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Abstract— Fault location (FL) is one of the main challenges in 
Advanced Distribution Automation (ADA) of Active Distribution 
Networks (ADN). One of the commonly used strategies by utilities 
to deal with this challenge is the use of Fault Indicators (FIs), 
which indicate to the operator the path taken by the fault current. 
However, a good performance of this scheme depends on the 
number of installed devices, a high number of them could cause a 
high cost for the utility investment planning. In this context, this 
paper presents an artificial intelligence-based fault location 
strategy that determines the number and location of FI into ADN 
to maximize performance in fault section estimation. To achieve 
this objective, the ADN is divided into sections, and the FL 
problem is modeled as a classification problem to train an 
Artificial Neural Network (ANN). To determine the number of 
FIs to be installed and their location, the strategy uses the three-
phase current magnitudes measured by the FI as features for an 
ANN model. Also, the strategy uses a feature selection and tuning 
scheme based on a multiverse optimization algorithm (MOA) to 
identify the features that maximize the accuracy of the ANN 
model. The strategy was validated on the IEEE123-node test 
feeder. The results showed accuracy close to 99.4% with a 
reduction of 40% of the number of FIs when compared with other 
method. The strategy shows its simplicity and promising 
prospects to apply it in the utility’s investment planning. 
 
Keywords: Fault indicators, Fault Location, Microgrids, 
Artificial Neural Networks 

I. INTRODUCTION 
Currently, significant efforts have been made to achieve an 

energy transition to clean energies with the aim of reducing 
greenhouse gas emissions. One of the main allies of this 
transition is the electrification of processes that use fossil fuel-
based energy resources such as transportation [1]. However, 
this requires the massive integration of non-conventional 
renewable energy sources throughout the electric power value 
chain, including distribution systems. Resources such as 
Distributed Generation (DG) and Energy Storage System (ESS) 
integrated into distribution networks have typically been 
referred to as Distributed Energy Resources (DER). 

The integration of DER has driven the modernization of 
distribution networks, transforming them into Active 
Distribution Networks (ADN). These networks are 
characterized by integrating automation and control 
functionalities through an ADA infrastructure, which involve a 

fault location (FL), isolation and service restoration (FLIRS) 
functionalities to improve system reliability [2]. One of the 
main tasks of FLIRS is fault location.  The specialized literature 
has dealt with this task by using methods  such as fault apparent 
impedance estimation [3]–[5], traveling waves [6], [7] and 
artificial intelligence techniques [8]–[12]. However, several 
utilities worldwide have chosen to carry out this task by using 
FIs to reduce the multiple estimation presented by the 
previously methods [13]. 

Some FL methods based on FIs have been proposed in the 
technical literature. In [13] is presented a strategy for the 
allocation of FIs to eliminate the multiple estimation of the fault 
point presented by apparent impedance-based FL methods. The 
study considers the effect of DG integration on the allocation of 
FIs. However, the FIs do not improve the performance of the 
impedance-based FL method and the methodology does not 
consider the presence of microgrids. 

On the other hand, in [14] a FL method using smart meters 
and FIs is proposed. The method proposes an analytical model 
based on Mixed Integer Linear Programming (MILP) where 
each hypothetical FL is modeled as decision variables. 
However, although the FL method considers the integration of 
DG, the problem is not solved when having high DG 
penetration or integrated microgrids. In addition, the method 
does not determine the number of smart meters and FIs for 
improve FL performance. In the same way, in a study by [15], 
a MILP model was introduced to determine the optimal number 
and placement of fault management equipment within a 
distribution network. This fault management equipment 
encompasses FIs, manual switches, and remotely controlled 
switches (RCS). The objective function of this method involves 
various factors, such as the cumulative cost associated with FIs 
and sectionalizing switches. However, while the formulation of 
the problem does incorporate considerations for locating and 
optimizing the number of FIs, the potential influence of DG and 
the integration of microgrids was not considered. 

