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Abstract—Battery swapping–charging system (BSCS) is a
promising operating paradigm to provide centering charging and
battery swapping service for electric vehicles in transportation
electrification. Facing real-time information on battery demand
under the limited transporting trucks, flexible online optimization
of battery delivery and transportation routing is essential for
meeting practical requirements. This paper investigates the real-
time scheduling problem in BSCS, considering the battery partial
delivery, energy demand, delivery deadline, and vehicle routing.
Considering the non-deterministic polynomia hardness of battery
transportation, the offline BSCS is a time-consuming task and
is unsuitable for the online setting. A Lagrangian relaxation-
based Benders decomposition is proposed for parallel and real-
time implementation, improving the scheduling efficiency. To
tackle future information such as battery demands and delivery
deadlines, by introducing the dummy copy, the offline algorithm
is embedded within a rolling horizon framework to solve in real-
time repeatedly. Finally, case studies using real road maps in
Shanghai and Belgium have verified the validity of the proposed
online framework and confirmed the necessity of considering
partial delivery in enhancing the operation flexibility of BSCS.
The computational efficiency of the proposed algorithm is studied
under different scales of the road network, and the profit from
partial delivery and online implementation are highlighted.

Index Terms—Battery swapping station, electric vehicle, partial
delivery, online scheduling.

I. INTRODUCTION

With the increasing shortage of fossil resources and seri-

ous environmental concerns, electric vehicles (EVs) attracted

extensive attention in realizing environmental-friendly trans-

portation systems [1], [2]. Nevertheless, the popularization of

EVs is impeded by the limited power supply, which necessi-

tates the development of extensive charging infrastructure and

involves long-term charging times [3].

In state-of-the-art EV charging studies, battery charging sta-

tions, battery swapping stations (BSSs), and battery swapping-

charging systems (BSCS) are included to supplement energy

for EVs [4]. Compared with battery charging stations, BSSs

have more advantages, e.g., shorter service time and lower cost

for EVs [5]. However, battery inventory shortages of BSSs

may result in severe service interruptions when facing the

large battery demand from EVs [6]. BSCS centrally charges

EV batteries at a centralized charging station (CCS) and
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subsequently distributes them to battery swapping stations

(BSSs) through battery transporters (BTs), constructing a

power supply network based on the traffic network. Based on

the centralized charging and multi-station distribution under a

logistics system, BSCS offers a pioneering option to tackle the

challenges above [4]. Note that existing researches consider

facilities that offer both charging and swapping services for

EVs [7]. However, due to the limitations of land area and

deployment costs, it is more economical to separate charging

from swapping, as considered by many related works [6], [8].

In BSCS, many works have studied the logistic transporta-

tion of batteries [9]. For example, to the cleanliness of the

battery power supply side and the convenience of the EV bat-

tery demand side, a cooperative operation method of electric

power system and truck-based battery transportation system

is proposed in [10]. Similarly, Ban et al. [11] investigate

optimal schedules for battery charging, swapping, and truck

routing by a Lagrangian decomposition method. In [12], a joint

optimal scheduling model is developed, integrating the battery

charging/discharging schedule in the BSS, the generation plan

of wind power, and the vehicle routing problem (VRP) of

trucks.

However, the previous studies treat solely battery transporta-

tion as the VRP, without considering the practical aspect that

battery transporters (BTs) and CCS in BSCS are typically

managed by the same operator [13]. Some delivery requests

may be served successively by multiple coordinated BTs if

the large demand is higher than the limited capacities of

BTs, i.e. partial delivery [14]. However, the current study

does not take into account the battery partial delivery, leading

to unnecessary fuel costs and reduced flexibility in battery

transportation [15]. Moreover, the BSCS problem usually

becomes an non-deterministic polynomia(NP)-hard problem

due to the combinatorial nature of battery logistics [16].

The aforementioned studies [11], [12], [17] have employed

commercial optimization solvers to address this model. How-

ever, the calculation efficiency of solvers is hard to meet the

fast solution requirements with the expansion of urban scale

[18]. Apart from those, battery transport demands and future

traffic information are often uncertain in practice [19]. Clearly,

addressing the BSCS problem within an online setting is more

valuable and promising in transportation applications [20].

To the best of our knowledge, the BSCS problem has not

been fast computed within an online framework by all the
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aforementioned literature.

