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Växjö, Sweden.
alexander.svenssonmarcial@lnu.se

Magnus Perninge
Department of Physics and Electrical Engineering,

Linnaeus University,
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Abstract—We propose a neural network using an unsupervised
learning strategy for direct computation of closest saddle-node
bifurcations, eliminating the need for labeled training data.
Our method not only estimates the worst-case load increase
scenarios but also significantly reduces the computational com-
plexity traditionally associated with this task during inference
time. Simulation results validate the effectiveness and real-time
applicability of our approach, demonstrating its potential as a
robust tool for modern power system analysis.

Index Terms—Saddle-node bifurcations, voltage stability, un-
supervised learning, deep learning.

I. INTRODUCTION

The rapid growth of intermittent energy sources, primary
wind and solar power, over the last decade renders it rea-
sonably to investigate the effect it has on voltage stability.
Unpredictable fluctuations in power generation and inaccu-
racies in forecasting can lead to overloaded transmission
lines, insufficient reactive power supply, and failures to meet
scheduled demands. These situations pose substantial risks to
voltage stability, potentially triggering a voltage collapse.

This paper addresses the aforementioned issue of voltage
stability by employing a direct method to compute the closest
saddle-node bifurcation. More specifically, we consider the
load flow model with k unknown system variables (voltage
magnitudes at PQ-buses and voltage angles at non-slack
buses) and ℓ uncertain injections (e.g. active and reactive
power injected at load buses and at buses connecting variable
production sources to the grid), as represented by

f(x, λ) = 0, x ∈ Rn, λ ∈ Rm. (1)

Following an approach similar to [1], we focus on the prox-
imity of a voltage collapse, avoiding assumptions regarding the
dynamics of load change and instead estimating the distance
to the worst-case load increase.
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To circumvent the online computational burden traditionally
associated with loading margin assessments, we introduce an
approach using deep learning. Specifically, we define the map
Λ∗ that takes a nominal parameter vector λp to a closest point
of the saddle-node bifurcation surface and train a multi-layered
(deep) neural network (DNN), denoted as Λ̂ to approximate
Λ∗.

When training neural networks, it’s crucial to differntiate
between supervised and unsupervised learning. The former
involves utilizing a dataset Ds = {(λi,Λ∗(λi)}. Here, λi

represents an input feature to the neural network while Λ∗(λi)
corresponds to the ground truth output that the neural network
is expected to produce given the input feature. The process of
supervised learning involves using a suitable performance met-
ric to enable the neural network to closely mimic the ground
truth. However, acquiring a comprehensive set of ground truths
can be difficult and in many instances impractical due to
the significant computational resources required. In contrast,
unsupervised learning diverges from the mimicking approach
and focuses on enabling the training process to autonomously
output the true solution, as will be detailed further in this
paper.

By employing an unsupervised learning strategy, our
method eliminates the necessity for labeled training data,
i.e. the training data augmented with the ground truth. The
proposed neural network learns directly from the data, effec-
tively harnessing the inherent structure and physical laws of
power systems. We assess the effectiveness of the proposed
scheme through a numerical simulation on a small power
system model, comparing our results to those obtained with
conventional iterative methods. The results reveal the proposed
method’s potential for generating stability margins appropriate
for real-time use.

In conclusion, this paper offers a new solution to the issue of
voltage stability in power systems. Our approach combines the
robustness of saddle-node bifurcation computations with the
computational efficiency afforded by deep learning, providing
a promising tool for managing the dynamics of today’s power
grids with increasing renwable energy penetration.
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A. Related literature

The examination of voltage stability often entails approxi-
mating operational boundaries through loadability surfaces in
parameter space [2]–[4]. However, due to the complexity of
practical power systems, achieving a parametrization of the
loadability surface is practically unattainable

To remedy this, the approach of finding the closest point
on the loadability surface has instead gained considerable
attention in litterature, [1], [5]–[7]. Exploring the loadability
surface by means of continuation methods have been proposed
in [5], [8]–[10]. Other methods that have been investigated is
loadability surface approximations, such as local approxima-
tions [11]–[13] and global approximations based on Galerkin
methods [14]. A challenge with local approximations is the
non-smoothness, of the saddle-node bifurcation surface. This
non-smoothnes arises mostly due to changes in power system
limits [13], [15].