Alternatively, in a recent work by [16], a fault identification 
methodology was introduced, which is integrated into an Asset 
Management System (AMS). This AMS effectively combines 
data originating from FIs, a Distribution Dispatching Control 
System (DDCS), and a Feeder Dispatching Control System 
(FDCS). Their fault identification model, based on Petri-net 
technology, was constructed using an Automated 
Mapping/Facilities Management/Geographic Information 
System (AM/FM/GIS). The AMS draws upon information Submitted to the 23rd Power Systems Computation Conference (PSCC 2024). 
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from the DDCS and the FDCS to access the statuses of FIs and 
the loads on feeders and laterals. This supports quick FL and 
isolation in conventional distribution systems. However, the 
proposed method, while effective for conventional systems, 
does not incorporate DERs or microgrids and the optimization 
of the number of FIs was not addressed in their FL 
methodology, which could potentially enhance FL efficiency. 
Also, in [17], the concept of a "fault zone" is introduced, 
referring to the part of an electrical system where FI devices 
activate. The research proposes a method focused on 
strategically placing FIs in system locations that lead to smaller 
fault zones. This approach highlights the importance of sitting 
FIs near areas with high power demand to reduce service 
interruption costs. However, this proposal specifically 
addresses radial distribution networks and does not consider the 
unique characteristics of ADN, including aspects related to DG 
and microgrid integration. Moreover, the method does not 
explore the optimization of the number of FIs but assumes a 
fixed quantity of FIs to be used. 

Similar to [14], in [18] an algorithm is introduced for the 
sequential determination of outage scenarios by using data from 
various sensors, including smart meters and remote fault 
indicators (RFIs). The research presents an evidence-driven, 
rule-based search algorithm as a solution to address outage 
management challenges in ADN. This approach is capable of 
handling multiple simultaneous failures and, consequently, can 
estimate with precision the FL either along the primary feeder 
or on a lateral line. However, while the proposed algorithm 
considers the integration of DG into the network, it does not 
account for microgrid integration, topological changes, or the 
optimization of the number of FIs. The study presented in [19] 
introduces a novel index termed the Load Point Long-term 
Interruption Frequency Index (LLIFI) with a focus on 
enhancing the reliability of specific buses within a distribution 
network. This index is designed to quantify the long-term 
interruption statistics associated with these buses. Its 
application is primarily aimed at optimizing the placement of 
FIs and RCS throughout the distribution system. However, this 
method is centered on enhancing bus reliability without 
addressing the specifics of FL. It does not explore the 
relationship between the quantity of FIs and FL accuracy. 
Additionally, the utilization of this index increases the overall 

system cost and results in an elevated number of automation 
devices positioned near designated buses. In the study [20], an 
approach to identify a fault sections within a distribution system 
is introduced. This approach leverages ANNs to validate FIs. 
The ANN model is trained using data to establish correlations 
between fault current information and the validation outcomes 
of FIs. One feature of this method is its ability to identify fault 
sections even in scenarios where reverse fault currents originate 
from the downstream side of the FL. However, the proposed 
method does not consider aspects such as the integration of 
microgrids, network topological changes, or the influence of the 
quantity of FIs on the accuracy of the FL process. 

In this way, considering the challenges previously 
presented, this paper addresses the complexities associated with 
FL into ADN by establishing an artificial intelligence-driven 
approach. Table I provides a comprehensive comparison 
between the proposed strategy and relevant aspects analyzed in 
referenced works. The strategy aims to optimize the 
performance of FIs in fault section estimation within the ADN. 
The key contributions of this strategy are as follows: 

• Considering the FI allocation problem into the 
formulation of FL method based in artificial 
intelligence using only the current magnitudes of the 
involved lines section. 

• Eliminating of the need for directional FIs installation, 
which means the proposed strategy can be 
implemented in ADNs without requiring additional 
equipment or additional communication 
infrastructure. 

• Considering critical characteristics of the ADN, 
including inherent network imbalances, topological 
variations, integration of microgrids, and the high 
penetration of DER. 

The paper is structured as follows. Section II describe the 
FL formulation. Section III introduces the fault locator based 
on artificial intelligence which is integrated in the optimal FI 
allocation. Section IV outlines the cases of studies. Section V 
presents the results and engages in a comprehensive discussion. 
Finally, Section VI highlight conclusions drawn from this 
study. 

TABLE I. ASPECTS CONSIDERED TO DEVELOP THE PROPOSED STRATEGY. 

Considered aspect Methods - Reference 
[13] [14] [15] [16] [17] [18] [19] [20] Proposed strategy 

Uses some fault location method.     x  x   
Eliminates the multiple estimates.          
FIs installation considered to improve the performance of FL strategy. x  x x x  x x  
Considers the presence of microgrids x x x x x x x x  
No needing to use of directional FIs x x x - - x x   
Determines the number of FIs that optimize the FL accuracy. x x  x x x x x  
Considers topological changes. x x x x x x  x  
Considers high DERs integration.  x x x x x    
Includes aspects about the fault characteristics. x x x x x x x x x 

x Not considered;  Considered; - It is not necessary. 
 