Motivated by the above question, we propose a battery

transportation model of BSCS, which considers partial battery

delivery in an online manner. Specifically, unlike conventional

logistics transportation problems, the BSCS in this paper

considers the battery demands of BSSs under the transporta-

tion network to be met through the collaborative transport

of various vehicles. Thus, the BSCS problem fundamen-

tally belongs to the demand management of EV batteries,

which significantly influence the delivery flexibility of battery

demand for power system. Meanwhile, in response to the

characteristic of distributed deployment of various BSSs, we

also develop an efficient algorithm to reduce the operational

complexity introduced by the battery transportation for real-

time implementation. The contributions of this article are

concluded as follows.

1) We propose a joint optimization framework for BSCS

that simultaneously considers battery partial delivery and

logistic routing, with the optimization process specific to

collaborative transporting under the limited capacity of

BTs.

2) We propose a Lagrangian relaxation-based Benders de-

composition (LRBD) algorithm to decouple the logistic

routing and battery delivery to substantially improve the

computational efficiency with little performance loss.

3) We propose an online implementation of the proposed

method by introducing the dummy copies and rolling

horizon framework to solve the BSCS problem in real-

time repeatedly to tackle the future uncertainty informa-

tion.

The paper is organized as follows. Section II describes the

corresponding BSCS model and then formulates the battery

transportation problem. Section III has further introduced the

proposed offline algorithm and corresponding online form.

Numerical results with discussions are reported in Section IV.

Finally, case studies and conclusions are given in Section V.

II. FRAMEWORK OF A BSCS SYSTEM

As shown in Fig.1, the CCS and BSSs are generally man-

aged by the same operator. The BSSs will first provide battery

swapping services for EVs and broadcast battery demand to

CCS. Then, CCS will distribute batteries to BSSs through

a fleet of BTs, and BTs will begin and finish their daily

tour from the vehicle depot of CCS. In addition, BTs are

required to deliver fully-charged batteries and recycle the

empty ones before the demand deadline of BSSs. Note that

battery transportation supports partial delivery, which allows

the demand of a BSS to be fulfilled by multiple BTs [15].

A. Scheduling Description for a BSCS System

For notational convenience, the variables and parameters are

described as: B denotes the set of BSSs, and K denotes the

set of BTs. G(V,A) denotes the digraph consisted of the start

CCS B0, the end CCS B|B|+1, as well as BSSs B, thus V =
{B0,B,B|B|+1}. Define V0 = B∪B0 and VB+1 = B∪B|B|+1.

Note that the set of arc A = {(m,n)|m,n ∈ V,m �= n}, in
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Fig. 1. Structure of BSCS

which each arc is associated with a specific travel cost dmn

and time τmn.

B. Mathematical formulation

In this section, we first elaborate on the offline battery

transportation of BSCS. To optimize the battery transporta-

tion process and minimize the travel cost, flow conservation

constraints should be met:∑
n∈V

Imn
k −

∑
n∈V

Inmk = 0, ∀m ∈ B, k ∈ K (1)

∑
n∈V

IB0n
k −

∑
n∈V

I
nB|B|+1

k = 0, k ∈ K (2)

∑
k∈K

∑
n∈V

Imn
k ≥ 1, ∀m ∈ B (3)

where the binary variable Imn
k is equal to 1 if BTk travels from

vertex m to n, and 0 otherwise. Constraint (1) and constraint

(2) indicate that all BTs start at the CSS while returning to

the CSS, and exit out the BSS after entering the same one.

Constraint (3) denotes each BSS can be served at least once by

the BT fleet. Note that the constraint (3) is the key to ensuring

the implementation of partial delivery.

Time constraints with the arrival time τmk of BTk to BSSm

are defined in (4) and (5), which states that the arrival time of

BTs should not be later than the delivery deadline of BSSs.

M(1− Imn
k ) ≥ τmn + τmk − τnk ,

∀m ∈ V0, n ∈ VB+1, k ∈ K (4)

τm ≤ τmk ≤ τm, ∀m ∈ B, k ∈ K (5)

where the τm and τm are the broadcasting time and deadline

receipt time of BSSm for battery demand, respectively. And

M is a sufficiently large positive constant.

Capacity constraints denote the remaining battery capacity

of BT when unloading full-charged batteries and loading

empty ones in the BSSs as follows.

