
PINNSim: A Simulator for Power System Dynamics
based on Physics-Informed Neural Networks

Jochen Stiasny, Spyros Chatzivasileiadis
Division for Power and Energy Systems

Technical University of Denmark
Kgs. Lyngby, Denmark
{jbest, spchatz}@dtu.dk

Baosen Zhang
Electrical and Computer Engineering

University of Washington
Seattle, WA 98195
zhangbao@uw.edu

Abstract—The dynamic behaviour of a power system can be
described by a system of differential-algebraic equations. Time-
domain simulations are used to simulate the evolution of these
dynamics. They often require the use of small time step sizes and
therefore become computationally expensive. To accelerate these
simulations, we propose a simulator – PINNSim – that allows
to take significantly larger time steps. It is based on Physics-
Informed Neural Networks (PINNs) for the solution of the
dynamics of single components in the power system. To resolve
their interaction we employ a scalable root-finding algorithm. We
demonstrate PINNSim on a 9-bus system and show the increased
time step size compared to a trapezoidal integration rule. We
discuss key characteristics of PINNSim and important steps for
developing PINNSim into a fully fledged simulator. As such, it
could offer the opportunity for significantly increasing time step
sizes and thereby accelerating time-domain simulations.

Index Terms—Dynamical systems, Differential-algebraic equa-
tions, Physics-Informed Neural Networks, Time-domain simula-
tion

I. INTRODUCTION

Differential equations form a centre piece in the modelling
of the dynamic behaviour of power systems. They provide
very widely applicable component and system models, how-
ever, their solution requires numerical integration methods.
These tools for Time-Domain Simulations (TDSs) constitute a
workhorse of power system analysis and can reliably deliver
accurate solutions. The used algorithms are scalable, versatile,
and applicable without case-specific modifications, but they in-
cur a high computational burden [1]. Efforts around improved
solvers and parallelisation can reduce this burden, see [2], [3],
[4] for an overview. However, a fundamental problem is the
small time step size that is required by the schemes to ensure
accurate results and numerical stability. Hence many time steps
and function evaluations are necessary.

The proposition of Neural Network (NN)-based approaches
[5], and in particular Physics-Informed Neural Networks
(PINNs) [6], has very different characteristics. In the training
process, PINNs learn the solution to the provided differen-
tial equations and subsequently provide fast and sufficiently

This work was supported by the ERC Project VeriPhIED, funded by the
European Research Council, Grant Agreement No: 949899.

accurate solutions over long time intervals – addressing two
main issues of conventional numerical integration methods.
The authors in [7] refer to these NNs for simulating dynamical
systems as a direct-solution model.

As such, PINNs have been adopted to power system dy-
namics in [8] to predict single machine dynamics. In a similar
setup, the related methodology of operator learning is applied
[9]. Other learning-based methods for simulating dynamics
– see [7] for an overview – have also been explored in the
context of single components, e.g. in [10]. It is an open
question if the promising results for single components can
also be achieved when predicting the dynamics of multi-
machine systems. For PINNs, [11], [12] explored this question
for a 9, 11, and 39-bus system. The authors in [13] predict
power system transients with an alternative architecture which
relies on a transformation into the frequency domain. The
effect of generator outages is predicted in [14] and [15]
estimates system dynamics after line faults.

In the above cases, the speed advantage of learning-based
methods persists and the accuracy remains sufficiently high for
the trained setup. However, all approaches require assumptions
about the operating conditions, such as the network topology
and the set-points, as well as the disturbance type and location
during the dataset generation and the training of the model.
As a result these learning-based methods cannot be reliably
applied to unseen conditions or faults. If one attempted to
include all possible conditions and faults in the learning stage,
the resulting problem will not be tractable as the required
dataset becomes too high-dimensional [16]. Hence, attempts
to scale NN-based TDS approaches need to focus on limiting
the assumptions that are required for the learning task such as
operating conditions and disturbance characteristics.

To that end, we propose the simulator PINNSim. We first
learn the solutions of all dynamic components in the system
separately, i.e., with entirely independent PINNs. Thereby, the
learning tasks are of relatively low dimensionality and hence
remain tractable. Meanwhile, the use of PINNs allows us to
benefit from fast solutions for large time steps. To then perform
a TDS of the multi-machine system, we need to determine
the interactions between the components. We achieve this by
applying a root-finding algorithm similar to conventional TDS
algorithms; at this stage, no learning is required. As a result,

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



the scalability and flexibility of PINNSim become decoupled
from the difficulties of learning high-dimensional problems.
At the same time, we still can benefit from fast and accurate
solutions for larger time step sizes due to the use of PINNs.

In Section II, we present the conceptual motivation behind
PINNSim. In Section III, we introduce the power system
formulation and the methodology of PINNSim. Section IV de-
scribes the setup of the numerical experiments to demonstrate
a proof of concept and in Section V, we discuss the results
by highlighting key characteristics of PINNSim. Section VI
discusses the steps for developing PINNSim from a proof of
concept to a fully fledged simulator. Section VII concludes.