In addition to conventional iterative methods, various al-
ternative approaches have been explored in the literature.
For instance, genetic algorithms [26] have been employed
to find the closest saddle node bifurcation. On the subject
of voltage stability assesment, researchers have also utilized
neural networks [28]. Here the authors use a combination of
graph neural networks with long-short term memory networks,
utilizing time series data as inputs to evaluate short-term
voltage stability. A method using similar methods to the
one proposed in our paper can be found in [27], were the
author utilized neural networks for load margin assesment
through the interleaving of two neural networks. Care was
taken to ensure that constraints were not violated,employing a
methodology that combines supervised learning with physics-
guided principles.

Whereas we have not been able to find any paper that ap-
proximates the distance to the saddle-node bifurcation surface
using DNNs, the optimal power flow problem has had a recent
resurge due to the implementation of DNNs [16]–[18].

II. THE LOADABILITY SURFACE

In the context of voltage stability analysis, the concept
of saddle-node bifurcation loadability limit is one of the
most common ways of assessing the stability. Saddle-node
bifurcations are crucial as it denotes the boundary at which
voltage collapse may occur. A saddle-node bifurcations is a
point in parameter space in which the system moves from
a stable state into an unstable state. The collection of these
points forms the saddle-node bifurcation surface Σ := ∂U ,
with U := {λ ∈ Rm : ∃x ∈ Rn, f(x, λ) = 0} in
particular, [6] offers an expression of characterizing a saddle-
node bifurcation surface as

0 = ΨSNB(x, λ, v) =

 f(x, λ)
fx(x, λ)v
vT v − 1

(2)

In a saddle-node bifurcation, the jacobian of the power flow
equations f(x, λ) becomes singular. This fact is reflected by

the eigenvector, v, corresponding to the zero eigenvalue of the
jacobian matrix.

Given a nominal parameter vector λp ∈ U , it is of interest
to find a point λ∗ ∈ Σ for which the distance ∥λp − λ∗∥ is
minimal, as it can be used to assess the risk of voltage collapse.

III. PROXIMITY TO THE SNB-SURFACE

With the present papers focus on saddle-node bifurcations
we assume an n-bus power system with a predefined set of
PQ-buses and voltage controlled buses. Furthermore, let f :
Rk × Rℓ → Rk denote the power flow equations, under the
assumption that the parameter space has dimension ℓ. The
saddle-node bifurcation surface can then be defined as

Σ := {λ ∈ Rℓ : ∃(x, v) ∈ R2k, ΨSNB(x, λ, v) = 0}.

A. An iterative approach

The normal vector nΣ(λ0) to the surface Σ at the point λ0 ∈
Σ can be determined from the jacobian matrix, fx(x0, λ0),
where x0 ∈ Rk satisfies f(x0, λ0) = 0. Specifically, if
w ∈ Rk is the left eigenvector (assuming multiplicity one)
corresponding to the zero eigenvalue of the jacobian matrix,
then

nΣ(λ0) = αw⊤fλ(x0, λ0) (3)

where α ∈ R is chosen such that ∥nΣ(λ0)∥ = 1 and
ensuring that the normal is oriented outwards from the saddle-
node bifurcation surface.