M(1− Imn
k ) ≥ emk −Δemk − enk ≥ −M(1− Imn

k ),

∀m ∈ V0, n ∈ VB+1, k ∈ K (6)

0 ≤ emk ≤ Qk, ∀m ∈ B, k ∈ K (7)
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eB0

k = Qk, ∀k ∈ K (8)

where emk and Δemk denotes respectively the remaining battery

level and delivery levels of BTk when reaching BSSm. Con-

straint (7) enforces lower and upper bounds with the battery

maximum capacity Qk. Constraint (8) states that the BTs

replenish batteries to the maximum capacity when reaching

CCS.

As for the battery demand of BSSs, the delivery constraints,

i.e. (9)-(11), denote that BTs will only deliver batteries to the

BSS passing by, and the sum of the transportation batteries to

BSSm will not exceed the demand of the BSS.

0 ≤ Δemk ≤ eBSS
m

∑
n∈V

Imn
k , ∀m ∈ B, k ∈ K (9)

∑
k∈K

Δemk ≤ eBSS
m , ∀m ∈ B (10)

0 ≤ Δemk ≤ eBSS
m , ∀m ∈ B, k ∈ K (11)

where eBSS
m denotes the battery demand of BSSm. For the

scheduling of the battery transportation process, it is diffi-

cult to establish a model to schedule each battery in BSSs.

Analogously to [10], [12], we focus on the delivery power

Δemk instead of the quantity of EV batteries. Correspondingly,

the constraints of battery quantity during the transportation

process can also be transformed into the constraints of battery

power level, which will not affect the operation results.

Finally, the offline battery scheduling of BSCS can be

formulated into a mixed integer linear program (MILP) with

decision variables {Imn
k ,Δemk , τmk , emk }:

Problem 1 (MILP)

min
Imn
k ∈{0,1},Δemk

∑
k∈K

∑
m∈V

∑
n∈V

{
γmn
k dmnImn

k

}

+
∑
m∈B

γBSS
m (eBSS

m −
∑
k∈K

Δemk ) (12)

s.t. (1)− (11)

The objective function minimizes the total travel cost and

breach penalty for not fully meeting the battery swapping

demand in the BSCS, where γmn
k is the travel price and γBSS

m

is the penalty price.

III. SOLUTION METHODOLOGY

In this section, the optimization algorithm of BSCS is

proposed in an online manner. For decoupling the routing

and delivery in Problem 1, the Benders decomposition (BD)

is first introduced to iteratively optimize. Due to the integer

constraints, the computational efficiency of Benders decom-

position is intractable to apply in the online implementation.

Thus, the Lagrangian relaxation method is utilized and solved

by the Lagrangian multiplier algorithm to reduce the computa-

tion time. Finally, the proposed offline algorithm is embedded

into the rolling horizon framework by introducing the dummy

copy for the online solution.

A. Offline Algorithm

The basic idea of BD is to decompose such a BSCS

model into a master problem (MP) resolving routing and a

subproblem (SP) resolving delivery. The optimal solution of

the original problem is found by alternately solving the master

problem and sub-problems [21].
1) Master Problem: In each iteration of BD, a Benders cut

will be added to the constraint set of the MP. The MP with q
infeasibility cuts and p feasibility cuts (MP-1) is formulated

as follows.

MP-1

min
Imn
k ∈{0,1},Z

Z

s.t. (1)-(3)

μ1(q) : D
q(I) ≤ 0, ∀q ∈ I (13a)

μ2(p) :
∑
k∈K

∑
m∈V

∑
n∈V

{
γmn
k dmnImn

k

}

+Dp(I) ≤ Z, ∀p ∈ J (13b)

where Dq(I) and Dp(I) represent the feasibility and optimal

Benders cuts, respectively. And Z is a continuous variable on

behalf of the objective value of the master problem.
2) Lagrangian Relaxation of MP-1: Note that a major

computational bottleneck still exists, as the MP-1 is also

a MILP. When there are no cuts (13) added, the feasible

region of MP-1 satisfies the property of total unimodularity

(TU) [22]. Therefore, to speed up the proposed algorithm, a

Lagrangian relaxation method is applied to solve the MP-1 by

relaxing generated cuts as follows.

MP-2

min
Imn
k ∈[0,1],Z

LMP = Z +
∑
q∈I

μ1(q)D
q(I) +

∑
p∈J

μ2(p)

{

Dp(I) +
∑
k∈K

∑
m∈V

∑
n∈V

{
γmn
k dmnImn

k

}
− Z

}

s.t. (1)-(3)

where μ1 and μ2 are Lagrangian multipliers corresponding to

(13a) and (13b) respectively.