II. FAULT LOCATION FORMULATION 
This section describes FL method-based on artificial 

intelligence and the use of FIs to determinate a fault zone. The 

proposed method can be shown in Fig. 1. To implement the 
method is necessary to split an ADN into several zones. 

 
The fault location problem is modeled as a classification 

problem with 𝑁𝑁 labels, where the number of labels is equal to 
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the number of zones into which the ADN is divided. Consider 
also, the occurrence of P faults in the ADN, where each fault 
scenario 𝒙𝒙𝑝𝑝𝑝𝑝 = �𝑥𝑥𝑝𝑝1, 𝑥𝑥𝑝𝑝2, 𝑥𝑥𝑝𝑝3,⋯𝑥𝑥𝑝𝑝𝑝𝑝�, is represented by a set of 
𝑘𝑘 features, defined by the current magnitudes measured by each 
FI. Therefore, considering the set of P fault scenarios as a 
training data set, with a dimensional space 𝑘𝑘, an ANN-based 
learning model is formulated in (1) to solve the FL problem as 
a classification problem. 

 

𝑦𝑦𝑖𝑖(𝑥𝑥𝑝𝑝) = 𝜎𝜎 ��𝑤𝑤𝑟𝑟 ∗ ℎ��𝑤𝑤𝑟𝑟𝑟𝑟 ∗ 𝑥𝑥𝑟𝑟

𝑝𝑝

𝑟𝑟=1

� + 𝑊𝑊0

𝑚𝑚

𝑟𝑟=1

� 

              s.t 
𝑥𝑥𝑝𝑝 ∈ 𝑅𝑅𝑝𝑝  and 𝑦𝑦𝑖𝑖 ∈  { 1, 2,⋯ ,𝑁𝑁} 

(1) 

 
Where, 𝑤𝑤𝑟𝑟 and 𝑤𝑤𝑟𝑟𝑟𝑟 are the weight parameters, 𝑚𝑚 is the 

number of neurons in the hidden layer, 𝜎𝜎 and ℎ are the active 
functions, and 𝑊𝑊0 is the bias parameter used by the activation 
function. [21]. 

 
Fig 1. FL formulation as a classification problem. 

The complexity of the FL problem and the ANN model 
training depends on the number of labels or zones into which 
the ADN is divided. While higher  are the number of zones into 
which the system is divided, then higher are the number of 
classes of the ANN model [22]. Therefore, more precise tuning 
of the model is necessary. Therefore, to maximize the 
performance of the ANN model, a features selection and tuning 
technique based on a Multiverse Optimization Algorithm 
(MOA) is implemented and explained in the following section 
[23]. 

III. FAULT LOCATOR BASED ON ARTIFICIAL INTELLIGENCE 
The performance of the ANN model as a fault zone 

classifier depends on the location of the FIs, since the current 

magnitudes recorded by these devices correspond to the 
features of the ANN model. Therefore, the objective function 
of the MOA is to determine the number of FIs devices and their 
location into ADN that maximizes the performance of the ANN 
model. Additionally, it determines the tuning of the ANN 
model parameters. Fig. 2 presents the flowchart of the optimal 
FIs allocation technique as a feature selection and tuning 
strategy based on the MOA. The steps involved in this 
technique are explained below. 
Stage 1:Data Generation 

A significant number of faults must be considered to obtain 
the ANN model as a classifier of the fault zone. However, the 
number of faults occurrences into ADN are few since they are 
designed to minimize their probability of fault. Therefore, it is 
necessary to generate a synthetic fault database by automatic 
simulation of ADN faults. The synthetic data set is obtained by 
cooperative work between an Electromagnetic Transient 
(EMT) software and a numerical computation software. 

Fig 2. Features selection technique based on the multiverse optimization 
algorithm. 