II. CONCEPT

To facilitate the presentation of the methodology in Sec-
tion III, we want to first describe the conceptual idea behind
PINNSim. It originates from the problem that we face when
solving Differential-Algebraic Equations (DAEs), a form of
differential equations where a set of algebraic equations con-
straints the differential equations. It formulates as

d

dt
x = f (x,y) (1a)

0 = g (x,y) (1b)

and we refer to x(t) as the differential variables and to y(t)
as the algebraic variables. The update function f (x,y) and
the algebraic relationship g (x,y) govern the dynamics of the
system1. Our interest focuses on the particular form of index-1
DAEs or semi-analytical DAEs [17]. This form implies that
g can be differentiated once with respect to time t which is
possible when ∂g

∂y is non-singular. Based on (1), we could
describe the temporal evolution of x and y as

x(t) = x0 +

∫ t

t0

f (x,y) dτ (2a)

y(t) = g′(x) (2b)

where x0 = x(t0) represents the initial condition and g′(x)
describes the solution to the algebraic equations given x. How-
ever, usually no analytical expression describes the evolution
x(t) and y(t) for a given x0. Hence, we revert to numerical
integration methods to obtain an approximate solution.

To resolve the non-trivial integration operation and the
implicit relationship g, numerical schemes often restrict the
functional form of x to a certain approximation x̂. For
instance, Runge-Kutta (RK) methods assume a polynomial
form of x̂(t) = x0 + a1(t − t0) + a2(t − t0)

2 + . . . as
they match the Taylor expansion up to a certain degree by
construction. The different RK schemes prescribe the order
of the scheme and the computation of the coefficients. When
algebraic variables are present, they have to be interfaced with
the approximation of the differential variable to incorporate
their interaction with each other. Simultaneous and partitioned
integration methods describe such routines [1] and are used

1For notational clarity, we formulate an autonomous, unforced system. The
conceptual idea can also accommodate non-autonomous and forced systems.

in many variations. The accuracy of these constructions is
dependent on the order of the used integration scheme and
potential “interface” errors. These considerations and aspects
of numerical stability limit the usable time step size.

By choosing a different functional form for x̂, like Fourier-
series based or around the Adomian decomposition [18], the
practical time step size might be increased. Due to their high
flexibility of their functional form, PINNs, and NNs in general
as suggested in [5], can allow significantly larger time steps.
In fact, we can even choose a functional form of ŷ(t) and
approximate x̂ = PINN(t, ŷ) in dependence of it. However,
this great approximation flexibility of PINNs comes with the
challenge of generalising well across the entire domain of
interest, i.e., being accurate over the entire domain and not
only on the training dataset. When the dimensionality of x
and y in (1) increases, the training of a PINN to approximate
a wide range of solutions becomes increasingly difficult and
eventually intractable. With PINNSim, we avoid this problem
by exploiting the structure of the power system specific DAEs.
The structure allows a decomposition of (1) into multiple
smaller sub-problems which remain tractable from a learning
perspective. At the same time, the use of PINNs allows
for large and accurate time steps of these sub-problems. To
simulate the entire system, we need to align the sub-problems’
solutions by enforcing the algebraic relationship g (x,y).

III. METHODOLOGY

This section describes the problem formulation and its de-
composition for PINNSim in Section III-A. We then describe
the main elements of the algorithm in Sections III-B to III-D
and lastly the entire algorithm in Section III-E.

A. Problem formulation and solution approach

The key relation for power system dynamics is described by
the current balance, i.e., Kirchhoff’s current law, and it needs
to hold at all times t and for each of the n buses in the net-
work. We distinguish between the complex current injections
stemming from the network īN ∈ Cn and from connected
components īC ∈ Cn. The former can be described by the
algebraic relationship (neglecting electro-magnetic transients)

īN = Ȳ v̄. (3)

where v̄ ∈ Cn represents the complex voltages at the buses
and Ȳ ∈ Cn×n the complex admittance matrix. The compo-
nent current injections īCi at bus i can stem from a dynamic
component, i.e., their behaviour is governed by differential
equations,

īCi = hi(xi, v̄i) (4a)
d

dt
xi = fi (xi, v̄i,ui) (4b)

where the current injection depends on the state vector xi ∈
Rp and the voltage v̄i of the bus i to which the component is

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



īN = Ȳ v̄

1

ii

m

m+ 1

m+ l

n

v̄1

v̄i

v̄m

v̄m+1

v̄m+l

v̄n

Network

Dynamic
component 1

Dynamic
component i

īCi = hi(xi, v̄i)
d
dtxi = fi(xi, v̄i,ui)

Dynamic
component m

Static
component 1

īCi = hi(v̄i)

Static
component l

īC1

īCi

īCm

īCm+1

īCm+l

Fig. 1. Structure of the DAEs that govern the power system dynamics with
current injections īC from the components, e.g., generators and loads, and
current flows in the network īN . Adapted from [19].

connected2. The update function f i can furthermore depend on
control inputs ui. For static components the current injections
becomes a function of the local voltage īCi = hi(v̄i). If no
component is connected to bus i, then īCi = 0. If multiple
components, indexed by k, were connected to the same bus,
their current injections īCi =

∑
k ī

C
i,k are summed up and the

resulting current injection then depends on the states of the
connected dynamic components xi,k and the local voltage v̄i.

Figure 1 schematically depicts this structure with m dy-
namic components, l static component, and n buses. When
we formulate the current balance

0 = īC(x(t), v̄(t))− īN (v̄(t)), (5)

and consider the system’s structure, we note that the com-
ponent currents īC have only a local dependency, i.e., to
their corresponding state vectors xi and the local voltage v̄i.
Their interaction arises from the coupling through the network
currents īN , which in turn only depends on all complex
voltages v̄.