Note that solving MP-2 is equivalent to solving a linear

program (LP), which greatly reduces the computation burden.

This claim is proved in the following lemma:

Lemma 1. MP-2 can be exactly relaxed to an LP, in the sense
that their solutions are equivalent.

Proof. The relaxed linear program of the integer program

would have only integer solutions, which happens when the

constraint matrix is totally unimodular [23].

When Benders cut (13a) and (13b) are relaxed, the con-

straint matrix of the resultant problem MP-2 satisfies the prop-

erty of total unimodularity [24]. Then, {I|(1)-(3)} satisfies the

property of TU as well, and MP-2 can be exactly relaxed as

a linear programming problem without loss of optimality.

Then, a Lagrangian multiplier algorithm is introduced to

solve MP-2 efficiently [7].
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Φ(Λk) =
∑
m∈B

γBSS
m eBSS

m +
∑
m∈B

∑
k∈K

[λmk
1 τm − λmk

2 τm − λmk
3 Qk − λmk

4 eBSS
m − λmk

5 eBSS
m

∑
n∈V

Īmn
k ]−

∑
m∈B

λm
6 eBSS

m

−
∑
k∈K

λmk
7 Qk +

∑
m∈V0

∑
n∈VB+1

∑
k∈K

{λmnk
8 [τmn −M(1− Īmn

k )]− λmnk
9 M(1− Īmn

k )− λmnk
10 M(1− Īmn

k )} (14)

Algorithm 1: LRBD for offline problem.

Input: Related parameters of G(V,A), eBSS , Q, τ ,

τ , τ , d, γ, ε
Output: Optimal scheduling strategy I∗ and Δe∗;

1 Initialize: n = 1, UB = ∞, LB = −∞, I = J = ∅;

Randomly choose a set of feasible initial integer

variable I(n);
2 while |UB − LB| > ε do
3 Step1: Solve the Dual-SP at the nth iteration to

obtain UB(n);
4 if dual problem (15) has a bounded solution then
5 UB(n) = Φ(Λ(n));
6 UB = min{UB,UB(n)};

7 I = I⋃
Dp(I(n));

8 An optimal cut constraint (13a) is generated;

9 else
10 J = J ⋃

Dq(I(n));
11 A feasibility cut constraint (13b) is generated;

12 end
13 Step2: Update the feasibility and infeasibility

constraint sets of MP-2;

14 Step3: Solve the MP-2 by LMA at the nth

iteration to obtain LB(n);
15 LB(n) = LMP (I(n));
16 LB = min{LB,LB(n)};

17 Step4: n = n+ 1;

18 end
19 Return I(n),Δe(n)

3) Sub-Problem: Given the integer solution of MP-2, SP

can be formulated as follows.

SP

min
Δemk

∑
m∈B

rBSS
m (eBSS

m −
∑
k∈K

Δemk )

s.t. (4)-(11)

The dual variables {λmk
1 , . . . , λmk

5 , λm
6 , λk

7 , λ
mnk
8

. . . , λmnk
10 } are introduced for the SP-1. To produce the

Benders cut, the dual problem of SP is derived as follows.

Dual SP

max
Λk

Φ(Λk)

s.t. constraints of dual SP (15)

where Λk is the set of dual variables, Φ(Λk) is shown in (14),

and Īmn
k is the feasible solution of Imn

k from the MP-2.

Given the solution Λk of Dual SP, Benders cuts

Dω(I), ∀ω ∈ {q, p} in (13) can be derived, where Dω(I) =
fω(I) + cω:

fω(I) =
∑
m∈V0

∑
n∈VB+1

∑
k∈K

M(λmnk
8 + λmnk

9 + λmnk
10 )Imn

k

−
∑
m∈B

∑
n∈V

∑
k∈K

λmk
5 eBSS

m Imn
k

cω = Φ(Λk)− fω(Ī)

By adding the optimality or feasibility cuts to the master

problem, the MP and SP are solved iteratively, until the upper

and lower bound are sufficiently close [25].

4) offline algorithm for battery transportation: Based on

the proposed LRBD, an iterative algorithm is developed to

solve the offline battery transportation problem in Algorithm

1, where UB and LB are the upper bound and the lower

bound of Benders decomposition, and the ε is a small number

for the iteration termination.