The factors that represent the behavior of ADN such as load 
variation, topological changes, connection, or disconnection of 
DERs and microgrid mode can be considered. Applying these 
operative conditions, the fault scenarios are simulated to then 
varying factors as type of fault, fault resistance and fault 
location. Then, the RMS values of the current into the terminals 
of all line sections are extracted. Table II presents the factors 
and levels used in the proposed formulation [8], [24]. 
Stage 2: Zones definition 

Splitting the ADN into zones is not an easy task, it process 
can consider different factors. Some of these factors are related 
to system characteristics, such as the geographical area 
covered by each zone, the type of line (overhead or 
underground), and the failure rate of each line segment within 
the system. Another factor is associated with the type of user, 
including their capacity, priority, and the option of power 
supply restoration through reconfiguration [22]. Additionally, 
factors related to the geographical placement of the zones, such 
as ease of access, can also be used. An example of zoning is 
presented in Fig. 3. 
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Stage 3: Preprocessing and labelling 
At this stage the fault scenario database is standardized by 

(2). This process is necessary for improving the performance 
ANN models [25]. 

𝑥𝑥𝑓𝑓𝑚𝑚𝑠𝑠𝑠𝑠 =
𝑥𝑥𝑓𝑓𝑚𝑚 − 𝜇𝜇𝑚𝑚

𝜎𝜎𝑚𝑚
 (2) 

Where, 𝑥𝑥𝑓𝑓𝑚𝑚 is the value for the f-th fault operating scenario 
in the m-th feature, 𝜇𝜇𝑚𝑚 is the average for the m-th feature, 𝜎𝜎𝑚𝑚 
is the standard deviation for the m-th feature, and 𝑥𝑥𝑓𝑓𝑚𝑚𝑒𝑒𝑠𝑠𝑠𝑠 is the 
standardized value for the f-th fault operating scenario in the m-
th feature. 

On the other hand, each fault scenario is labeled according 
to the number zone where the fault was simulated. 

TABLE II. FACTORS AND LEVELS COMMONLY USED IN ADN OPERATING 
SCENARIOS. 

Group Factor Levels Number 
of levels 

No-fault 
operation 

Topology 
change 

T1: 𝑆𝑆0,𝑆𝑆1,𝑆𝑆2, 𝑆𝑆4,𝑆𝑆5 close, 
𝑆𝑆3,𝑆𝑆6, 𝑆𝑆7,𝑆𝑆8                             open;  
T2: 𝑆𝑆0,𝑆𝑆1,𝑆𝑆3, 𝑆𝑆4,𝑆𝑆5 close, 
𝑆𝑆2,𝑆𝑆6, 𝑆𝑆7,𝑆𝑆8                             open;  
T3: 𝑆𝑆0,𝑆𝑆1,𝑆𝑆2, 𝑆𝑆3,𝑆𝑆5 close, 
𝑆𝑆4,𝑆𝑆6, 𝑆𝑆7,𝑆𝑆8                             open;  
T4: 𝑆𝑆0,𝑆𝑆1,𝑆𝑆2, 𝑆𝑆3,𝑆𝑆4 close, 
𝑆𝑆5,𝑆𝑆6, 𝑆𝑆7,𝑆𝑆8                             open;  
T5: 𝑆𝑆0,𝑆𝑆2, 𝑆𝑆3,𝑆𝑆4, 𝑆𝑆5                close,  
𝑆𝑆1,𝑆𝑆3,𝑆𝑆6                                  open;  
T6: 𝑆𝑆0,𝑆𝑆1,𝑆𝑆2, 𝑆𝑆4,𝑆𝑆6 close, 
𝑆𝑆3,𝑆𝑆5, 𝑆𝑆7,𝑆𝑆8                             open, 

10 

T7: 𝑆𝑆0,𝑆𝑆1,, 𝑆𝑆4,𝑆𝑆5 close, 
𝑆𝑆2,𝑆𝑆3, 𝑆𝑆5,𝑆𝑆6, 𝑆𝑆7,𝑆𝑆8                  open,.  

T8: 𝑆𝑆0,𝑆𝑆1,𝑆𝑆4, 𝑆𝑆6 close, 
𝑆𝑆2,𝑆𝑆3, 𝑆𝑆5,𝑆𝑆7, 𝑆𝑆8                       open.  