In an method involving successive computations of nΣ(λ0),
the authors of [1] introduced an iterative method for finding
a closest point on the saddle-node bifurcation surface. By
initializing the method with a parameter λp ∈ U and a
direction d0 ∈ Sℓ−1 (ℓ − 1 dimensional unit sphere.) the
authors of [1] use continuation methods to find the point
λ1 ∈ Σ for which the ray λp + rd0, r ≥ 0, intersect.
Effectively the continuation method results in r∗0 such that
λ1 := λp + r∗0d0, ending the first iteration. In the successive
iteration the directional vector of load increase is chosen to
d1 := nΣ(λ1) computed from (3). This algorithm as proposed
by [1] generates a sequence of points (λi)i≥0 on Σ such that
limj→∞ λj ∈ argmin{∥λ − λp∥ : λ ∈ Σ}, provided the
assumption of Σ having sufficiently nice properties, such as
convex or not too concave.

B. A direct method

The work of [6] proposes an alternative to the iterative
approach. In this context, λ∗ serves as a fixed point of the
previously mentioned iterative algorithm. Consequently, due
to the fact that nΣ(λ

∗) is paralell to λ∗ − λ imples that there
are points (x∗, w, k) ∈ R2n+1 such that


f(x∗, λ∗) = 0

w⊤fx(x
∗, λ∗) = 0,

w⊤fλ(x
∗, λ∗)− k(λ∗ − λ) = 0,

w⊤w − 1 = 0.

(4)
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A direct method emerges by searching for solutions to (4)
using standard numerical algorithms.

IV. A DEEP LEARNING METHOD

The iterative and the direct methods described in the previ-
ous section can be used to find the closest point on the SNB
surface to a given parameter vector λp. Effectively, this gives
us a single point of the map Λ∗ : U → Σ, where U ⊂ Rm is
the set of feasible parameter vectors, satisfying

Λ∗(λp) ∈ argmin{∥λ− λp∥ : λ ∈ Σ}. (5)

In power system operation, the randomness of demand and
variable production sources introduce uncertainty in the system
parameters and for online supervision and planning purposes,
the system operator would ideally like to have full access to
the entire map Λ∗. In this section we explain how unsupervised
deep learning can be used to find an accurate approximation Λ̂
of Λ∗ using limited computational sources at inference time.

The main ingredient in the algorithm that we propose is to
rewrite the optimization problem

min
(x,λ,w)∈R2n+m

∥λ− λp∥

s.t. f(x, λ) = 0,

fx(x, λ)w = 0,

w⊤w − 1 = 0

(6)

using an augmented Lagrangian formulation to get an
unconstrained minimization problem and then use to corre-
sponding objective function to train our neural network.

A. Power system model

In the context of this paper, an n-bus power system with
fixed network topology is considered. The indices for the
nodes of the power system are assumed to be in the set
N = {i : i = 0, 1, ..., n − 1}. It is further assumed that the
power system in consideration has m voltage controlled buses,
whose bus indices are located in NPV ⊂ N . Consequently,
there are n−m− 1 load buses located at NPQ ⊂ N .

The focus in present paper is on steady state analysis of
power systems, it is therefore reasonable to assume constant
power loads. Hence, it is assumed that there are subsets Dp ⊆
NPQ and Dq ⊆ NPQ on which there are non-zero active and
reactive loads respectively. The load vector is represented as
λ = (λP , λQ) ∈ R|Dp|

+ × R|Dq|.
For each i ∈ NPV , the generator at corresponding bus

will produce the fixed active power pg,i ∈ R+ and variable
reactive power qg,i ∈ R, as determined by the solution of
load flow equations. The active- and reactive power output
of the generators can compactly be denoted as the vectors
pG = (pg,i)i∈NPV

and qG = (qg,i)i∈NPV
. For the scope of

this paper we will not assign any upper- or lower bounds on
the reactive power generation and thus let qG take values in
Rm.

Given this power system model, the state can be defined as
x = (Vm, δ) where, Vm ∈ Rn−m−1

+ and δ ∈ [0, 2π]n−1.

With the model described as above, the power flow equa-
tions can be written as

f(x, λ) =

 fG(x)− PG

f0(x)
fL(x) + λ


where
• fG corresponds to the active power injection at PV nodes

in NPV

• f0 gives the active and reactive injected power at PQ
nodes where there is no generation or load present. I.e.
in buses NPQ\Dp and NPQ\Dq respectively.