Remark 1. Specifically, by the Benders decomposition, the
primal problem MILP is decomposed into two subproblems,
corresponding to MP-1 and SP, which simplifies the difficulty
of solving large-scale problems. Moreover, since SP contains
independent decision variables of each BT, the battery trans-
portation decisions at homogeneous BTs can be solved in
parallel. Then, the MP-1 is relaxed to LPs from MILP by the
Lagrangian relaxation method. Due to the superiority in iter-
atively optimizing LPs, the computation burden for real-time
battery transportation is reduced. To sum up, our proposed
algorithm facilitates a parallel and real-time implementation,
improving the scheduling efficiency and saving computational
time.

B. Online Strategy for battery transportation

To respond the changing information arising from future

battery demands or delivery deadlines in real-time, the LRBD

algorithm is embedded within a rolling horizon framework to

address the online battery transportation problems.

In the practical implementation, future information should

be updated at every time slot. The delivery decisions of BTs

should be re-optimized after the revelation of new information,

so the start location of each BT will change in real-time

according to the current location. Therefore, online imple-

mentation converts the battery transportation problem into a

multi-CCS transportation problem, which is not in line with

the LRBD algorithm for a single CCS problem.
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Algorithm 2: Online implementation of LRBD.

Input: Related parameters of G(V,A), Q, d, γ
Output: Online scheduling strategy I and Δe;

1 Initialize: t = 1, overall time slot T ;

2 while t ≤ T do
3 if t = τ then
4 Broadcast the information of battery demand

eBSS and delivery deadline τ of the tth time

slot;

5 if t = 1 then
6 Solve the offline BSCS problem by

Algorithm 1;

7 else
8 Record the current locations Lt and the

next BSS Rt of BTs;

9 Add the constraint (17) to the MP-2;

10 Solve the offline BSCS problem by

Algorithm 1;

11 end
12 end
13 t = t+ 1;

14 end

To this end, we introduce the concept of dummy copies to

adapt the LRBD algorithm for online scenarios [26]. Initially,

copies are assigned to each BSS catering to multiple battery

demands across distinct time windows. Subsequently, copies

are also allocated at the same location as the CCS, permitting

BTs to acquire supplementary batteries for subsequent trans-

portation missions. Additionally, we create copies correspond-

ing to the current location of each BT, connecting them to the

start CCS B0 and setting their travel cost and time to zero. In

this way, the multi-CCS problem is equivalently transformed

into a single-CCS battery transportation problem, which can

be real-time addressed using the LRBD algorithm.

Formally, define a set Lt = {Lt
1, . . . , L

t
K} consisting of

the current location of BTs and a set Rt = {Rt
1, . . . , R

t
K}

consisting of the next request BSS of BTs at the tth time slot.

Additional constraints (17) are added to MP-2 to ensure that

BTs travel from the start CCS to the current location and the

next BSS.

I1ik = 1, ∀i ∈ Lt (17a)

I
Lt

iR
t
i

k = 1, ∀i ∈ K (17b)

Remark 2. Apparently, constraint (17) meets the property of
total unimodularity, thus the introduction of the constraint (17)
does not affect the optimal equivalence when embedding to the
BSCS problem.

Now we present the details of the online LRBD method

with dummy copies under the rolling horizon framework in

Algorithm 2.

Fig. 2. Road network topological graph of Shanghai

IV. CASE STUDIES

A. Simulation setup

In this section, simulation results for the battery trans-

portation problem of BSCS are provided to evaluate the

effectiveness of the proposed model and method. A real road

network in Shanghai, China, is selected for model simulation.

As shown in Fig.2, the road network is composed of 21

BSSs, 38 intermediate traffic nodes, 1 CCS, and 107 highway

roads, where the intermediate traffic nodes are road nodes that

bears path transfer without battery requirements. Then, the

map data of Belgium1 is adopted for algorithm simulation,

which records the geographic coordinates of 100 nodes with

each demand and time window. Note that the transportation

network and service data of BSSs, i.e., eBSS
m , τm, τm, are

randomly selected from the Belgian dataset and implemented

10 times for some simulations. In this case, the performance

of the proposed algorithm on different battery demands and

transportation networks is evaluated. Each BT has a 3,250

kWh maximum battery carrying level and can take about

50 standard batteries with a capacity of 65 kWh battery. In

addition, the average speed of BTs is set at 60 km/h. The

driving price is assumed as 1.25 $/km, involving the fuel

fee and toll charges. And the breach penalty price for not

fully meeting battery demands is 6.175 $/kWh. All numerical

studies are implemented on a personal computer with AMD

Ryzen 9 5900HX CPU using Python with Gurobi 9.1.