T9: 𝑆𝑆0,𝑆𝑆1,𝑆𝑆2, 𝑆𝑆4,𝑆𝑆7 close, 
𝑆𝑆3,𝑆𝑆5, 𝑆𝑆6,𝑆𝑆8                             open,  

T10: 𝑆𝑆1,𝑆𝑆2, 𝑆𝑆4,𝑆𝑆7,𝑆𝑆8 close, 
𝑆𝑆0,𝑆𝑆3, 𝑆𝑆5,𝑆𝑆6                             open,  

MG 
Mode On-grid/off-grid 2 

Fault 
operation 

Fault type 
Single-phase faults, double-phase 
faults, double-phase to ground 
faults and three-phase faults 

10 

Fault 
location 

30, 55 and 75% of all single-phase 
lines and 50% of all three-phase 
lines 

162 
 

60 
Fault 
resistance 

Single-phase faults: 0𝛺𝛺 to 90𝛺𝛺 
phase-phase faults: 0𝛺𝛺 to 40𝛺𝛺 

10 
5 

 

Stage 4: Optimal allocation of FIs based in MOA  
In this stage, a MOA is implemented to determine the 

number of FIs and their location, which define the combination 
of features that maximizes the accuracy of the ANN model. 
The concept behind the MOA draws its inspiration from the 
multi-verse theory in physics, particularly concerning to global 
optimization as mentioned in references [23], [26]. Here the 
solutions are denominated as universes. Therefore, the 
modeling of the problem considers the accuracy of the ANN 
model as a fitness function and the universes that make up the 
population are represented by a mixed coding, as shown in Fig. 
4. 

To find the optimal solutions MOA employs three 
fundamental notions: black holes, white holes, and wormholes. 
Furthermore, the method incorporates two dynamic 
coefficients aimed at enhancing performance: The Travelling 
Distance Rate (TDR) and the Wormhole Existence Probability 
(WEP). While TDR and WEP could be treated as constants, a 
strategic choice has been made to transition them from fixed 
values to variables influenced by ongoing and maximum 
iterations. These parameters are given by (3) and (4). 

  
Fig. 4. Coding of the optimal allocation problem of FIs. 

𝑇𝑇𝑇𝑇𝑅𝑅 = 1 −
𝑖𝑖𝑖𝑖0.166

𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚0.1666 
(3) 

𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑊𝑊𝑊𝑊𝑊𝑊𝑚𝑚𝑖𝑖𝑚𝑚 + 𝑖𝑖𝑖𝑖 ∗ �
𝑊𝑊𝑊𝑊𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 −𝑊𝑊𝑊𝑊𝑊𝑊𝑚𝑚𝑖𝑖𝑚𝑚

𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
� (4) 

where it is the current iteration and 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum 
number of iterations. 

Algorithm 1 shows the steps that carry out the MOA. Black 
and white holes play an essential role in enabling the transfer 
of objects between different universes; highly accurate 
universes have a significant probability of sending objects to 
universes with lower accuracy.  

Similarly, wormholes transfer objects from the most 
optimal current universe to another universe. These 
fundamental concepts allow the MOA to perform exploration, 
exploitation, and search within the solution set. The algorithm 
of the multiverse optimizer is described below: 

Algorithm 1 - Multiverse Optimizer 
Input: Database with the whole features 

Output:  ANN model. Features selection and hyperparameter   
Begin 
1: Set the initial maximum number of hidden layers (𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚), 

maximum number of neurons for each hidden 
layer(𝐻𝐻𝐻𝐻𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚),  𝑇𝑇𝑇𝑇𝑅𝑅, 𝑊𝑊𝑊𝑊𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚, 𝑊𝑊𝑊𝑊𝑊𝑊𝑚𝑚𝑖𝑖𝑚𝑚 values; number 
of universes 𝑈𝑈𝑁𝑁, 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 . 

2: To obtain the initial population 
3: it=1 
4: While  𝑖𝑖𝑖𝑖 ≤  𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥  repeat 
5: Assessing (Accuracy) each universe 

6: If 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑠𝑠>𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 
7: 𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖=𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑠𝑠  
8: end 
9: To exchange the FI allocations and 

hyperparameters between universes using black 
and white holes 

10:                Set t = t + 1. {Iteration counter increasing} 

1 0 1 0 0 0 … 100 100 100 

FIs allocation (Features) 

1 
0 

FI allocated. 
FI not allocated. 

Binary codification 

Hidden Layers 

Integer codification 
91.3% 

Fitness function 

ANN model 
accuracy  
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11               Updating of WEP and TDR 
12:       End While 
13:       Produce the best solution for 𝐹𝐹𝐼𝐼𝐹𝐹 allocation: ANN 

model, attributes (FIs allocation) and hyperparameters 

14: End For 
End 

 

 
Fig. 3. Zones for IEEE 123 test feeder. 