PINNSim exploits this structure as follows: We assume a
voltage evolution ˆ̄v(t) – we denote all approximations with
the hat symbol ˆ – based on which we evaluate the resulting
network currents ˆ̄iN and the component currents ˆ̄iC . For the
latter, we furthermore require the state evolution x̂i of each
component; we approximate the necessary temporal integra-
tion with PINNs. When comparing the resulting currents

ˆ̄iC
(
x̂(t), ˆ̄v(t)

)
− ˆ̄iN

(
ˆ̄v(t)

)
(6)

the result will not equal 0 by default, i.e., the current balance
(5) is not obeyed. However, the mismatch indicates the quality

2For notational ease, we assume that component i is connected to bus i.
If component i was connected to bus j, v̄i would be replaced by v̄j . If a
component is connected to multiple buses, all of the corresponding voltages
will be included in hi(·) and fi (·) in (4a) and (4b).

of the approximation. By adjusting the assumed voltage evo-
lution ˆ̄v(t), we iteratively reduce this mismatch. The resulting
voltage ˆ̄v(t) and state x̂(t) evolutions constitute the solution
of PINNSim to the system of DAEs.

B. Parametrisation of the voltage evolution ˆ̄vi(t)

We describe the evolution of the complex voltage in polar
form v̄i(t) = Vi(t)e

jθi(t). To approximate v̄i(t), we express
the voltage magnitude Vi and the voltage angle θi as a power-
series with respect to time up to power r as suggested in [20]

ˆ̄vi(t) =

(
r∑

k=0

Vk,i(t− t0)
k

)
ej(

∑r
k=0 θk,i(t−t0)

k). (7)

The coefficients V0,i, V1,i, . . . , Vr,i and θ0,i, θ1,i, . . . , θr,i form
the parameters which we will later on update to improve the
approximation. The vector Ξi collects all parameters at bus i

Ξi =
[
V0,i θ0,i . . . Vr,i, θr,i

]
, Ξi ∈ R2(r+1). (8)

This parametrisation is repeated for all n buses in the system.
We concatenate all Ξi in the vector Ξ ∈ R2(r+1)n.

C. Solving component dynamics with PINNs

The exact solution for the evolution of the differential
variables xi(t) of a single dynamic component i can be
obtained by integration of (4b)

xi(t) = x0,i +

∫ t

t0

fi (xi(τ), v̄i(τ),ui) dτ. (9)

As there usually exists no explicit analytical solution to (9),
we need to approximate the solution. As motivated earlier,
using PINNs allows us to accurately approximate (9) over
large time steps ∆t = t− t0 while being fast to evaluate. The
approximation depends on the time step size ∆t, the initial
state x0,i, potentially the control input ui, and the voltage
profile v̄i. As we cannot train the PINN with an arbitrary
v̄i, we restrict the learning to the same form as in (7), i.e.,
v̄i ≈ ˆ̄vi(∆t,Ξi). Hence, the approximation of (9) will also
depend on Ξi

x̂i(t) = PINN(∆t,x0,i,Ξi,ui). (10)

The functional form of the PINN is a standard feed-forward
NN with K hidden layers parametrised by the weight matrices
W k and bias vectors bk and a non-linear activation function
σ

z0 = [∆t,x0,i,Ξi,ui] (11a)

zk+1 = σ
(
W k+1zk + bk+1

)
, ∀k = 0, 1, . . . ,K − 1 (11b)

x̂i = x0,i +∆t(WKzK + bK). (11c)

We adjust the last layer to enforce that the initial condition x0,i

is met if ∆t = 0, i.e., t = t0. Thereby we ensure numerical
consistency and can improve inaccuracies related to recursive
application of the PINN [5]. To train a PINN, we optimise

min
W 1,b1,...,WK ,bK

Lx + αLc, (12)

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



where Lx evaluates the prediction error based on a dataset D
of simulated data points

Lx =
1

|D|

|D|∑
j=1

∥∥∥x(j)
i − x̂

(j)
i

∥∥∥2
2

(13)

and a physics-based loss term Lc evaluated on collocation
points which do not require any simulation

Lc =
1

|Dc|

|Dc|∑
j=1

∥∥∥∥ d

dt
x̂
(j)
i − f

(
x̂
(j)
i , ˆ̄v

(j)
i ,u

(j)
i

)∥∥∥∥2
2

. (14)

The two loss terms are weighted with the hyperparameter α.
For a more detailed explanation of PINNs, we refer to [11].
Based on the evolution of the state x̂i(t) and the voltage ˆ̄vi(t),
we can calculate the current injection ˆ̄iCi by evaluating

ˆ̄iCi (t) = hi(x̂i(t), ˆ̄vi(t)). (15)

For each of the m dynamic components, we will train a
separate PINN and all training can be performed in advance
of executing PINNSim.