B. Simulation of Offline Battery transportation

For a convenient illustration of partial delivery, the battery

transportation results as an example of two BTs on the

Shanghai road network is shown in Fig.3, where Fig.3(a) and

Fig.3(b) denote transportation results without partial delivery

while Fig.3(c) and Fig.3(d) depict ones involving partial de-

livery. Due to the limitation of BSS demand and BT capacity,

each BT will return to CCS multiple times to supplement

the battery. In this paper, a trip refers to a circuit in which

1http://www.vrp-rep.org/datasets/item/2017-0001.html
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(a) (b)

(c) (d)

Fig. 3. Routing comparison for partial delivery: (a) BT1 without partial
delivery; (b) BT2 without partial delivery; (c) BT1 with partial delivery; (d)
BT2 with partial delivery.

TABLE I
DELIVERY RESULT OF BATTERY NUMBER WITH PARTIAL DELIVERY

BT1 BT2

Trip1
0-7-12-19-0

0-19(19)-14(14)-17(17)-0
0-9-5-16-4-0

0-2(2)-17(17)-28(28)-3(3)-0

Trip2
0-21-11-10-20-0

0-16(27)-10(10)-9(9)-15(15)-0
0-17-21-14-13-0

0-11(23)-11(27)-9(9)-19(19)-0

Trip3
0-17-1-2-0

0-12(23)-28(28)-10(10)-0
0-3-0

0-26(26)-0

Trip4
0-8-18-15-0

0-1(1)-28(28)-16(16)-0

Trip5
0-6-0

0-23(23)-0

a BT departs from the CCS, delivers batteries, and returns

to the CCS. Take the BT2 with partial delivery in Fig.3(d)

as an example, the Trip2 is a journey that starts from CCS,

sequentially reaches BSS17, BSS21, BSS14, BSS13, and

finally returns to CCS to recharge the full battery for the next

trip. In addition, Table I shows the delivery result of battery

number for corresponding partial-delivery routings in Fig.3(c)

and Fig.3(d). Note that each result in Table I consists of two

rows, where the first row indicates the sequence of BSSs that

BTk passes through on the trip, with CCS being labeled as

0; the second row shows the number of batteries transported

to the corresponding BSS in sequence, with the total battery

demand of the BSS in parentheses.

Compared with two transportation routings in Fig.3, the

total number of trips under partial delivery is lower than the

one without partial delivery, i.e. partial delivery can reduce the

travel distance in battery transportation. In addition, BSS17

and BSS21 have been transported multiple times by different

BTs, as shown in the red box of Fig.3. Specifically, the

BSS17 and BSS21 have large battery demand (23 and 27,

as highlighted in bold in Table I), accounting for about 50%

Fig. 4. Performance of partial delivery under different vehicle numbers

of the total BT capacity. Due to the mismatch of the BSS

demand and the BT remaining capacity, traditional battery

transportation models must consume more trip costs to meet

high demand of BSSs. Conversely, partial delivery endeavors

to coordinate transportation among multiple BTs to address

the proposed challenge, thereby mitigating the contradiction

between the sudden increase of BSS demand and the trans-

portation scheduling costs of CCS.

Furthermore, the violin plot of Fig.4 depicts the ratio

between the objective value (i.e. normalized objective value)

with and without partial delivery under different networks,

battery demands and vehicle numbers. In Fig.4, the shaded

area surrounding boxes reflects the density of the normal-

ized objective value; the wider the contour, the higher the

aggregation degree in that area. The violin plot quantifies the

effect of partial delivery for transportation costs under different

vehicles, standing for the probability density distribution in

distinct operation conditions. Fig.4 shows that the objective

value under partial delivery is lower than the baseline, which

increases with the number of vehicles. Thus, it demonstrates

the effectiveness of the proposed model in complex road

topology and variable BSS demand. In other words, the

proposed BSCS can improve the flexibility in battery delivery

of EV demands as the increase of controlled BTs.

To show the scalability of our proposed algorithm, Fig.5

and Table II show the comparison of runtime and operation

cost among Gurobi, Benders decomposition, and our proposed

algorithm under different-scale BSCS problems, where the

superscript of LRBD in Table II is the cost improvement ratio

between LRBD and Gurobi result.