 
IV. CASE OF STUDY 

The proposed fault locator was validated on a modified IEEE 
123 node test feeder operating at a nominal voltage of 4.16 kV 
[27]–[29]. This network is characterized by overhead and 
underground lines, unbalanced load, four voltage regulators, 
shunt capacitor banks, and multiple switches. The test feeder 
was modified by adding six DERs along the grid: three non-
inverters connected DERs (synchronous generator), and three 
inverters connected DERs (two PV systems and one battery 
energy storage system). In addition, this system has six switches 
that allow reconfiguration processes to be performed. Fig. 3 
shows the modified 123-node IEEE test feeder. The FIs can be 
located on any line section of the ADN. 

On the other hand, the ADN has the possibility of connecting 
and disconnecting a Microgrid (MG), which is delimited by the 
switches S2 and S3. The microgrid consists of 18 nodes 
corresponding to zone 9 of the ADN. This zone is divided into 
three sub-zones called Zone 9-1, 9-2, and 9-3 respectively. 

The methodology is validated by considering two scenarios. 
The first scenario is associated with the whole ADN (including 
the MG) and the second scenario just considers the MG. In this 
way, we will obtain the best combination of FIs that improve the 
performance of fault locator in both scenarios. 

The fault locator was validated considering the operational 
scenarios presented in Table II. 

Finally, the total number of fault scenarios are determined 
for each line configuration. For single-phase lines, 14580 fault 
scenarios were simulated, for double-phase lines 720 fault 
scenarios were simulated and for three-phase lines 14400 faults 

were simulated. Additionally, the criterion used for establishing 
the zones was the distance covered by each zone, which is 
reported in Table III. 

TABLE III. LINE LENGTH 

Zone Length (m) Number of lines 
1 3775 14 
2 3450 10 
3 3525 11 
4 4950 15 
5 5075 17 
6 5950 15 
7 5100 15 
8 3325 9 
9 3350 11 

V. RESULT AND DISCUSSION 
The results obtained by validating the methodology for the 

described scenarios in section IV are presented in sections A, B 
and C. All the results were obtained by using a PC with the 
following characteristics:  CPU AMD Ryzen 7 5800H with 
Radeon Graphics 3.20 GHz-RAM 16GB and hard drive SSD 
500GB.  
A. Performance in the main network (ADN) 

To show the advantages of the optimal allocation of FIs to 
maximize the performance of the ANN model as a fault locator, 
the maximum number of FIs to be considered was varied from 
10 to 55 in steps of 5 as shown in Fig. 5. 

The results presented in Fig. 5 show that for locating faults 
in the main network (ADN), the number of FIs that maximizes 
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the performance of the fault locator is approximately 40 FIs and 
its accuracy reaches 99.4%. This finding underscores the 
existence of an optimal number of FIs that effectively 
maximizes the accuracy of the FL method. Moreover, the use of 
the MOA for feature selection within the ANN demonstrates a 
highly satisfactory outcome in the placement of FIs. 

 

 
Fig.5. Performance of the methodology for the optimal FIs location into the 

ADN. 
Additionally, Table IV presents the confusion matrix of the 

ANN model within the evaluated cases. This matrix provides a 
visual representation of the FL method's robustness, even in the 
face of dynamic features in an ADN, such as topology changes 
and the operation modes of the microgrid. Fault identification in 
zone 3 emerges as the most challenging aspect, achieving an 
accuracy of 96.7% among 568 faults analyzed within this zone. 
Specifically, of the 568 faults analyzed in Zone 3, 549 were 
correctly identified within the same zone, while the remaining 
19 were misplaced in Zone 1, i.e., outside their designated zone. 
This analysis can be extrapolated to other areas. 

TABLE IV. CONFUSION MATRIX FOR THE TENTH CASE  

 99.4% Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 

Z1 877 0 0 0 0 0 1 0 0 
Z2 0 612 0 0 2 0 0 0 0 
Z3 19 0 549 0 0 0 0 0 0 
Z4 0 0 0 1023 0 0 0 0 0 
Z5 0 0 0 0 962 1 3 0 0 
Z6 0 0 0 0 0 874 0 0 0 
Z7 0 0 0 0 0 0 922 0 0 
Z8 0 0 0 0 0 1 12 672 1 
Z9 0 0 0 0 0 0 0 0 637 

Also, Table V shows in which lines the 41 FIs were placed 
for the tenth case of the ANN model, also it shows the number 
of neurons per each hidden layer obtained by the MOA. Some 
commercial solutions such as that presented in [30] install one 
FI per bifurcation. If we consider this criterion to locate the FIs 
and obtain the ANN model as a fault locator, the number of FIs 
installed and the accuracy obtained could be 79 and 97.9%, 
respectively, as shown in Table VI. 