• fL outputs the active and reactive power injection at
nodes where these are uncertain, that is in Dp and Dq

respectively.
It should be noted that while the model presented in this

section has the load exclusively on PQ-buses, the method
presented in subsequent section allow for the more general
case in where arbitrary buses can be equipped with passive
loads. The chosen model in present paper is merely for ease
of notation.

B. Augmented Lagrangian formulation

The previous section introduced (6), arising from the objec-
tive of finding a λ∗ ∈ argminλ{∥λ− λ0∥ : λ ∈ Σ} such that
the conditions in (2) are satisfied.

By leveraging on the approximation capabilities of neural
networks, a neural network Λ̂(λp, θ), is in this paper proposed
to approximate Λ∗. The parameter θ is a vector of trainable
weights for the neural network. Therefore, the objective of the
training process is to find a parameter θ∗ such that the neural
network output is a good approximation of Λ∗

Acquiring labeled data for the problem at hand would
entail finding a multitude of mappings Λ∗(λp) from a sample
data set D. To circumvent this, the neural network training
procedure proposed in this paper is trained using unsupervised
learning. This necessitates the replacement of labels, typically
used in a supervised setting, with a strategy that enables the
network to learn from the data itself, guided by physical
laws and other constraints. Therefore, (6) is relaxed into an
unconstrained optimization problem through the application
of the Augmented Lagrangian Method (ALM).

The ALM iteratively solves a sequence of sub-optimization
problems. The Lagrangian of (6) is supplemented with a
penalty term to form the augmented Lagrangian, represented
as:

Lk(x, λ,w, µk, ρk) =
1

2
∥λ− λ0∥2

+ µkh(x, λ,w) +
ρk
2
∥h(x, λ,w)∥22

(7)

where

h(x, λ,w) =
(
f(x, λ) wfx(x, λ) wTw − 1

)T
is the vector of equality constraints and
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µ =
(
µT
1 µT

2 µ3

)
the vector of Lagrange multipliers.

The augmented Lagrangian penalizes violations of the
equality constraints, each weighted by a factor ρk. Each sub-
optimization problem is indexed by k and µk serve as a
parameter to approximate the Lagrange multiplier µ∗. Hence,
for each k we solve for

x∗
k = argmin

x
Lk(x, λ,w, µk, ρk) (8)

For each iteration k, µk and ρk are kept constant, while
minimizing the augmented Lagrangian. Once a (local) mini-
mum has been obtained, multipliers are updated according to
the update rule

µk+1 = µk + ρkh(x
∗
k, λ

∗
k, w

∗
k)

and

ρk+1 = cρk, c ≥ 1

Then, under mild regularity conditions, see e.g. [19], one
can show that {xk} → x∗ and {µk} → µ∗ giving the
necessary conditions for local minima, ∇xL(x∗, µ∗) = 0 and
∇µL(x∗, µ∗) = 0.

C. Unsupervised learning
A supervised approach to the present problem would be to

train the neural network using a dataset D = {λi
p, λ

∗,i}Mi=1,
with λi

p being the input feature and λ∗,i := Λ∗(λi
p) the ground

truth obtained by employing either of the techniques proposed
in the previous section. The network is trained by minimizing
the empiric risk,

min
θ

1

M

M∑
i=1

∥Λ̂(λi
p; θ)− λ∗,i∥22. (9)

While this is a common regression approach for neural net-
works, it does not ensure that the output is feasible. To
remedy this, a regularization term can be added, which in
this constrained setting is a function penalizing constraint
violations. Similar approaches have been used within the realm
of deep learning based optimal power flow, see e.g. [17].