Empirically, the decomposition of large-scale battery trans-

portation facilitates efficient computing. Nevertheless, the run-

times of Gurobi and Benders decomposition are almost the

same level when |B| < 23. Due to the time-consuming
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Fig. 5. Comparison on computation time

limitations of MP-1, the BD algorithm struggles for significant

computational advantages in small-scale road networks, and

thereby, disables to effectively battery transport on different

network topologies. Note that the LRBD algorithm can solve

the BSCS problem with 50 nodes in the minute order, which is

essential in the online framework. As shown in Fig.5, although

our proposed algorithm cannot maintain stable performance

across all cases under a large transportation network, LRBD

has a faster computation speed and outperforms Gurobi and

BD by introducing the Lagrangian relaxation. This perfor-

mance gain becomes more prominent with the increase in

network size. This massive difference in performance demon-

strates our proposed algorithm is suitable for the practical

implementation of large-scale problems. In addition, as shown

in Table II, compared with MILP which can obtain a global

optimal solution for offline BSCS, LRBD achieves a near-

optimal solution. The reason is that the Lagrangian relaxation

introduces approximations, leading to the loss of accuracy.

In general, there is a dilemma between solution speed and

accuracy. Note that the average optimality gap is less than

10% over all instances. Hence, LRBD sacrifices a certain

object accuracy and improves the calculation efficiency, which

is acceptable for online optimization.

C. Simulation of Online Battery transportation

In the online simulation part, the entire rolling horizon

consists of 12 time slots with each slot set as 1 hour, i.e.

the operating hours of BSCS are set from 7:00 to 19:00.

Given an assumption on the BSS demand at the first time slot

is equal to the network size, and 2 new demands randomly

emerge at every time slot in two BSSs. In the attempt to

come to a contrastive conclusion, a time-prior algorithm is

introduced to fully validate the superiority of the proposed

online framework. In practical circumstances, the order in

which BSS needs to be earlier meet is often determined by the

demand deadline, which means that the earlier the deadline,

the earlier the battery will be transported. In addition, if the

TABLE II
COMPARISON ON AVERAGE OPERATING COST ($)

Network Scale 19 21 23 25

MILP 82.06 95.72 97.53 98.12
BD 82.06 95.72 97.54 98.12

LRBD 85.774.51 100.154.62 102.284.87 103.165.13

Network Scale 27 29 31 50

MILP 119.62 127.55 133.48 -
BD 119.62 127.56 133.48 253.21

LRBD 125.675.50 135.276.04 142.716.92 280.1510.63

Fig. 6. Online algorithm comparison over different networks

deadline of multiple BSSs is equal, then the priority of BSS

is determined according to the distance between the BTs and

BSSs. Due to the difficulty of applying the offline MILP

method over the whole time horizon, the network size used in

this subsection is limited to a small size.

As shown in Fig.6, the proposed online algorithm outper-

forms the time-prior algorithm as the increasing of initial

BSS size. Here, the normalized objective value is defined

as the ratio between the objective value of each algorithm

and the ideal offline MILP. It is noteworthy that the nor-

malized objective value of our algorithm is less than 1.3

over different road topologies. In addition, we present the

cost reductions between two online algorithms. Evidently, the

transportation revenue has an overall rise as the augmentation

of the road network, with each travel yielding a maximum

profit of $230.9. Consequently, the proposed online algorithm

outperforms the commonly used algorithm in practice (i.e.

time-prior algorithm) in terms of the battery transportation

problems in real-time, while the optimality loss compared to

ideal circumstances is minor.

V. CONCLUSION

In this paper, a novel online scheduling framework incor-

porating partial delivery for BSCS is proposed to bridge the

gap in the operation management of BSCS with a battery

logistics model. To tackle the computational difficulty of

solving the offline BSCS, a Benders decomposition method
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integrating Lagrangian relaxation is employed for the battery

delivery, and improved to a corresponding online algorithm.

Finally, our study demonstrates the effectiveness of partial

delivery under the limited capacity of BTs, thereby enabling

transporting collaboration and cost reduction. And the superior

performance of the proposed framework on computation time

is validated on different scales of road networks, both in

offline and online settings. In future research, we will consider

both the charging scheduling and logistic transportation of the

batteries in BSCS to meet the requirements of grid regulation.
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