D. Updating the voltage profile
The approximations ˆ̄vi(t) and x̂i(t) are both continuous

functions and therefore the same holds for ˆ̄iCi (t) and ˆ̄iNi (t).
The current balance (5) will only be fulfilled, if ˆ̄iCi (t) =

ˆ̄iNi (t)
for the entire time step and at all buses. We express this notion
by requiring that the norm

∥∥∥ˆ̄iCi − ˆ̄iNi

∥∥∥ shall be 0. This norm∥∥∥ˆ̄iCi − ˆ̄iNi

∥∥∥ =

√
⟨̂̄iCi − ˆ̄iNi , ˆ̄iCi − ˆ̄iNi ⟩ (16)

is induced by the inner product ⟨ā, b̄⟩ between two complex
functions ā(t), b̄(t) over the interval [t0, t0 +∆t]

⟨ā, b̄⟩ =
∫ t0+∆t

t0

ā(t) b̄∗(t) dt. (17)

As ˆ̄iCi and ˆ̄iNi depend on the parametrised voltages ˆ̄v(t,Ξ), we
subsequently aim to find a parametrisation Ξ that minimises∥∥∥ˆ̄iCi − ˆ̄iNi

∥∥∥. To this end, we formulate the following optimi-
sation problem for the entire system as the sum of the norms
(we square (16) to avoid the calculation of the square root)

min
Ξ

n∑
i=1

∥∥∥ˆ̄iCi − ˆ̄iNi

∥∥∥2 . (18)

The above expression involves the integration∥∥∥ˆ̄iCi − ˆ̄iNi

∥∥∥2 =

∫ t0+∆t

t0

ℜ
(
ˆ̄iCi − ˆ̄iNi

)2
+ ℑ

(
ˆ̄iCi − ˆ̄iNi

)2
dt

which we approximate with the Midpoint rule, i.e., we split
the interval [t0, t0+∆t] into s equally sized intervals of width
∆t
s and sum the function value at the middle of these intervals∥∥∥ˆ̄iCi − ˆ̄iNi

∥∥∥2 ≈ ∆t

s

s∑
j=1

ℜ
(
ˆ̄iCi (tj)− ˆ̄iNi (tj)

)2
+ ℑ

(
ˆ̄iCi (tj)− ˆ̄iNi (tj)

)2
.

(19)

Thereby, we can approximate the optimisation in (18) as

min
Ξ

∆t

s
ρ⊤ρ (20)

where ρ collects all summands in a vector

ρ =



ℜ
(
ˆ̄iC1 (t1)− ˆ̄iN1 (t1)

)
ℑ
(
ˆ̄iC1 (t1)− ˆ̄iN1 (t1)

)
...

ℜ
(
ˆ̄iCn (ts)− ˆ̄iNn (ts)

)
ℑ
(
ˆ̄iCn (ts)− ˆ̄iNn (ts)

)


, ρ ∈ R2ns (21)

We solve the above non-linear least square problem by
iteratively updating the parameters Ξ(k+1) = Ξ(k) +∆Ξ. To
determine ∆Ξ, we compute the Jacobian

J =
∂ρ

∂Ξ

∣∣∣
Ξ(k)

, J ∈ R2ns×2(r+1)n (22)

at the values Ξ(k) and solve the linear problem(
J⊤J

)
∆Ξ = −J⊤ρ. (23)

To calculate J in (22), we use Automatic Differentiation (AD)
[21] as all computations for ˆ̄iC and ˆ̄iN are expressed as
explicit functions. While the size of J can become large, it has
a very sparse structure that can be exploited in its construction
and when solving (23) – herein lies the key to the scalability of
PINNSim as it closely resembles the structure of conventional
integration schemes such as the trapezoidal method.

E. PINNSim: The full time-stepping simulator

Algorithm 1 shows the integration of the previous sections
into the full PINNSim algorithm that is used for the computa-
tion of a time step. Its accuracy depends on the approximation

Algorithm 1 PINNSim - single time step
Require: x0, t0, tmax, ∆t, s, r, ∆Ξmax, kmax

Initialise: k = 0,Ξ(0),∆Ξ(0)

1: while ∆Ξ(k) > ∆Ξmax and k < kmax do
2: for component i = 1, . . . ,m & query points j = 1, .., s do
3: Predict state with PINN x̂i(tj ,x0,i,Ξ

(k)
i )

4: Calculate component injections ˆ̄iCi = hi(tj , x̂i,Ξ
(k)
i )

5: Calculate contribution of ˆ̄iCi to J
end

6: for query points j = 1, . . . , s do
7: Calculate network injections ˆ̄iN (tj ,Ξ

(k))

8: Calculate contribution of ˆ̄iN to J
end

9: Assemble J and solve
(
J⊤J

)
∆Ξ(k+1) = −Jρ

10: Update iteration Ξ(k+1) = Ξ(k) +∆Ξ(k), k = k + 1
end

11: return Trajectory across time step t, x̂(t), ˆ̄v(t) with Ξ(final)

quality of x̂(t) and ˆ̄v(t) and on the tolerance settings for
∆Ξ and the maximum number of iterations kmax. Therefore,
requirements on the resulting tolerance limit the suitable time
step size ∆t. By repeatedly applying Algorithm 1, we obtain
a time-stepping scheme that then allows the simulation of
dynamics beyond ∆t.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



IV. NUMERICAL EXPERIMENTS

This section presents the setup of the numerical experiments
to illustrate a proof of concept for PINNSim. The chosen
dynamical model describes power system dynamics, we note
though, that we use a simplified model as the focus lies on
the numerical aspects rather than obtaining insights into the
transient phenomena.

A. Power system modelling

As an example for a dynamic component, we consider a
two-axis generator model as modelled in [19].