A key observation above is that our optimization problem
does not need to involve a direct search over parameters
λ ∈ Σ. To approach the deep learning approximation of Λ∗ we
consider a different network F̂ (λp, θ) = (X̂(λp, θ), Ŵ (λp, θ))
the output of which represents the vector of unknown voltage
components x ∈ R2n−m−2 and eigenvector w to the power
flow Jacobian corresponding to the zero eigenvalue. The
principal layout of the neural network used is illustrated in
Fig. 1.

We will then search for a weight θ∗ such that
∥fL(X̂(λp; θ

∗)) − λp∥ ≈ Λ∗(λp) for each λp within the set
of feasible parameters. Effectively, this corresponds to setting

Λ̂(λp; θ) := ∥fL(X̂(λp; θ
∗))− λp∥,

λ1

λ2

λk

...

...

h1
1

h1
2

h1
3

h1
h1

h2
1

h2
2

h2
3

h2
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hN
1

hN
2

hN
3

hN
h3

V1
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δ1
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Vm

δ

w

...
...

Hidden layersInput layer

...

... ...

Fig. 1. Neural network architecture

a formulation designed to implicitly guarantee that load-flow
feasibility is retained in all load buses.

Given a dataset D = {λp}Mi=1, the distance ∥Λ̂(λi
p, θ)−λp∥

should be minimized over all samples in D while adhering to
the constraints (6). We can therefore formulate the training as
the following optimization

argmin
θ

M∑
i=1

∥fL(X̂(λi
p; θ))− λp∥ (10)

s.t. f̃(X̂(λi
p; θ)) = 0, ∀λi

p ∈ D (11)

fx(X̂(λi
p; θ), ·)V̂ (λi

p;α) = 0, ∀λi
p ∈ D (12)

(Ŵ (λi
p; θ))

⊤Ŵ (λi
p; θ)− 1 = 0, ∀λi

p ∈ D (13)

where Ŵ (λi
p; θ) is an auxiliary output of the neural network

that, when properly trained, should output the eigenvector to
the power flow Jacobian corresponding to the zero eigenvalue
at the closest saddle-node bifurcation point.

To incorporate the above optimization problem in the
backpropagation of the networks, we first need to relax the
above problem into an unconstrained optimization problem.
Lagrangian relaxation is a common method in conventional
constrained optimization that has been successfully applied
in the training of neural networks for constrained optimiza-
tion problems. In [16] it is used to solve supervised AC-
OPF using two networks for predicting the primal and dual
variables respectively. In [17], [18] a penalty function is used
as a regularization term in the loss function for penalizing
deviations from the constraints. In this paper we will resort to
use the ALM.

In the field of constrained optimization using machine learn-
ing, the augmented lagrangian has been reported successful.
In particular, physics informed neural networks such as in [20]
[21] [22] make use of ALM as relaxation.

D. Neural network architecture

Common with the previous cited work of using deep neural
networks for approximating optimization problems, the neural
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network architecture employed in this paper is a feed-forward
deep neural network.

The input to the neural network is the load vector λ =
(λP , λQ), giving a total of |Dp| + |Dq| input neurons. The
input layer is followed by a sequence of hidden layers, hi

each having hi neurons. The number of neurons per hidden
layer is dependent on the power grid model under study. In
general, power grids with large amount of nodes often call for
more neurons in the hidden layers for better approximations. In
terms of activation functions, the recticifer linear unit (ReLU),
ϕ(x) = max{0, x}, is used throughout the hidden layers.

For the output layer, 2|N |−|NPV |−1 neurons are dedicated
for representing the state vector X̂ = (xv, xδ). In terms of the
voltage magnitude prediction, the set for which the amplitude
take values from is the set [Vmin, Vmax]

n−m−1. Similarily, the
voltage angles are defined to take values in the set [−π

2 ,
π
2 ]

n−1.
To enforce that the voltage magnitude and angles fall within
these sets, we make use of the sigmoid activation function.

