounds that are internally
computed by the solver or by adding SOS1 variables.

This figure allows us to draw the following conclusions. First,
the 100 randomized instances with varying spanning subgraphs
and demand levels exhibit a broad spectrum of computational
difficulty. It is notable that Gurobi solves 40 “easy” instances
in less than 500 seconds, while another 20 instances cate-
gorized as “medium difficulty” require computational times
ranging from 500 seconds to one hour. However, 40 instances
classified as “difficult” are not solved to optimality within one
hour by this solver. Second, that the general-purpose procedure
to linearize the product of binary and continuous variables
implemented in Gurobi can be improved by using specific
knowledge about the problem to be solved. For instance, using
the power flow equations involved in the DC-OTS problem
and graph theory, the shortest-path approach proposed in [4]
provide tighter bounds than those determined internally by
Gurobi to linearize the product of binary and continuous
variables. Third, although the benchmark SP-OC outperforms
Gurobi, the obtained big-M values can still be loose and
therefore, the computational time can still be substantial
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Fig. 1. Comparison of the proposed methodology with existing benchmarks

Method Time #U Max gap

Gurobi 1739s 38 2.03%

Fattahi 672s 14 0.69%

Proposed 80s 0 -

TABLE III
SUMMARY OF THE COMPUTATIONAL RESULTS OF THE PROPOSED

METHODOLOGY.

for some instances. Finally, that the proposed cost-driven
bound tightening methodology remarkably improves existing
approaches and is able to solve the 100 random DC-OTS
instances in less than 800 seconds and to reduce the average
computational time by 88% with respect to the state-of-the-art
methodology.

Finally, Table III summarizes the computational results of
the proposed methodology and existing benchmarks. These
results demonstrate the superiority of the bound tightening
procedure we propose, with an average computational time of
80 seconds, representing a speedup of 22x and 8x compared
to Gurobi or the approach described in [4], respectively.

V. CONCLUSIONS

The optimal transmission switching (OTS) aims at deter-
mining the network topology that minimizes the generating
cost to satisfy a given demand. The OTS has the potential
to generate substantial cost savings, but its computational
requirements are high due to its typical formulation as a
mixed-integer linear problem that belongs to the NP-hard
class. In particular, the MIP formulation of the OTS includes
big-M constants that can lead to poor relaxations if their values
are too large. In this paper we propose an iterative tightening
methodology that effectively reduces the big-M values, thereby
alleviating the computational burden associated with the OTS.
The proposed approach requires the solution of inexpensive
bounding problems that account for economic information
about the operating cost. Furthermore, the big-M values can
be further tightened by incorporating reduced capacities of
the transmission lines, which are in turn obtained by solving
similar bounding problems. Using the 118-bus test system,
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we demonstrate that our methodology outperforms existing
approaches to find proper big-M values and is able to reduce
the computational of the OTS problem by 88% in average with
respect to them.

The proposed approach is dependent on the existence of a
spanning subgraph of connected lines. Therefore, extending
this approach to handle the general case, where any line can
be disconnected, represents a promising direction for future
research.

REFERENCES

[1] R. P. O’Neill, R. Baldick, U. Helman, M. H. Rothkopf, and W. Stewart,
“Dispatchable transmission in rto markets,” IEEE Transactions on Power
Systems, vol. 20, no. 1, pp. 171–179, 2005.

[2] E. B. Fisher, R. P. O’Neill, and M. C. Ferris, “Optimal transmission
switching,” IEEE Transactions on Power Systems, vol. 23, no. 3, pp.
1346–1355, 2008.

[3] B. Kocuk, H. Jeon, S. S. Dey, J. Linderoth, J. Luedtke, and X. A.
Sun, “A cycle-based formulation and valid inequalities for DC power
transmission problems with switching,” Operations Research, vol. 64,
no. 4, pp. 922–938, 2016.

[4] S. Fattahi, J. Lavaei, and A. Atamtürk, “A bound strengthening method
for optimal transmission switching in power systems,” IEEE Transac-
tions on Power Systems, vol. 34, no. 1, pp. 280–291, 2019.

[5] C. Liu, J. Wang, and J. Ostrowski, “Heuristic prescreening switchable
branches in optimal transmission switching,” IEEE Transactions on
Power Systems, vol. 27, no. 4, pp. 2289–2290, 2012.

[6] C. Barrows, S. Blumsack, and R. Bent, “Computationally efficient
optimal transmission switching: Solution space reduction,” in 2012 IEEE
Power and Energy Society General Meeting. IEEE, 2012, pp. 1–8.

[7] M. Flores, L. H. Macedo, and R. Romero, “Alternative mathematical
models for the optimal transmission switching problem,” IEEE Systems
Journal, vol. 15, no. 1, pp. 1245–1255, 2020.

[8] J. D. Fuller, R. Ramasra, and A. Cha, “Fast heuristics for transmission-
line switching,” IEEE Transactions on Power Systems, vol. 27, no. 3,
pp. 1377–1386, 2012.

[9] C. Crozier, K. Baker, and B. Toomey, “Feasible region-based heuristics
for optimal transmission switching,” Sustainable Energy, Grids and
Networks, vol. 30, p. 100628, 2022.

[10] A. Hinneck and D. Pozo, “Optimal transmission switching: improving
exact algorithms by parallel incumbent solution generation,” IEEE
Transactions on Power Systems, 2022.

[11] E. S. Johnson, S. Ahmed, S. S. Dey, and J.-P. Watson, “A k-nearest
neighbor heuristic for real-time dc optimal transmission switching,”
2020. [Online]. Available: https://arxiv.org/abs/2003.10565

[12] S. Pineda, J. M. Morales, and A. Jiménez-Cordero, “Learning-
assisted optimization for transmission switching,” arXiv preprint
arXiv:2304.07269, 2023.

[13] Z. Yang and S. Oren, “Line selection and algorithm selection for
transmission switching by machine learning methods,” in 2019 IEEE
Milan PowerTech. IEEE, 2019, pp. 1–6.

[14] T. Han and D. Hill, “Learning-based topology optimization of power
networks,” IEEE Transactions on Power Systems, 2022.

[15] S. S. Dey, B. Kocuk, and N. Redder, “Node-based valid inequalities
for the optimal transmission switching problem,” Discrete Optimization,
vol. 43, p. 100683, 2022.

[16] K. W. Hedman, S. S. Oren, and R. P. O’Neill, “Flexible transmission in
the smart grid: optimal transmission switching,” Handbook of networks
in power systems I, pp. 523–553, 2012.

[17] L. S. Moulin, M. Poss, and C. Sagastizábal, “Transmission expansion
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