T ′
do

T ′
qo

1

2H

 d

dt


E′

q

E′
d

δ

∆ω

 =


−E′

q−(Xd−X′
d)Id+Efd

−E′
d+(Xq−X′

q)Iq

ωs∆ω

Pm−E′
dId−E′

qIq−(X′
q−X′

d)IdIq−D∆ω


(24a)[

Id
Iq

]
=

[
Rs −X ′

q

X ′
d Rs

]−1 [
E′

d − V sin (δ − θ)
E′

q − V cos (δ − θ)

]
(24b)

īC = (ID + jIQ) = (Id + jIq)e
j(δ−π/2). (24c)

(24a) corresponds to (4b) and (24b) and (24c) to (4a). For this
study, we simplify the model above to a classical machine
model by setting the reactances to X ′

q = X ′
d and Xq = X ′

d

and then finding the integral manifold such that the internal
voltages E′

q and E′
d remain constant at E′

q0 and E′
d0 = 0. For

more details we refer to [19]. Now, the rotor angle δ and the
frequency deviation ∆ω form the state xi, the magnitude V
and angle θ of the terminal voltage form v̄i, and the mechanical
power Pm and the excitation voltage Efd form the control
input ui. More detailed components models could include
higher order electro-mechanical modes, governor dynamics
for Pm and exciter dynamics Efd. Similarly, inverter-based
resources or voltage dependent loads could be included.

The results in Section V will demonstrate how PINNSim
can effectively increase the allowable time step size. We
observe this characteristic already for the following simple
setup. We consider the IEEE 9-bus system described in [19,
pp. 164–167] with three generators (all modelled as classical
machines as above) with parameters from Table I. The initial
conditions x0,i and control inputs u are determined from
assuming an equilibrium state for the load flow case in [19].
To perturb the system, we reduce the mechanical power Pm

of generator 1 to 50% of its initial value and then observe the
resulting trajectory3.

B. Implementation and NN training

The entire simulator is implemented in PyTorch [22] as
we require the functionality of AD for the computation of
the Jacobian J and the training of the PINN models. Each
PINN consists of three hidden layers with 32 neurons and

3Here, we apply a disturbance that leaves the power flow at the time of
the event unchanged. In contrast, short-circuits and topology changes alter the
power flow as the algebraic variables change instantaneously. The resulting
jumps can be challenging for simulators. Treating these cases with PINNSim
will be addressed in future work.

TABLE I
GENERATOR PARAMETERS AND SET POINTS (ALL IN p.u.)

Gen. H D Xd X′
d Rs Pm Efd

1 23.64 2.364 0.146 0.0608 0.0 0.71 1.08
2 6.4 1.28 0.8958 0.1969 0.0 1.612 1.32
3 3.01 0.903 1.3125 0.1813 0.0 0.859 1.04

applies a tanh activation function. We employ a Xavier-
normalised initialisation [23] for the PINN parameters and
subsequently optimise them using a L-BFGS optimiser [24]
for 2000 epochs. For each generator the training dataset D
comprises 2500 simulated points, 500 of which form a vali-
dation dataset. The collocation dataset Dc has size 5000. For
all datasets we sample from the input domain which consists
of the prediction time step ∆t, the initial condition x0,i,
and a voltage parametrisations Ξi with r = 2. The bounds
of the resulting nine-dimensional input domain are shown in
Table II. They are chosen such that all conditions encountered
in the simulation are covered. We use the equilibrium values
δeqi , θeqi , V eq

i from the power flow solution in the definition of
the domain, but it can also be defined without this information.

The numerical simulations of the system of DAEs that serve
as ground truth are performed using Assimulo [25]. As a
direct comparison to PINNSim, we implement a trapezoidal
integration scheme, see [26]. The timing of the simulations
is conducted on a AMD Ryzen 7 PRO (1.9 GHz, 8 cores)
and 16GB RAM with the implementation of PINNSim that is
publicly available [27].

TABLE II
INPUT DOMAIN OF THE TRAINING DATASET

∆t δ0,i − δeqi ∆ω0,i

[0.0, 0.3] s [−π, π] rad [−0.86, 0.86]Hz

θ0,i − θeqi θ1,i θ2,i

[−π, π] rad [−0.3, 0.3] rad s−1 [−0.8, 0.8] rad/s2

V0,i − V eq
i V1,i V2,i

[−0.1, 0.3] p.u. [−0.4, 0.4] p.u. s−1 [−0.5, 0.5] p u /s2

V. RESULTS

The potential for accelerating TDSs with PINNSim relies
on increasing the time step size and thereby reducing the total
number of time steps compared to established methods such
as the trapezoidal method. We demonstrate this behaviour in
Section V-A on the test case. In Section V-B, we then illustrate
what allows PINNSim these larger time steps and describe in
Section V-C how the involved computational cost compare.

A. Accuracy of PINNSim for a full TDS

First, we consider a simulation of the described test case
over 2.5 s. PINNSim will return trajectories for all states xi(t)

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



−0.4

−0.2

0

0.2

0.4

∆
ω
2
[H

z]

∆t = 0.05 s

PINNSim Trapezoidal Ground truth

0 0.5 1 1.5 2 2.5

−0.4

−0.2

0

0.2

0.4

Time t [s]

∆
ω
2
[H

z]

∆t = 0.25 s

Fig. 2. The panels show the simulated trajectories of the frequency deviation
at machine 2 ∆ω2 with a trapezoidal and PINNSim time stepping scheme for
two time step sizes. The markers indicate the values at the time steps. The
curves within a time step stem from the prediction of the PINNs for PINNSim
and from a quadratic interpolation for the trapezoidal integration. The ground
truth stems from a highly accurate integration scheme.