If we take this solution as our reference case and compare it 
with the best solution obtained (the tenth case) we observe that 
the accuracy of both ANN models is comparable and higher than 
97%. However, the number of FIs installed are approximately 

half for the best solution when compared to the number of FIs 
installed in the reference solution, which implies a reduction in 
the total cost of the solution. This shows the advantages of 
formulating the FIs placement problem as a features selection 
problem for obtaining the ANN model as a fault locator. 

 

TABLE V. FAULT INDICATOR SOLUTION FOR THE TENTH CASE  

Fault 
Indicator   

1-20 

Fault 
Indicator  

21-40 

Fault 
Indicator  

41-60 

Fault 
Indicator   

61-80 

Fault 
Indicator  
81-100 

Fault 
Indicator   
101-118 

Hidden 
Layers 

L1 0 L21 0 L41 0 L61 0 L81 0 L101 0 H1 80 

L2 0 L22 1 L42 1 L62 0 L82 0 L102 0 H2 130 

L3 0 L23 1 L43 0 L63 0 L83 1 L103 1 H3 82 

L4 0 L24 1 L44 0 L64 1 L84 1 L104 1 H4 55 

L5 0 L25 0 L45 0 L65 0 L85 1 L105 0  

L6 1 L26 0 L46 0 L66 0 L86 1 L106 0 

L7 1 L27 0 L47 0 L67 0 L87 0 L107 1 

L8 0 L28 1 L48 0 L68 1 L88 1 L108 1 

L9 0 L29 0 L49 0 L69 0 L89 0 L109 0 

L10 1 L30 0 L50 0 L70 0 L90 0 L110 0 

L11 0 L31 0 L51 0 L71 1 L91 0 L111 1 

L12 1 L32 0 L52 0 L72 1 L92 1 L112 0 

L13 1 L33 0 L53 0 L73 1 L93 1 L113 0 

L14 1 L34 0 L54 0 L74 0 L94 1 L114 0 

L15 0 L35 0 L55 1 L75 1 L95 0 L115 0 

L16 0 L36 0 L56 0 L76 0 L96 1 L116 1 

L17 1 L37 0 L57 0 L77 0 L97 0 L117 1 

L18 1 L38 0 L58 1 L78 1 L98 0 L118 0 

L19 1 L39 0 L59 0 L79 0 L99 1   
  
  L20 0 L40 0 L60 0 L80 0 L100 1 

 
B.Performance into the Microgrid 

Fig. 6 presents the accuracy of the proposed strategy 
implemented for the second scenario. Similar to section A, the 
number of maximum FIs is placed in a range between 4 to 14 
and progressively increased by 2. The results show that from the 
initial case, the ANN-based FL method achieves an accuracy 
ranging from 90% to 93.6% with varying placements of FIs. 
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Fig. 6. Performance of the methodology for the optimal FIs location into the 

MG. 
 

TABLE VI. PERFOMANCE FOR THE BASE CASE.  

Number of Fault 
Indicators Accuracy [%] Hidden 

Layers 
Neurons per each 

Hidden Layer 

79 97.9 4 100 
 

From Fig. 6, the ANN model with the highest accuracy is the 
one obtained in sixth case, achieving a FL accuracy of 93.6% 
with a total of 7 FIs. Table VII shows the confusion matrix for 
this case. 

TABLE VII. CONFUSION MATRIX FOR THE SIXTH CASE 

93.63% Z0 Z9-1 Z9-2 Z9-3 

Z0 1182 29 13 1 
Z9-1 11 200 14 0 
Z9-2 10 14 426 47 
Z9-3 1 0 7 353 

 

Zone 9-1 presented the lowest accuracy in zone identification. 
Of the 225 scenarios evaluated for this zone, only 88.88% of the 
cases were identified in the correct zone. This can be attributed 
to the variability of the fault currents recorded by the FIs since 
the short-circuit currents vary significantly by the ongrid/offgrid 
modes of operation of the MG. Nevertheless, the FL method 
showed adequate performance for the cases evaluated. The zone 
0 represents all the fault scenarios outside of the MG, here, the 
methodology obtained the better results for all the classes of the 
ANN model. Table VII shows the optimal location of the FIs for 
the sixth case. 