While it is possible to directly output the state vector in
terms of votage magnitude and angle, it was found during
testing that a more suitable approach in terms of numerical
stability was to use an implicit representation of the state
vector, x. As such, a complex representation of the voltages
is used, Vi = Vm,i(xi + jyi) with |xi + jyi| = 1. Thus, by
letting yi ∈ [−1, 1], effectively renders arg Vi to be confined
in the specified range.

Specifically, on the neurons representing the state vector
X̂ (Vm and δ neurons in Figure 1), the sigmoid activation
function is applied,

σ(X̂) = (σ(xv), σ(xδ)) ∈ [0, 1]n−m−1 × [0, 1]n−1

The predicted voltage magnitude can then be recovered as

σ(xv) 7→ Vmin + σv(xv)(Vmax − Vmin)

The voltage angles are determined implicitly by considering
the complex representation of voltages, by letting the neural
network output the imaginary part of a complex number with
unit magnitude.

σ(xv) 7→ 2σ(xδ)− 1

An additional set of 2|N |− |NPV |−1 neurons are devoted
for representing the eigenvector w.

Given that the network is designed to output the eigenvector
w, we can enforce the constraint (13) at the output directly,
by normalizing the output.

E. Training

Based on a base case power system model with a feasible
load λ0, the set of load samples D is created by randomly
sample points from the set Br(λ0) = {λ : ∥λ − λ0∥ < r} ∩
R|Dp|

+ ×R|Dq|. D is further split into two disjoint sets DT and
DE , where the former is used for training the neural network
and the latter for evaluating the performance of the trained
neural network.

Following the ALM, the training of F̂ involves solving a
sequence of optimization problems. A pre-defined amount,κ
of outer-iterations is performed. Within each outer-iteration
we randomly sample a mini-batch B ⊂ D and update θk using
the Adam optimizer [23]. The entire dataset is processed up to
nepoch times, hence the inner iteration follows a conventional
training process. However, in an effort to avoid overfitting and
reduce training time, early stopping with a fixed patience is
used. The loss is evaluated in between epochs and if the loss is
not improved for a fixed number of epochs, the inner iteration
is interrupted. Further, an adaptive learning rate is used, and
the learning rate is reduced if the loss is not improved. Note,
the learning rate is is reverted back to the initial learning rate in
each new outer iteration. Once an inner iteration is completed,
the lagrange multipliers are updated in accordance with the
ALM algorithm,

γk+1 = γk + ρkg(x
∗
k) (14)

µk+1 = max{0, ρkh(x∗
k)} (15)

Data: Training dataset DT
Result: optimal parameter θ∗

µ0 ← 0;
ρ0 ← ρinit;
for k ← 0 to K − 1 do

minimize Lk(θ, µk, ρk) using Adam.;
µk+1 ← max{0, µk + ρkh(F̂ (SD; θk)};
if ∥h(x)∥∞ > η∥h∗∥ then

h∗ ← ∥h(x)∥∞ ρk+1 ← min{γρk, ρmax}
end

end
Algorithm 1: Training the neural network

V. NUMERICAL RESULTS

For illustrating the proposed approach, we consider the same
power system topology as the one used in the IEEE-24 bus
system, with 11 voltage controlled buses and 12 PQ-buses.

The neural network is implemented using the pyTorch
library and trained on a MacBook pro 2 GHz Quad-Core Intel
core i5, 16 GB RAM.

A. Hyperparameters

Each hidden layer comprises of 512, 256 and 128 neu-
rons respectively. The training dataset consists of a total of
|D| = 10986 samples, out of which 986 samples are reserved
for testing the neural network. The samples were obtained by
randomly selecting points in a ball centered at the base case
load λ0 with a radius, r = 50 (MVA).

In terms for the loss function, and the augmented La-
grangian algorithm, the outer-loop was set to 50 iterations
whereas the inner iteration count was set to 50 epochs. The
learning rate was set to 10−4, however an exponential decay
strategy were used with a decay factor, γ = 0.9. The learning
rate is decayed if the loss is not improved for 5 consecutive
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TABLE I
RESULTS OF TESTING THE TRAINED NEURAL NETWORK.