and voltages v̄i(t). For clarity of the presentation, we will
subsequently only focus on one state, namely the frequency
deviation at machine 2, i.e., ∆ω2. Figure 2 shows the resulting
trajectory of ∆ω2. The grey dash-dotted line represents the
ground truth solution of the power system dynamics which
stems from the Assimulo solver with a tolerance setting of
10−12. The time-stepping schemes, i.e., PINNSim and trape-
zoidal method, return the values at the end of each time step,
indicated by the markers. To obtain the intermediate values we
either query the PINNs (for PINNSim) or apply a quadratic
interpolation (for the trapezoidal method). While PINNSim
and the trapezoidal rule accurately capture the dynamics for
a time step size of ∆t = 0.05 s, the trapezoidal rule fails to
track the evolution for a larger time step size of ∆t = 0.25 s.
In contrast, PINNSim captures the state evolution accurately.

We test this behaviour for more time step sizes and plot in

10−2 10−1

10−3

10−2

10−1

Time step size ∆t [s]

E
rr
o
r
m
a
x
|∆

ω̂
2
−

∆
ω
2
|[
H
z] PINNSim

Trapezoidal

Fig. 3. Comparison of the maximum error of ∆ω2 over a trajectory of 2.4 s
for a range of time step sizes ∆t.

Fig. 3 the maximum error within the simulation time interval.
The trapezoidal rule performs well for very small time step
sizes, but the errors quickly become very large - for reference,
the overall variation of ∆ω2 is around 0.8Hz. PINNSim leads
to an almost constant error characteristic, mostly with less than
0.01Hz error. The slightly increasing error towards smaller
time step sizes arises due to accumulating errors. The larger
errors for ∆t > 0.3 s are expected, as we trained the PINNs
only up to this time step size.

B. Accuracy of PINNSim on a single time step

In the following, we consider a single time step and show
the influencing factors on the accuracy. To obtain a range
of system states, we simulate the test case for 10 s with an
accurate solver and then extract 200 instances, i.e., every
0.05 s.

1) Voltage parametrisation: We use these 200 instances as
initial values to test the performance of PINNSim on a single
time step for different values of ∆t, the voltage profile order
r and the number of query points s. We evaluate these time

10−2 10−1
10−4

10−3

10−2

10−1

Time step ∆t [s]

E
rr
o
r
m
a
x
|∆

ω
2
−

∆
ω̂
2
|[
H
z] Trapezoidal

Voltage profile

r = 0

r = 1

r = 2

Query points

s = r + 1

s = r + 6

Fig. 4. Maximum error for single time step predictions of different length
∆t starting from 200 different initial conditions. Comparison between the
trapezoidal rule and PINNSim with different voltage scheme orders (r) and
number of query points s. Larger r and s, both improve the accuracy of
PINNSim.

steps with respect to the maximum error of ∆ω2 at the end of
the time step. Figure 4 reports the results. A main observation
is that PINNSim with r = 1 (linear voltage evolution) and
s = r+1 has a comparable relationship between accuracy and
time step size as the trapezoidal rule. However, when using
PINNSim with r = 2, the time step size can be significantly
increased without incurring much larger errors. For very small
time step sizes PINNSim offers no benefits over the trapezoidal
rule as the error decreases slower when reducing ∆t. We can
improve this characteristic for PINNSim by evaluating (19)
on more points, i.e., choosing a larger value for s, shown
as the dashed lines. The improved performance, in particular
for r = 1, originates from the better approximation of (18).
However, for large time steps, here for around ∆t > 0.2 s,
we additionally require r = 2 for accurate predictions; the
voltage evolution becomes too non-linear, hence, the linear
voltage approximation (r = 1) is insufficient. For r = 2, the

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



limitation in time step size arises as the training domain of
the PINNs was restricted to ∆t ≤ 0.3 s.

2) PINN accuracy: The performance of PINNSim relies
in large parts on how well each PINN approximates the
integration in (9) for a given voltage profile ˆ̄vi(t,Ξi). Figure 5
illustrates the results on a test dataset of 4000 points for
generator 2. Both panels show the same results, i.e., the
maximum and median error on the test dataset, but on a
logarithmic and linear x-axis. The logarithmic axis clearly
shows that for small time step sizes, the error of PINNs
decreases as we included a time dependency in the final layer
(11c). The linear x-axis gives a more intuitive understanding of
how much further PINNs can predict the dynamics accurately.
Only when reaching the limit of the training domain, the
accuracy deteriorates. Revisiting the error plots in Figs. 3
and 4, we can find that it is the particular error characteristic
of PINNs that allows the large time steps of PINNSim and
why it outperforms the trapezoidal method.

10−3 10−2 10−1
10−7

10−3

101

Training
limit

Time step ∆t [s]

E
rr
o
r
|∆

ω
2
−

∆
ω̂
2
|[
H
z]

0 0.2 0.4

Training
limit

Time step ∆t [s]

Predictor PINN Trapezoidal

Metric Max error Median error

Fig. 5. Error characteristics of the PINN for machine 2 on a test dataset.
Both plots show the same results but on a logarithmic x-axis (left) and a
linear x-axis (right) to highlight the accuracy of PINNs over large time steps.

C. Computation cost of a time step

The larger time step sizes of PINNSim come at an increased
computational cost compared to the trapezoidal rule. We first
analyse this cost of PINNSim from a perspective of scalability
and then provide a comparison of the total run-time based on
the implementation of this proof of concept.