TABLE VIII. FAULT INDICATOR SOLUTION FOR THE SIXTH CASE 

Fault Indicator 
1-6 

Fault Indicator 
7-12 

Fault Indicator 
13-18 Hidden Layers 

L35 1 L41 1 L47 1 H1 87 

L36 1 L42 1 L48 0 H2 137 

L37 0 L43 1 L49 1 H3 108 

L38 1 L44 1 L50 0 H4 97 

L39 0 L45 1 L51 1  

L40 0 L46 1 L114 1 

Finally, Fig. 7 shows the evolution of the performance of the 
MOA for the tenth ADN case and the sixth case of MG. For the 
tenth case (Dotted line with rhombuses in the Fig. 7), it is 
observed that beyond the fourteenth iteration, the algorithm 
stabilizes its performance, converging towards a fitness function 
value of 99.4% considering all the evaluated scenarios. This 
behaviour evidence that there is an optimal number of FIs and 
placement that maximize the performance of the ANN model as 
a fault locator. 

Similarly, for the microgrid case (Dotted line with squares), 
we observe that in the sixth iteration, the fitness function reaches 
a stable value of 93.6%. This outcome affirms the efficacy of the 
MOA in fine-tuning the ANN. 

 
Fig.7. Performance for multiverse optimization algorithm for the tenth case (for 
main network ADN) and sixth case (for the microgrid). 
 

C.Comparison between optimal location algorithms 
 
With the objective to compare the performance of the 

proposed method, another metaheuristic optimization technique 
was used to determinate the optimal number of FIs that improve 
the fault location of the MG. This optimization technique is well 
known in technical literature such as Cuckoo Search Algorithm 
(CSA). Both techniques used the same values for the maximum 
number of iterations (30) and the size of population (25). Fig 8 
shows the performance of the method using CSA and MOA for 
the MG, additionally, it shows the number of FIs obtained by 
each technique. 

 

 
Fig 8 Comparison between CSA and MOA algorithms.  

 



23rd Power Systems Computation Conference
     

Paris, France — June 4-7, 2024 

    PSCC 2024 

As presented in Fig. 8, the performance of CSA is below of 
the values obtained by the MOA in different aspects such as 
number of FIs selected, accuracy and simulation time. For 
instance, the maximum accuracy obtained by the CSA was 
91.2%, contrary to the MOA that was 93.46%. On the other 
hand, the average simulation time was obtained for MOA and 
CSA techniques, with 85 and 119 minutes, respectively.  The 
last evidence the potential, robustness, and efficiency of MOA 
as technique for searching better solutions in the allocation of 
fault indicators. Also, the accuracy for the fault location 
algorithm obtained by MOA is 2.7% above of the value obtained 
by CSA. 

 
VI. CONCLUSION 

In this paper, an artificial intelligence-based FL strategy was 
presented, focusing on maximizing ADN fault section 
estimation performance by allocating FIs. The strategy shows 
that dividing the ADN into sections (zones or labels) to model 
the FL problem as a classification problem and considering the 
RMS currents measured by each FI as features for the ANN 
model, allows determining the optimal number of FIs and their 
location that maximizes the accuracy of the fault zone 
estimation. Then, this strategy not only allows obtaining an 
ANN model with high accuracy for the estimation of the fault 
zone but also reduces the investment of the assignment of FIs in 
a distribution network by the Distribution System Operator 
(DSO), since it determines the optimal number of IFs that should 
be installed. The proposed strategy was tested on the modified 
IEEE 123-node test feeder, considering the dynamic 
characteristic of ADN, through the presence of topology 
changes and on-grid/off-grid operation modes of microgrids. 
The results obtained showed that the number of FIs that 
maximize the precision of the ANN model trained as an 
estimator of the fault zone is 41 for the main network (ADN), 
achieving an accuracy of 99.4%. For the microgrid, with at least 
4 FIs an accuracy greater than 92% is achieved. Additionally, 
the MOA evidence its robustness and efficiency when the results 
were compared with other optimization technique. The 
proposed strategy showed its simplicity, and convenient to 
implement a model to locate fault into a real ADN. 
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