Mean Min Max
Opt. Gap [%] 1.24 7 · 10−4 8.74

f(x̂) 3 · 10−4 2.39 · 10−8 9 · 10−4

Fig. 2. Optimality gap

epochs, only to be reset between outer-iterations. Furthermore,
early stopping is practiced, where the inner iteration is halted if
the loss is not improved for 10 consecutive epochs. The initial
penalty factor for the augmented Lagrangian algorithm was set
to ρ0 = 100. To avoid numerical instability, the penalty factor
is capped at ρmax = 12000. Finally, the Lagrange multipliers
are initialized to zero.

B. Performance

To evaluate the accuracy of the neural networks accuracy
in approximating Λ∗, the samples in DE were used as input
for the iterative approach presented in section III-A to serve
as ground truth. The results obtained using the test set are
displayed in Table 1, as well as the histograms over the
optimality gap, shown in Figure 2.

The optimality gap prestented both in the table and the
histogram is computed according to

Ogap =
|Λ̂(λ, θ∗)− Λ∗(λ)|

Λ∗(λ)
(16)

VI. CONCLUSION

Based on the iterative- and direct approaches detailed in [6]
and [1] we proposed the parametric approximation Λ̂(λp, θ) of
Λ∗(λp), to find the minimal distance to the saddle-node bifur-
cation surface, given a stable point (xp, λp). While accurate,
the iterative and direct methods are computational intensive
which may pose a problem in time-senstivie applications,
such as real-time assesment of the margin to voltage collapse.
While training neural networks is associated with needing high
computational resources in terms of memory and processing
power, a trained neural network, given an input, provides
outputs momentarily.

Owing to the fact that the saddle-node bifurcation surface
can be characterized by a set of equality constraints, the
problem of finding the closest saddle-node bifurcation can be
formulated as a constrained optimization problem. As such,
the problem can be relaxed using the Augmented Lagrangian
method to formulate a concise loss function, suitable for
training the neural network. The Augmented Lagrangian for-
mulation allows the training to learn an optimal parameter
θ∗ by penalizing constraint violations while minimizing the
distance to the saddle-node bifurcation surface. While possible
to train the neural network using supervised learning, generat-
ing a large sample set D and the corresponding labels Λ∗(D)
is highly time-consuming. However comparing the different
approaches is indeed interesting for a future work.

In the numerical example, the IEEE-24 bus system was
used. Using the iterative approach as ground truth in evaluating
the accuracy of the neural network, 80% of the points in the
test dataset had a relative error of less than 2%. While this
work focused on the common fully connected feedforward
neural networks, there may be other architectures worth ex-
ploring in future work. In particular, practical power systems,
comprising thousands of nodes may be difficult for the neural
network architecture used in this paper. In terms of potential
scalability, it is evident from the literature that architectures
similar to the one used in this paper have been utilized to
address various computational tasks within the scope of power
system analysis. Specifically, solving the Optimal Power Flow
(OPF) problem, characterized by its non-convexity and non-
linearity has been approached in several papers using deep
neural networks to approximate the results. In [24] the authors
predicts the OPF solution using neural networks and showcase
their findings on the PEGASE 1354 bus system. Similarily, in
[25] the authors demonstrate the application of deep neural
networks using a power system model comprising 30 000
buses.

A key aspect of this paper is that we demonstrate a neural
networks ability to approximate the solution of the SNB
problem without a large dataset containing ground truths.
Specifically, we showcase a method allowing the network to
autonomously learn the approximate solution through power
flow equations, therby circumventing the need for ground truth
all together. It is well-known that training neural networks is a
computational demanding task. However, this process occurs
offline, allowing a trained network produce accurate solutions
to the problem on-demand. This capability is in our view a
key strength to the proposed method as we envision scenarios
where one need numerous solutions for various load situations
aiding in prediction task.
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