In Algorithm 1, the evaluation of the inner loop (lines 2-
8) requires the calculation of network and component current
injections ˆ̄iN , ˆ̄iC and their sensitivity to Ξ. For the network
currents, this requires merely matrix-vector products and for
the component currents the evaluation of the PINNs. A single
evaluation (pass) of a PINN requires on the order of 1 µs, e.g.,
to compute the current injection. The sensitivity calculations
require only two additional passes thanks to AD. As all PINNs
could be evaluated in parallel, these computations can easily
be scaled to large system. The “expensive” computation arises
in the solution of the linear system of equations in line 9
of Algorithm 1, but its sparsity and known structure can be
exploited. A closely related calculation is required for the
trapezoidal rule.

0 2 4 6 8

10−9

10−4

101

Iteration k

E
rr
o
r

∆
t

s
ρ
⊤
ρ

s = r + 1

0 2 4 6 8

Iteration k

s = r + 6

Time step size

0.05 s

0.25 s

Voltage profile

r = 0

r = 1

r = 2

Fig. 6. Convergence of the objective value in (19) for different number of
query points s, voltage profile orders r and time step sizes ∆t.

The overall cost then scales linearly with the number of
iterations k per time step, i.e., line 1-10 in Algorithm 1, until
convergence is reached. We show in Fig. 6 the value of the
objective (19) over the iterations for two time step sizes and
different values of r. In the left panel, the least square problem
is fully determined (s = r + 1), hence the objective value
continues to decrease. In the right panel, the five additional
query points render the problem over-determined, hence the
algorithm converges at a non-zero objective value. In either
case, we observe that larger time step sizes require more
iterations, while the order of the voltage profiles primarily
affects the magnitude of the objective value and less its
convergence.

Lastly, we provide a comparison of the absolute run-times
for the trapezoidal method and PINNSim in Table III. We
report the run-time for different combinations of the time
step size ∆t, the number of iterations k per time step, and
the number of query points s for PINNSim. We observe that
one faces a trade-off between speed and accuracy with either
method. The best values are highlighted and we note that the
time step size and the number of iterations k have the biggest
influence on this trade-off. We want to stress though, that
neither method is optimised for speed, hence the presented
results are only indicative for the implementation in [27].

TABLE III
COMPARISON OF TOTAL RUN-TIME FOR SIMULATING 2.4 s

Simulator ∆t [s] k s run-time [s] max |ω2 − ω̂2| [Hz]

Trapezoidal
0.04

1 − 0.47 1.34× 10−2

2 − 0.90 1.24× 10−2

0.06 2 − 0.59 2.50× 10−2

PINNSim
0.20

5 3 0.72 1.59× 10−2

5 7 0.78 0.98× 10−2

6 3 0.88 0.88× 10−2

0.24
5 4 0.62 2.52× 10−2

5 7 0.67 1.48× 10−2

As stated in [11], [16], the cost of training the PINNs
has to be considered as well. Improving the efficiency and
performance of the training, e.g., through advanced PINN
architectures or hyperparameter tuning, however, can be de-
coupled from the analysis of PINNSim.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



VI. DISCUSSION

The presented results shall serve as a proof of concept of
PINNSim as a novel time stepping simulator. We demonstrated
that PINNSim outperforms the trapezoidal rule on the metric
of the allowable time step size. The following describes four
aspects that are necessary to turn PINNSim from a proof
of concept into a fully fledged simulator for power system
dynamics and to realise the potential acceleration of TDSs.

1) Speed: Numerical methods require a high level of opti-
misation in the implementation to become competitive.
For PINNSim this concerns primarily the optimisation of
the calculation of the residual ρ, the Jacobian J , and the
solution of the sparse linear system in (23). The focus
should therefore lie on controlling memory allocations,
utilising parallelisation, and exploiting sparsity patterns
for these computations.

2) Accuracy: The accuracy of PINNSim hinges around accu-
rately learned PINNs. We envision that this process can be
highly standardised, so that PINNs can be trained reliably
to high accuracy and with desirable error characteristics
for a wide range of dynamic components.

3) Scale: The analysis of the computational complexity of
PINNSim suggests its scalability but it remains to be
shown in practice. Furthermore, we need to investigate
the accuracy and convergence properties of the voltage
update scheme for larger systems.

4) Power system scenarios: In this work, we have considered
the dynamics of classical machine models under a set-
point change. Future work should include more detailed
dynamical models and apply PINNSim to short-circuits,
topology changes, and other numerically more demanding
setups to demonstrate its adequacy for the simulation of
power system dynamics.

VII. CONCLUSION

With PINNSim, we introduced a novel approach for time-
domain simulations that allows the integration of PINNs. As a
result we achieve accurate results with significantly larger time
steps than with the common trapezoidal method. Hence, we
require fewer time steps which could result in a significant
acceleration of time-domain simulations in power systems.
By design, we only require the training of PINNs for single
dynamical components and thereby enable the scalability
of PINNSim to large systems. Additionally, all calculations
at run-time are highly scalable and parallelisable, necessary
requirements to develop PINNSim into a powerful simulator.

REFERENCES

[1] B. Stott, “Power system dynamic response calculations,” Proceedings of
the IEEE, vol. 67, no. 2, pp. 219–241, Feb. 1979.

[2] Y. Liu and K. Sun, “Solving power system differential algebraic equa-
tions using differential transformation,” IEEE Transactions on Power
Systems, vol. 35, no. 3, pp. 2289–2299, May 2020.

[3] G. Gurrala, A. Dimitrovski, S. Pannala, S. Simunovic, and M. Starke,
“Parareal in Time for Fast Power System Dynamic Simulations,” IEEE
Transactions on Power Systems, vol. 31, no. 3, pp. 1820–1830, 2016.

[4] P. Aristidou, “Time-domain simulation of large electric power systems
using domain-decomposition and parallel processing methods,” Ph.D.
dissertation, Université de Liège, Liège, Belgium, 2015.

[5] I. Lagaris, A. Likas, and D. Fotiadis, “Artificial neural networks for
solving ordinary and partial differential equations,” IEEE Transactions
on Neural Networks, vol. 9, no. 5, pp. 987–1000, Sep. 1998.

[6] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational Physics, vol. 378, no. C, Nov. 2018.

[7] C. Legaard et al., “Constructing Neural Network Based Models for
Simulating Dynamical Systems,” ACM Computing Surveys, vol. 55,
no. 11, pp. 1–34, Nov. 2023.

[8] G. S. Misyris, A. Venzke, and S. Chatzivasileiadis, “Physics-Informed
Neural Networks for Power Systems,” in 2020 IEEE Power & Energy
Society General Meeting (PESGM), Montreal, QC, Canada, pp. 1–5.

[9] C. Moya, G. Lin, T. Zhao, and M. Yue, “On Approximating the Dynamic
Response of Synchronous Generators via Operator Learning: A Step
Towards Building Deep Operator-based Power Grid Simulators,” Jan.
2023, arXiv:2301.12538.

[10] T. Xiao, Y. Chen, S. Huang, T. He, and H. Guan, “Feasibility Study of
Neural ODE and DAE Modules for Power System Dynamic Component
Modeling,” IEEE Transactions on Power Systems, pp. 1–13, 2022.

[11] J. Stiasny and S. Chatzivasileiadis, “Physics-informed neural networks
for time-domain simulations: Accuracy, computational cost, and flexibil-
ity,” Electric Power Systems Research, vol. 224, p. 109748, Nov. 2023.

[12] C. Moya and G. Lin, “DAE-PINN: a physics-informed neural network
model for simulating differential algebraic equations with application to
power networks,” Neural Computing and Applications, vol. 35, no. 5,
pp. 3789–3804, Feb. 2023.

[13] W. Cui, W. Yang, and B. Zhang, “A Frequency Domain Approach to
Predict Power System Transients,” IEEE Transactions on Power Systems,
vol. 39, no. 1, pp. 465–477, Jan. 2024.

[14] C. Roberts et al., “Continuous-time echo state networks for predicting
power system dynamics,” Electric Power Systems Research, vol. 212, p.
108562, Nov. 2022.

[15] J. Li, M. Yue, Y. Zhao, and G. Lin, “Machine-learning-based online
transient analysis via iterative computation of generator dynamics,” in
2020 IEEE International Conference on Communications, Control, and
Computing Technologies for Smart Grids (SmartGridComm), pp. 1–6.

[16] J. Stiasny, “Physics-Informed Neural Networks for Power System Dy-
namics,” Ph.D. dissertation, Technical University of Denmark, 2023.

[17] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution
of Initial-Value Problems in Differential-Algebraic Equations. Society
for Industrial and Applied Mathematics, Jan. 1995.

[18] G. Adomian, “A review of the decomposition method in applied
mathematics,” Journal of Mathematical Analysis and Applications, vol.
135, no. 2, pp. 501–544, Nov. 1988.

[19] P. W. Sauer and M. A. Pai, Power system dynamics and stability. Upper
Saddle River, N.J: Prentice Hall, 1998.

[20] B. Wang, N. Duan, and K. Sun, “A Time–Power Series-Based Semi-
Analytical Approach for Power System Simulation,” IEEE Transactions
on Power Systems, vol. 34, no. 2, pp. 841–851, Mar. 2019.

[21] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic Differentiation in Machine Learning: a Survey,” Journal of
Machine Learning Research, vol. 18, no. 153, pp. 1–43, 2018.

[22] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Advances in neural information processing systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché Buc, E. Fox, and
R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.

[23] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics. JMLR
Workshop and Conference Proceedings, 2010, pp. 249–256.

[24] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for
large scale optimization,” Mathematical Programming, vol. 45, no. 1-3,
pp. 503–528, Aug. 1989.

[25] C. Andersson, C. Führer, and J. Åkesson, “Assimulo: A unified frame-
work for ODE solvers,” Mathematics and Computers in Simulation, vol.
116, pp. 26–43, Oct. 2015.

[26] F. Milano, Power System Modelling and Scripting, ser. Power Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

[27] J. Stiasny, “PINNSim implementation.” [Online]. Available: https:
//github.com/jbesty

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024

https://github.com/jbesty
https://github.com/jbesty

	Introduction
	Concept
	Methodology
	Problem formulation and solution approach
	Parametrisation of the voltage evolution i(t)
	Solving component dynamics with PINNs
	Updating the voltage profile
	PINNSim: The full time-stepping simulator

	Numerical experiments
	Power system modelling
	Implementation and NN training

	Results
	Accuracy of PINNSim for a full TDS
	Accuracy of PINNSim on a single time step
	Voltage parametrisation
	PINN accuracy

	Computation cost of a time step

	Discussion
	Conclusion
	References

